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Scoping reviews are a type of research synthesis that aim to map the literature on a particular topic or 
research area. Though originally intended to provide a quick overview of a field of research, scoping review 
teams have been overwhelmed in recent years by a deluge of available research literature. This work presents 
the interdisciplinary development of a semi-automated scoping review methodology aimed at increasing the 
objectivity and speed of discovery in scoping reviews as well as the scalability of the scoping review process 
to datasets with tens of thousands of publications. To this end we leverage modern representation learning 
algorithms based on transformer models and established clustering methods to discover evidence maps, key 
themes within the data, knowledge gaps within the literature, and assess the feasibility of follow-on systematic 
reviews within a certain topic. To demonstrate the wide applicability of this methodology, we apply the here 
proposed semi-automated method to two separate datasets, a Virtual Human dataset with more than 30,000 
peer-reviewed academic articles and a smaller Self-Avatar dataset with less than 500 peer-reviewed articles. To 
enable collaboration, we provide full access to analyzed datasets, keyword and author word clouds, as well as 
interactive evidence maps.
1. Introduction

Scoping reviews, also called “mapping” reviews, are a type of lit-
erature review commonly used for reconnaissance to clarify working 
definitions and map conceptual boundaries of a topic or field (Peters 
et al., 2015). Though originally intended to provide a quick overview 
of a field of research (Arksey & O’Malley, 2005), scoping review teams 
have been stymied in recent years by the swift growth of available re-

search literature (Thomas et al., 2011). The impact of this aptly named 
“data deluge” has been further compounded by the explosion of new 
information technologies that enable the discovery of vast amounts of 
information and provide immediate access to primary research across 
multiple data collections (Hey & Trefethen, 2003, Bell et al., 2009).

Though increased access to research resources might be considered 
an asset in the comprehensive mapping of a field, traditional scoping 
review methodology struggles to meet the expanding number of rel-

evant and available publications. Current attempts to rapidly execute 
scoping reviews are often heavily involved with manual and bespoke 
processes that are not easily translatable across domains. While there 
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have been attempts to leverage state-of-the-art machine learning and 
automated text analysis techniques in systematic reviews (Yamada et 
al., 2020, Thomas et al., 2011, Ananiadou et al., 2009, Tsafnat et al., 
2014), research related to artificial intelligence and automated text min-

ing with an application for scoping reviews remains scarce. Hence, we 
seek to employ replicable, programmatic, and automated steps that can 
be leveraged across any scoping review to gain insights into the extant 
literature.

Specifically, this approach follows a number of desiderata: (1) repli-

cability, (2) objectivity, (3) automation & scalability, and (4) discovery 
& reporting. First, replicability requires the approach to be applica-

ble irrespective of domain (e.g., computer science or medicine). For 
our approach to be replicable we employ accessible and well-validated 
methods for analysis and limit subjective methods wherever possible. 
Second, objectivity requires us to employ well-defined automatic steps 
to evaluate and verify characteristics of the scoping review without 
manual intervention. Third, scoping reviews can vary significantly in 
size and hence automation & scalability can be a crucial factor. We 
therefore require the methods to be robust to both large and small scop-
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Fig. 1. Scoping review stages.
ing reviews. Fourth, discovery & reporting of novel insights are key for 
scoping reviews. We employ statistical methods to describe the health

of a specific field of research as well as provide practical and accessi-

ble methods for researchers to share their results. Specifically, we share 
our results as an interactive evidence map of the dataset, as well as 
open-source research code to improve reproducibility.

The aims of this work are the development of a document-mining 
approach to support scoping reviews and to provide new insights into 
defining a semi-automated process to facilitate scoping reviews. This 
paper makes the following contributions:

• Introduce current manual scoping review methodology and aims as 
well as an exploration of its limitations.

• Present our semi-automated approach that systematizes and accel-

erates scoping review methodology through novel representation 
learning approaches and established clustering techniques.

• Validate the broad applicability and scalability of our approach on 
two datasets that significantly differ in size.

• Discuss how the semi-automated approach enables a more rapid, 
objective, and scaleable process of discovery within scoping re-

views. Limitations of this methodology are also explored.

In short, the main novelty of this paper is the development of a semi-

automated document-mining approach to support scoping reviews and 
to address the limitations of traditional scoping review methodology. 
The proposed approach is novel as it combines representation learn-

ing and established clustering techniques validated on two datasets of 
different sizes. Further, we discuss the approach as a more rapid, ob-

jective, and scalable process of discovery within scoping reviews and 
explore its limitations. Lastly, we provide interactive tools to the re-

search community to accelerate scoping review research and facilitate 
reproducibility.

The remainder of this paper is organized as follows. Section 2 in-

troduces the related work and existing research in the field. Section 3

describes the scoping review datasets included in the analysis and de-

tails the leveraged methodology to collate the documents. In Section 4

we detail the semi-automated approach employed to facilitate the scop-

ing review. Section 5 provides specific results for the scoping review 
datasets and Section 6 discusses the results of our work and implica-

tions to scoping reviews at large. Lastly, Section 7 concludes the paper. 
To enable reproducibility, we provide full access to the datasets, inter-

active evidence maps, and source code.

2. Related work

2.1. Manual scoping review framework and limitations

Scoping reviews are a relatively new approach to evidence synthe-

sis with a general purpose of identifying and mapping the available 
evidence on a topic or field (Munn et al., 2018). Rather than being 
guided by a highly focused research question that lends itself to a par-

ticular study design (common to systematic reviews), scoping reviews 
are guided by the requirement to identify all relevant literature re-

gardless of study design (Levac et al., 2010, Tricco et al., 2016) and 
can include gray literature to address questions beyond those related 
to intervention effectiveness (Arksey & O’Malley, 2005). The ability 
to synthesize findings from a variety of studies, including both quan-
2

titative and qualitative approaches, has contributed to the increased 
popularity of scoping reviews (Logan et al., 2021), making this type of 
review particularly relevant to disciplines with emerging evidence, bod-

ies of literature that exhibit a large, complex, or heterogeneous nature, 
cross-discipline investigations, or fields within the social sciences that 
typically do not conduct randomized clinical trials making it difficult to 
follow the methodology of traditional systematic reviews (Peters et al., 
2015, Logan et al., 2021). The broad applicability of scoping reviews 
has led to their exploding popularity. In fact, the number of published 
scoping reviews conducted per year has increased steadily from a sin-

gle report published in 2000 to over 3,093 published in 2019 (Tricco et 
al., 2016, Raitskaya & Tikhonova, 2019, Peters et al., 2015).

Though typically conducted with broader inclusion criteria than sys-

tematic reviews, scoping reviews still require rigorous and transparent 
methods to ensure that the results are valid and trustworthy (Munn et 
al., 2018). A formalized scoping review framework was initially pro-

posed by Arksey and O’Malley in 2005. This framework was advanced 
by Levac et al. in 2010, Daudt et al. in 2013 and most recently by 
the Joanna Briggs institute in 2020 (Peterson et al., 2017). Despite 
this guidance, the conduct and reporting of scoping reviews is often 
inconsistent in the literature (Tricco et al., 2016), perhaps due to the 
complexity inherent in manually managing and reviewing the com-

monly large and diverse body of literature that is aggregated. However, 
a recent scoping review of scoping reviews published across multiple 
disciplines found that a majority of researchers do in fact attempt to 
follow the five-stage process originally outlined in the seminal work of 
(Arksey & O’Malley, 2005, Tricco et al., 2016). Broadly, this framework 
is as follows: Stage 1 includes refining research questions to be investi-

gated, in Stage 2 relevant studies are identified, Stage 3 focuses on study 
assessment and selection, Stage 4 categorizes the data and finally, Stage 
5 collates and summarizes the data (Raitskaya & Tikhonova, 2019) (cf. 
Fig. 1). Moreover, this scoping review revealed that the major purposes 
Arksey and O’Malley first outlined for conducting a scoping review re-

main among the most common goals pursued by published reviews. 
Research teams commonly undertake scoping reviews to (1) create an 
evidence map, (2) identify key themes and the breadth of the research, 
(3) detect gaps in the existing literature, and, (4) to determine the feasi-

bility of conducting a full systematic review (Arksey & O’Malley, 2005, 
Peterson et al., 2017).

Navigating this five-stage framework in a thorough and thoughtful 
manner to achieve any of these aims takes a significant amount of time 
(Daudt et al., 2013). The rapid expansion of available evidence to be 
synthesized is paradoxically making it more difficult to make evidence-

informed decisions (Thomas et al., 2011). In fact, authors have reported 
that scoping reviews can take up to 20 months to complete (Peterson 
et al., 2017), evidence that researchers can no longer keep up with 
the workload using traditional manual methods of reviewing (Gusen-

bauer & Haddaway, 2020). Moreover, building a team that incorporates 
diverse expertise in library sciences, review methods, as well as search-

ing and synthesis has been shown to significantly improve the quality 
of the review, but the resources and time needed to assemble these 
teams and execute a review may be a daunting prospect to many re-

searchers (Gusenbauer & Haddaway, 2020). Thus, this paper builds on 
scoping review methodology by applying novel representation learning 
approaches to support review teams in successfully meeting this mod-
ern day data deluge.
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Table 1

Scoping review datasets. Resources collected from these databases: ACM, ArXiv, Ebsco, Engineering Village, IEEE Xplore, Gale Com-

puter, Proquest, PubMed, ScienceDirect, Scopus, Wiley, and Web of Science. Please see the supplementary data on our GitHub for details 
on query lines and articles per resource.

Name Search Terms Date Range Total Found Included

VH dataset virtual human(s), embodied conversation agent(s), virtual agent(s), digital human(s) 1990-2021 75622 32934

SA dataset self-avatar(s) 2000-2021 1415 447
2.2. Advances in knowledge synthesis

Currently, there is a focus on innovation in evidence synthesis tech-

niques that include the introduction of improved tools to make it easier 
to conduct this work. Evidence synthesis technologies such as refer-

ence management software and web-based software platforms allow 
for the more effective and efficient identification, analysis, synthesis, 
and reporting of research (Gusenbauer & Haddaway, 2020). Addition-

ally, there is an extensive body of research focused on automating or 
assisting the tedious process of systematic reviews (Beller et al., 2018, 
Tsafnat et al., 2014, Jonnalagadda et al., 2015). Available tools and task 
automation algorithms range from assisted meta-search tools (Tsafnat 
et al., 2014), machine learning based abstract screening (Wallace et al., 
2010, 2012), and automated result synthesis tools, like RevMan-HAL 
(Torres & Adams, 2017) and PRISMA (Page et al., 2021). For example, 
the tool abstrackr discussed in (Wallace et al., 2012) relies on a semi-

automated active learning approach during which the human reviewer 
iteratively trains a Support Vector Machine (SVM) (Cortes & Vapnik, 
1995) to categorize titles and abstracts as either “relevant” or “irrele-

vant” for the systematic review. The features leveraged for the process 
rely on traditional representations of documents named bag-of-words 
(Wallach, 2006). A bag-of-words is a vector representation 𝑥 = 𝑥1, ..., 𝑥𝑉
of a document with a given vocabulary size 𝑉 , where 𝑥𝑖 ∀𝑖 ∈ {1, … , 𝑉 }
is either 1 if the word 𝑖 is present in the document or 0 if it is not present 
respectively. While these representations have the ability to capture 
topics with standardized vocabulary - which is not trivially extensible 
- they are not able to represent complex relationships between words 
(e.g., word order in bag-of-words is typically ignored) (Wallach, 2006). 
While extensions to bag-of-words, such as n-grams (Damashek, 1995) 
are possible, they are fundamentally limited to small 𝑛 « 10, due to the 
combinatorial explosion of the vocabulary size. In the recent past, docu-

ment representation algorithms relying on extremely large datasets and 
neural network models (e.g., transformer models) have been developed 
that are able to learn latent concepts and representations of language 
that go beyond any engineered approach (Vaswani et al., 2017, Cohan 
et al., 2020). Such neural models are specifically capable to represent 
complex relationships across sentences as well as entire documents and 
hence hold great promise for the automated analysis of scientific re-

search documents (Cer et al., 2018, Beltagy et al., 2020).

We leverage such document representation algorithms for the 
present work to identify relationships between documents present in 
the scoping review datasets.

3. Methods

3.1. Context

The here presented work is part of the Virtual Human Fidelity Coali-

tion (VHFC). The VHFC is a collaboration between the University of 
Southern California Institute for Creative Technologies (USC ICT) and 
USC Libraries, sponsored by the US Army DEVCOM Soldier Center with 
specific guidance from its Simulation and Training Technology Center 
(STTC). Virtual humans are growing in cross-domain application, both 
as self-avatars to represent a specific person and as standalone artificial 
intelligence-controlled agents (Cassell et al., 2000, Hartholt et al., 2013, 
2019, 2020). This cross-disciplinary work aims to investigate virtual hu-
3

man fidelity, defined as the degree to which a virtual human reproduces 
the sensory experience of interacting with a real person. While the tech-

nology to make a digital human look, sound and feel more realistic is 
improving, we know little about the differing levels of realism that may 
be required for a virtual human to be deemed acceptable and effective 
across different contexts and end users.

3.2. Datasets

The overarching goal of the VHFC is to explore the optimal fidelity 
of virtual humans across domains and end user demographics to max-

imize the efficacy of training outcomes. This research began with a 
scoping review of the literature related to virtual human fidelity to ex-

plore (1) Fidelity Domains (e.g., rendering style, voice quality, facial 
expressions, etc.), (2) Intervention Contexts (e.g., pedagogical, mental 
health, physical health, etc.), (3) Fidelity Evaluation Strategies (e.g., di-

rect measures such as subjective surveys and indirect measures such as 
physiological responses), and (4) End Users (e.g., students, soldiers, the 
elderly, etc.).

The date range for this review spans 1990 to 2021. Initial inclusion 
criteria for the scoping review are: journal articles, conference proceed-

ings, dissertations and theses, and review articles published in English. 
To be included, articles also had to meet all three of the following cri-

teria: be a human subject research topic with real humans interacting 
with at least one virtual human, one aspect of the virtual human’s fi-

delity needed to be varied, and both direct and indirect measures had 
to be collected. Newspapers, magazines, press releases, books, book 
chapters, conference reviews, editorials, notes, letters, short surveys, 
retracted, erratum, and undefined articles were excluded. Furthermore, 
articles that discussed robots and conversational agents that were not 
embodied were not included.

Given the breadth of the topic, the initial scoping review resulted 
in a sizable body of research to be synthesized. The total number of 
resources advancing to data screening was 34,153 after removing dupli-

cates. This incredibly large dataset inspired us to investigate document-

mining algorithms to accelerate and facilitate a comprehensive scoping 
review allowing us to explore the last thirty years of research on the 
digital representation of humans.

To further show generalizability of the here presented document-

mining approach to a broad set of scoping reviews we further added a 
much smaller dataset to the investigations. We apply the here proposed 
semi-automated method to two separate datasets, the above described 
Virtual Human dataset (VH dataset) as well as a smaller Self-Avatar 
dataset (SA dataset). VH dataset is a large general scoping review with 
more than 30,000 documents and SA dataset is a small specific scoping 
review with around 450 documents (cf. Table 1). Both datasets were 
collected following the same protocols with different keyword terms 
as specified by the research team. A summary of search terms, date 
ranges, total number of works found (i.e., before removing duplicates 
or illegal entries), and total number of included publications is provided 
in Table 1.

Before processing the data, we clean the data of any missing data-

points. Due to the semi-automatic collection of the dataset using tools 
such as IEEEXplore or Web of Science, it is expected that a number of 
extracted metadata is missing, e.g., titles, abstracts, authors, and years. 
We therefore remove all entries with missing data from our analysis. 
After this pre-processing step, 32,934 papers remain in the VH dataset
and 447 in the SA dataset respectively.
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Fig. 2. Approach overview. A collection of all papers’ titles and abstracts are processed through SPECTER to derive high-dimensional semantic embeddings of each 
paper. To visualize the data in a relationship preserving two-dimensional representation we leverage t-SNE, while the high-dimensional embeddings are evaluated 
and clustered on a separate path. Lastly, the cluster assignments are used to color each datapoint in the two-dimensional representation.
4. Semi-automatic document-mining approach

In the following, we present the semi-automatic document-mining 
approach ensuring the aforementioned desiderata of (1) replicability, 
(2) objectivity, (3) automation & scalability, and (4) discovery & re-

porting of results for both the VH dataset and SA dataset (cf. Section 3). 
When not explicitly discussed, methods, parameters, and approaches 
exactly matched between the document-mining of either dataset. To 
visualize complex relationships between papers, to discover emerging 
trends and topic clusters, as well as evidence gaps within a large un-

structured document dataset, we devised a multi-step process visualized 
in Fig. 2.

First, we leverage the state-of-the-art document-level representation 
learning method SPECTER trained directly on academic paper titles and 
abstracts as well as their citation-relationships (Cohan et al., 2020) to 
derive dense, high-dimensional numeric representations for each doc-

ument. As suggested by the authors of SPECTER the here proposed 
work leverages their pre-trained model without fine-tuning in this novel 
downstream application. Second, we employ t-SNE, a dimensionality 
reduction algorithm, to render the high-dimensional embeddings on 
a two-dimensional interactive mapping (Van der Maaten & Hinton, 
2008), enabling the visual inspection of the relationships between pa-

pers. Third, to identify the number of research topics and their cluster 
entries within the vast field of research we employ the elbow method 
(Kodinariya & Makwana, 2013) to optimally identify k for the k-means 
clustering (Ahmed et al., 2020). Fourth, we identify the topic of each 
cluster leveraging word cloud analysis (Cui et al., 2010). While the nam-

ing of each cluster topic and its key terms is still a manual process, 
the visualization of word clouds greatly improves the comparability 
and accelerates the process considerably. Fifth, we leverage descriptive 
statistics to assess the clusters’ overall characteristics and trends. Sixth, 
to identify possible evidence gaps within the scoping reviews data, we 
employ keyword matching to visualize how certain keywords appear 
across the entire space of the scoping review data. This process is fur-

ther enabled by leveraging an interactive map and clear visualizations 
of the dataset.

4.1. Document embedding and visualization

As shown in Fig. 2, we embed all documents using the document-

level transformer model SPECTER (Cohan et al., 2020)1 in a 768-

dimensional representation space. For the embeddings we feed the 
model paper titles and abstracts in order for the model not to be bi-

ased by author names and publication years. We do not conduct any 
fine-tuning on the SPECTER model as we seek to make it as broadly ap-

plicable as possible for any dataset. We chose SPECTER for its superior 
performance in the evaluation results leveraging the evaluation suite 
4

1 https://github .com /allenai /specter.
SCIDOCS (Cohan et al., 2020). SPECTER achieved an average perfor-

mance of 80.0 across seven tasks in SCIDOCS as compared to SciBERT 
with 59.6 and therefore we expect it to produce more meaningful and 
relevant representations than SciBERT. However, it is possible to use 
any other text or document embedding model for our proposed method.

As it is difficult for a human to grasp the meaning and relationships 
of a high-dimensional representation of the document embeddings, we 
employ t-SNE (Van der Maaten & Hinton, 2008) to reduce the dimen-

sionality of the document embeddings to only two. t-SNE is a non-linear 
dimensionality reduction technique that is widely used in machine 
learning (Cohan et al., 2020, Ghosh et al., 2017) and other fields of aca-

demic research. Using t-SNE we are able to visualize the data as well 
as maintain complex non-linear relationships between the datapoints. 
The goal of the t-SNE algorithm is to render similar datapoints close 
to each other and dissimilar datapoints further apart from each other 
on a low-dimensional space (i.e., two dimensions for the present work). 
For the purpose of this work we leverage the SciKit Learn implemen-

tation of t-SNE with the default parameter setting and a random seed 
of 0 for reproducibility.2 Note that any other dimensionality reduction 
algorithm could be leveraged for the same purpose (e.g., Uniform Mani-

fold Approximation and Projection (UMAP) (McInnes et al., 2018)). We 
utilized t-SNE as it delivered the most robust results for our work.

4.2. Topic clustering

For the clustering of the documents into topics we leverage the 768-

dimensional representations. We use the high-dimensional document 
embeddings as input to the well known k-means clustering algorithm 
(Hamerly & Elkan, 2003). While k-means is a popular approach to clus-

ter data and reveal groupings in the data, the right choice of k is not 
trivial and can severely bias the outcome. To identify the optimal num-

ber of clusters k, we employ the elbow metric (Satopaa et al., 2011). 
The principal idea of the elbow method is to iteratively run k-means 
clustering on the dataset for a range of values of k. In our analysis, we 
ran the clustering for k ∈ [2, 100] for the VH dataset and k ∈ [2, 20] for 
the SA dataset respectively. For each value of k we calculate the sum of 
squared errors (SSE) as the distortion score. Then we choose the elbow 
as the trade-off value between an optimal SSE and a small k. Unfortu-

nately, as seen in Fig. 3 no clear elbow is visible as the data is likely 
not very easily separable and significant overlap is expected. This find-

ing may be an artifact of the dataset or a signal pointing toward the 
homogeneity of the topic space within the dataset.

To further evaluate the quality of clusters created using k-means, 
we calculate the Silhouette score. This score is assessed by comparing 
for each cluster the intra-cluster distance (i.e., how similar data points 
are within the same cluster) and the mean nearest-cluster distance (i.e., 

2 https://scikit -learn .org /stable /modules /generated /sklearn .manifold .TSNE .

html.

https://github.com/allenai/specter
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html


Intelligent Systems with Applications 19 (2023) 200249S. Mozgai, C. Kaurloto, J. Winn et al.

Fig. 3. Visualization of k-Elbow distortion metric to identify the optimal k for the k-means clustering given the document embeddings.
how different a data point within a cluster is to the closest one in a 
different cluster). The Silhouette score is calculated for each sample of 
different clusters. The value of the Silhouette score ranges from -1 to 1. 
We observe a score of <0.1 for both datasets, which represents that the 
clusters are overlapping.

In order to assess how consistent the clusters are across multiple 
random seeds we use the well established consensus index (CI) metric 
(Vinh & Epps, 2009, Vinh et al., 2009). CI is based on the information 
theory based index adjusted mutual information (AMI) and provides a 
metric 𝐶𝐼 ∈ [0, 1] measuring the average agreement between provided 
pairs of clustering solutions 𝑈𝑖. Specifically, we randomly selected 100 
random seeds and computed:

𝐶𝐼 = 2
𝑛(𝑛− 1)

∑

𝑖<𝑗

𝐴𝑀𝐼(𝑈𝑖,𝑈𝑗 ),

∀𝑖 = 1, … , 100. When pairwise comparing the clusterings across the 100 
runs, we observed 𝐶𝐼 = 0.797 with a variance of 0.002 for the VH dataset

and we observed 𝐶𝐼 = 0.695 with a variance of 0.004 for the SA dataset. 
While this result shows that the consensus between the 100 runs is not 
perfect, the agreement is quite high between the runs and the variance 
is extremely small for both datasets. This result indicates that the ap-

proach for the clustering is robust.

4.3. Topic identification and topic trends

To understand what each of the clusters represents we employed 
a word cloud algorithm to distill each cluster’s main topic in a hu-

man readable format. For the purpose of this work we use a common 
Python word cloud package.3 Before running the algorithm we removed 
common words known as stopwords (e.g., a, do, get, she, or I) to ren-

der the word cloud plots more meaningful and focused on the actual 
topic rather than just common English words. Specifically, we use the 
standard stopword dictionary that accompanies the Python implemen-

tation of the word cloud library. Once the word clouds (cf. Fig. 4) were 
rendered, two reviewers reviewed each plot carefully and identified 
keywords (see Tables 3 and 4) present in each plot to provide a mean-

ingful label to each cluster. While the process of naming the clusters 
may be somewhat subjective, the access to a reproducible, digestible, 
and quantitative algorithm such as the word cloud algorithm renders 
this process transparent and efficient.

While it is possible to run any descriptive statistic across the 
datasets, for the purpose of this work we were specifically interested 
in understanding the size of each identified cluster (i.e., the number 
5

3 https://github .com /amueller /word _cloud.
of publications assigned to the cluster) and the year over year (YoY) 
growth of each cluster. These statistics provide us a rough understand-

ing on the trends, nascence, and possible decay of the topic within the 
scoping review.

4.4. Keyword matching

To allow a researcher to understand how a specific topic of their 
interest maps into the identified clusters and embedding space of the 
scoping review documents, we also provide access to regular expres-

sion based keyword matching. For example, one might be interested 
how different demographic constraints (e.g., “military population”) fit 
into the scoping review documents to understand if further research is 
warranted, if a field is already crowded, or if a systematic review is 
even possible to dive deeper into the topic area of interest within the 
context of the scoping review’s documents. These explorations require 
manual input to identify the keywords. We provide a few examples of 
such explorations in the evaluation Section 5.

5. Evaluation

Here we present the outcomes of our document mining approach 
for both datasets. We first present the outcome of the topic clusters to 
summarize and map the state of evidence in Section 5.1. Then we iden-

tify key themes in the literature and present the breadth of research 
and yearly trends in each cluster in Section 5.2. Lastly, we explore pre-

liminary steps towards identifying possible knowledge gaps within the 
literature as well as the feasibility to conduct a systematic review for 
specific topics within the realm of the scoping review datasets in Sec-

tions 5.3 and 5.4.

5.1. Evidence map

The optimal number of clusters was identified to be k = 29 for the 
VH dataset and k = 9 for the SA dataset respectively, as seen in Fig. 3. 
With these k values, we calculated a k-means clustering of the embed-

dings and visualized it in the two dimensional space for both datasets. 
The final cluster visualization is provided in Fig. 5 for the VH dataset.4

Note that the clustering was computed with the 768-dimensional em-

bedding vectors while the visualization in Fig. 5 is based on the t-SNE 
projections to only two dimensions. Based off of the Silhouette score, it 
is expected that the clusters are overlapping.
4 Interactive figures can be found at https://github .com /USC -ICT /VHFC.

https://github.com/amueller/word_cloud
https://github.com/USC-ICT/VHFC
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Fig. 4. Visualization of four example word-clouds within VH dataset.

Table 2

Mapping of Semi-automated Document-Mining Approach onto Scoping Review Goals.

Goal Method Automation Level Description Evaluation

Evidence Map k-means Clustering Automatic 4.2 5.1

Key Themes and Breadth of Research Statistics/Word-Cloud Automatic 4.3 5.2

Knowledge Gap Detection Keyword Matching Semi-Automatic 4.4 5.3

Feasibility of Systematic Review Keyword Matching Semi-Automatic 4.4 5.4

Fig. 5. Visualization of the final k = 29 clustering for VH dataset. The axis correspond to the t-SNE projections. The clustering itself was computed by the high-
6

dimensional document embeddings.
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Fig. 6. Year over year (YoY) growth comparison for Mental Health and Animation clusters respectively in VH dataset. Healthcare is shown in blue with a rapid growth 
trend and Animation is shown in purple with a longer history in the field and a slow decline over the years.

Table 3

Extracted clusters for the VH dataset with year over year (YoY) growth and total number of publications over the last ten years (i.e., 2010-2020).

ID Name Keywords Growth Pubs

0 virtual agents interaction, social, realistic, multi agent, behavior 1.02% 982

1 biophysiology cardiac, heart, arrhythmia, fibrillation 31.67% 211

2 human robot interaction social robots, children, assistive robot, humanoid robot, multimodal, care 18.75% 1149

3 emotion affective, facial expression, emotion recognition, behavior, speech, nonverbal behavior 0.64% 876

4 interfaces user, interaction, multimodal, framework, model 14.06% 988

5 market research design, digital, brand, loyalty, satisfaction, e commerce, service, customer 16.51% 786

6 biomechanics ergonomics, force, muscle, joint, performance, motion, rehab 11.99% 789

7 system architecture system, simulation, network, control, multi agent 11.19% 948

8 robot navigation path planning, collision avoidance, swarm, tracking, navigation, UAV 2.21% 665

9 virtual interaction avatar, virtual environments, virtual reality, agent, influence 8.92% 1166

10 vehicle driving, ergonomics, passenger, seat, accident, driver simulation, car, safety 15.70% 678

11 VR training training, virtual agents, virtual reality, simulation, medical, AR, surgery 20.23% 593

12 machine learning representation learning, data, classification, prediction, reinforcement learning, neural network 7.30% 1165

13 animation motion, 3d, model, character animation −3.88% 570

14 gaming serious games, storytelling, narrative, gamification, video game 6.27% 911

15 textiles wearables, clothing, design, cloth, assembly, virtual fitting 22.95% 504

16 conversational agents dialog, chatbot, conversation, communication, embodied conversational 13.23% 1178

17 modeling motion movement, kinematic, motion simulation, motion tracking, posture 8.56% 882

18 medical imaging patient, anatomy, CT, voxel, body, imaging, MRI, surgery 8.76% 598

19 social behavior negotiation, trust, culture, empathy, social, presence, ethical, decision making, personality 11.91% 1172

20 multimodal interaction speech, gesture, sign language, audiovisual, prosody 8.09% 814

21 virtual reality virtual reality, virtual environment, augmented reality, immersive, mixed reality 11.91% 904

22 mental health patient, treatment, depression, disorder, clinical, assessment, pain 35.39% 848

23 3d modeling 3d, model, shape, image, face, reconstruction, mapping, pose estimation −0.82% 782

24 face facial expression, face animation, perception, emotion, gender, eye, expression recognition 6.49% 483

25 ergonomics design, evaluation, application, workplace, manufacturing, workstation, safety 14.64% 793

26 crowd simulation pedestrian, crowd behavior, traffic, animation density 5.33% 776

27 learning student, learner, education technology, children, pedagogical agent 7.82% 1209

28 pharmacokinetics drugs, cardiac, atrial fibrillation, metabolism, physiology, treatment 13.07% 339
5.2. Key themes and breadth of research

To assign actual human interpretable topics to each of the clusters, 
we employ word cloud analysis to each of the clusters and identify top-

ics based on the keywords identified in each (Heimerl et al., 2014). 
Fig. 4 exemplifies clusters for the VH dataset from this analysis. Table 3

lists all clusters with accompanying keywords for the VH dataset and 
Table 4 for the SA dataset, respectively.

In order to assess the overall health (i.e., the growth in publications) 
of each cluster we calculate the average percentage growth (YoY) over 
the past 10 years in the number of publications. To illustrate the dif-

ference between a healthy and a lower trending cluster we provide his-

tograms of the Mental Health cluster (Mean YoY growth = 35.3%) and 
the Animation cluster (Mean YoY growth = -3.4%) identified within 
the VH dataset. Fig. 6 visualizes the growth between the two clusters. 
Overall, the entire field of VH dataset appears to be growing at a steady 
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pace of about 8% YoY for the past 10 years.
Due to the small number of documents in the SA dataset a YoY 
growth analysis is not possible as in some years no publications ap-

peared in some clusters. Therefore we provide the bi-yearly growth for 
single clusters in Table 4. However, the field itself is rapidly growing 
overall at a 34.3% YoY growth, which is outpacing the larger field pre-

sented in the VH dataset.

5.3. Knowledge gap detection

One of the main purposes of scoping reviews is to determine knowl-

edge gaps within the literature. To identify if a knowledge gap exists 
within the large and small scoping review datasets, we propose the use 
of keyword matching techniques applied to the title of the documents. 
To illustrate the approach we conduct a keyword matching example for 
the broader topic of military by searching for the keywords military, sol-

dier, veteran, weapon, army, air force, navy, armor in both scoping review 

datasets. We visualize the result in Fig. 7. In the VH dataset, research 
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Table 4

Extracted clusters for the SA dataset with bi-yearly growth and total number of publications over the last ten years (i.e., 2010-2020).

ID Name Keywords Growth Publications

0 mental health stress, therapy, body, addiction, emotion, image, anorexia, mindfulness 93.75% 26

1 virtual reality HMD, virtual environment, egocentric distance, motion 39.52% 77

2 virtual worlds media, social, second life, identity, community 57.78% 33

3 avatar creation creation, intention, customization, identity, brand, consumer 50.16% 50

4 evaluation participant, presence, experience, study, user 136.21% 79

5 data analysis data, design, guidelines, learning, tangible, information 78.24% 23

6 gaming player, game, massively multiplayer, gaming, Fortnite 117.22% 45

7 education school, learning, student, science, mathematics 58.33% 24

8 therapeutic applications rehabilitation, ASD, walking, Kinect, aging, effectiveness 46.30% 45

Fig. 7. Visualization of the spread of the “military” topic within the two datasets. The topic is identified using a set of keywords related to the military, including: 
military, soldier, veteran, weapon, army, air force, navy, armor. Matching documents in the dataset are visualized with an orange dot and those which do not are 

visualized with a blue dot.

regarding the military is spread out amongst topic clusters, providing 
evidence that there is diffuse research across topics, however, there is 
a lack of thematic concentration in a single domain. This example also 
clearly shows a significant knowledge gap within the literature on self-

avatars with respect to the topic of military.

5.4. Feasibility of systematic review

The fourth aim of scoping reviews is to answer the question if a 
certain topic within the broader scoping review dataset warrants an in-

depth systematic review to further our understanding of that particular 
topic (Tricco et al., 2016). As discussed in (Tricco et al., 2016, p. 9), 
one primary way to assess if an in-depth systematic review is feasible is 
“when at least ten studies are available on a specific topic”. Leveraging 
the semi-automatic clustering techniques in Section 4.2 and keyword 
spotting discussed in Section 5.3, we believe it is possible to, for ex-

ample, conduct a systematic review of the use of virtual humans in the 
context of “military” simulation and training.

6. Discussion

As introduced above, the here proposed method seeks to follow the 
desiderata: (1) replicability, (2) objectivity, (3) automation & scalabil-

ity, and (4) discovery to support the key objectives of scoping reviews 
(cf. Table 2). Within this section, we discuss how the proposed approach 
attempts to accomplish these characteristics, how they support the goals 
of scoping reviews, and where we identify shortcomings and possible 
improvements for future work.

Replicability Replicability should be a core tenet of any study. Yet, due 
to the variations in approaches, absence of tools, and lack of consis-

tency in focus of scoping reviews (Pham et al., 2014), replicability is 
traditionally not guaranteed. Within this work we follow a few strate-

gies to facilitate replicability. First, we make all the data, search criteria, 
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source code, and parameters used in the approach available through an 
open source repository hosted on GitHub.5 Second, we leverage only 
open source software and well established algorithms within the work. 
Third, we further provide interactive interfaces whenever possible for 
readers and colleagues to investigate and experience the data them-

selves.

Objectivity Whenever possible, we seek to reduce bias by eliminating 
subjective judgment from the approach. For example, we employ well-

defined automatic steps to evaluate and verify characteristics of the 
learned representations, such as the number of discovered topics within 
a scoping review dataset (cf. Section 4.2) and use the elbow method to 
identify an optimal number of k clusters for the k-means algorithm. 
However, it needs to be noted that this method is not perfect in the 
sense that it always identifies the true number of clusters in any given 
dataset, but rather identifies a trade-off between the number of clusters 
and their associated distortion score.

When analyzing the topic of each cluster, we also resorted to a 
method that only assists human subjective judgments rather than a fully 
automated term recognition (ATR) algorithm (Kageura & Umino, 1996). 
This is motivated by the fact that due to the nature of the collected 
dataset often ATR algorithms would identify terms that are present 
in the search criteria of the scoping review, such as “virtual human” 
instead of the actual topic of the cluster within the realm of virtual hu-

man research. When leveraging pyate (Lu, 2021) for ATR, for example, 
we found that the algorithm for Cluster 22 correctly identified “Mental 
Health” as the topic of the cluster, however, for Cluster 3 the automati-

cally inferred term was “Virtual Agents”, while “Emotion Recognition” 
came in a close second. We believe that these ATR methods have the 
potential to further refine the approach taken in this work, but this will 
require further iterations, subject to future investigations.

Scalability & automation The third desiderata seeks to show that the 
here presented approach can be applied to datasets of any size (includ-
5 https://github .com /USC -ICT /VHFC.

https://github.com/USC-ICT/VHFC
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ing very large datasets) and help automate some of the most tedious 
steps of scoping reviews. Specifically, the approach was able to sig-

nificantly speed up the identification of topics, their trends, and the 
presence of studies covering certain topics. There is no doubt about 
the immense workload of manual screening in scoping reviews. In both 
the abstract and full-text screening phases, two independent researchers 
must read and evaluate each resource for inclusion and exclusion vari-

ables. Even with small datasets this is a time-consuming and subjective 
process that can introduce bias, while large datasets exacerbate the is-
sue of time commitments and efficiency. By reducing the amount of 
time dedicated to the screening process and by enabling the ability to 
rapidly discover patterns within the data, which can be a challenging 
process when employing manual screening procedures, we facilitate a 
more systematic and efficient scoping review process that can scale to 
even the largest of datasets.

Discovery Last but not least, we seek to provide a set of tools and 
approaches that render scoping review datasets more accessible and 
discovery easier. Specifically, we would like to highlight the t-SNE algo-

rithm (Van der Maaten & Hinton, 2008) that renders high dimensional 
document representations human consumable by projecting them to a 
2D space. Together with an interactive system that allows the user to 
hover over titles6 and explore similar fields with ease, this represents 
a significant step towards more accessible scoping review data discov-

ery. Representation learning techniques and well-established cluster-

ing algorithms, such as SPECTER and k-means employed in our work, 
transform text to meaningful representations and enable more targeted 
searching without increasing manual screening workload. Additionally, 
clustering in scoping reviews introduces a quantitative approach to 
the analysis of article datasets that can accelerate knowledge synthe-

sis while hereto increasing objectivity and reducing some of the bias 
that can be introduced by subjective reviewers.

Together, these desiderata support scoping reviews on all aspects. 
The here introduced methods specifically support the mapping of the 
evidence, the identification of key themes and their breadth of research, 
the identification of knowledge gaps, and the assessment of feasibility 
to conduct a systematic review for a certain topic.

6.1. Limitations

Of course the here presented work is not without limitations. We 
discuss the main limitations of the present work in this section.

While the semi-automated approach speeds up data synthesis, it still 
requires the qualitative analysis of clusters by domain experts. The here 
employed elbow method provides a mathematically optimal trade-off be-

tween the number of clusters k and the distortion score, however, it by 
no means always corresponds to the exact subjective clustering that a 
domain expert would potentially identify. Specifically, the domain ex-

perts need to verify and validate topics manually while inspecting the 
synthesized word-cloud plots to validate the cluster and identify spe-

cific cluster themes. Researchers should employ their own judgment

when assessing the exact number of clusters and may need to discuss 
merging or splitting clusters given their observations. Within this work, 
we support this process of revising the clusters by enabling interactive 
analysis and word-cloud methods that allow rapid inspection of the ar-

ticles associated with a certain cluster.

While our approach controls for the subjective bias introduced by 
manual screening, automated methods are certainly not without their 
own biases. We suggest to continuously screen for novel and improved 
representation learning algorithms that could replace the SPECTER 
model leveraged in this work. Further, while a full manual screening 
approach likely has a higher chance of identifying irrelevant articles 

6 To access the interactive maps go to our GitHub: https://github .com /USC -
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that were introduced into the dataset during the initial search process 
(e.g., tables of content, articles with missing fields, irrelevant articles re-

trieved by keyword search, etc.), the automated process right now does 
not include a strong filtering approach. This could be introduced in a 
future update of the work, but is out of scope for this initial version.

7. Conclusions

Our work reports on the partnership of social science researchers, 
computer scientists, and librarians in the development of a document 
mining approach to support scoping reviews. We demonstrate the ef-

ficacy of our semi-automated technique in rapidly identifying patterns 
in both a large and small dataset of academic articles. This method-

ology can rapidly identify literature that should be further reviewed 
by researchers wishing to establish the current state of knowledge in a 
particular field or across multiple disciplines. As advances in informa-

tion sciences increase the access to and volume of articles available to 
researchers, the application of validated semi-automated reviews will 
be a valuable tool that improves the efficiency of evidence synthesis 
projects and increases communication across disciplines.
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