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Abstract—Simultaneous localization and mapping
(SLAM) is a prerequisite for accurate navigation of
autonomous vehicles. Although this is often safety-
critical, systematic approaches for testing the correct-
ness and accuracy of SLAM algorithms are missing.
In this paper, we present an approach for auto-
mated and systematic testing of SLAM algorithms.
We identify challenging environmental features for
SLAM, define coverage criteria that characterize the
SLAM problem’s input space, and develop a method
for automatically generating high-coverage tests. We
demonstrate the effectiveness of our approach with a
case study on an existing FastSLAM implementation.

Index Terms—Autonomous Vehicles, Simultane-
ous Localization and Mapping, Test Automation,
Coverage-driven Testing, Input Space Partitioning

I. INTRODUCTION

With the advent of self-driving cars and au-

tonomous vehicles, accurate navigation has become

a safety-critical issue. Prerequisites for accurate

navigation are a precise map and precise localiza-

tion. This makes it crucial to ensure the correct-

ness of algorithms for simultaneous localization and

mapping (SLAM), for example by executing them

with sample input data in simulation or in a test

environment. This process is called SLAM testing.

To detect as many faults as possible, established

software testing approaches typically aim at a high

coverage of either the implementation (structural
testing) or the input space (functional testing). Due

to the lack of structure in their implementations [1],

structural testing is not very effective for proba-

bilistic SLAM algorithms, as even simple test cases

can achieve complete structural coverage without

triggering interesting behavior. In contrast to this,

the idea of functional testing is to partition a given

input or output domain into disjoint sub-domains

such that all elements in one equivalence class are

expected to provoke the same system behavior [2].

Then, by choosing one representative of each par-

tition, a systematic coverage of the input space can

be achieved with a reasonably small number of test

cases. The selection of test cases from equivalence

classes can be made, for example, by using border

values, testing special values or randomly selecting

test cases [3] [4]. The main challenge in applying

functional testing to SLAM is the complexity of the

input space, i.e. complex maps and sensor data, and

SLAM algorithms’ hard-to-predict behavior.

In this paper, we present an approach to partition

the input space of the SLAM problem into equiva-

lence classes such that we can automatically derive

a set of interesting test cases with a high coverage

with regard to these equivalence classes. Our key

idea is threefold: First, we identify parameters that

influence how challenging a test case is for SLAM

algorithms, such as map size and sensor accuracy,

but also parameters that can expose common flaws

in SLAM implementations, such as phases of inac-

tivity. Second, we define domain-specific coverage

criteria by dividing these parameters’ domains into
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equivalence classes in a declarative style. Third,

we propose a method to automatically construct

challenging test cases with a high coverage of the

input space based on these coverage criteria. We

demonstrate the applicability of our approach by

generating test cases for an existing FastSLAM

implementation [5]. Our coverage-driven approach

improves the error detection capability for this case

study and a number of example faults.

The rest of this paper is structured as follows:

Sec. II introduces preliminaries, Sec. III discusses

related work. Sec. IV presents our systematic test

approach, Sec. V our coverage criteria and Sec. VI

our coverage-driven test case generation. Sec. VII

presents experimental results. Sec. VIII concludes.

II. SIMULTANEOUS LOCALIZATION AND

MAPPING (SLAM)

The aim of SLAM is to estimate both the state of

a vehicle and the state of its environment without a

priori knowledge of either. Since a SLAM algorithm

must rely on noisy information about vehicle move-

ment and sensor observations, this estimate takes

the form of a probability distribution over all possi-

ble states. In the following, we briefly introduce the

fundamentals of SLAM following [1], a selection

of SLAM algorithms, including FastSLAM [6], and

the particle deprivation problem.

A. Probabilistic Formulation of SLAM

The SLAM problem is characterized by the fol-

lowing random variables: The vehicle position is

denoted by xt at time t. The map is denoted by

m and describes the state of the environment. It is

independent of time as it is assumed to be static. It

can be modeled as a grid map that independently

estimates the occupancy probability of each grid

cell, or as a feature map that estimates a number of

landmark locations. Motion information is denoted

by ut and describes information about the vehicle’s

movement at time t, such as velocity or wheel rota-

tion counts. Sensor information is denoted by zt and

describes the information gathered by the sensors

about the environment at time t, such as range and

bearing information to a nearby landmark.

The goal of an online SLAM algorithm, i.e. one

that runs at exploration time, is to estimate the

Algorithm 1 Bayes Filter Algorithm

1: procedure BAYES FILTER(bel(st−1), zt , ut )

2: bel(st) =
∫

p(st |st−1,ut) bel(st−1) dst−1

3: bel(st) = η p(zt |st) bel(st)
4: end procedure

vehicle position xt and map m based on sensor data

z1:t and motion data u1:t . Its belief bel is defined by

a probability density function (PDF) p [1]:

bel(xt ,m) = p(xt ,m|z1:t ,u1:t)

Recursive Bayes Filter (RBF): An RBF is an

abstract algorithm for online estimation of the PDF

p under the assumption that the state behaves as

a Markov process, i.e. the future is conditionally

independent from the past [1]. Algorithm 1 displays

the general algorithm for a state vector s [1] (in

the context of SLAM, s = (xt ,m)). The central

idea is to incorporate the input data in two steps.

The prediction step in Line 2 predicts the current

state based on the previous state and the measured

motion. For all possible previous states st−1, it

combines the probability bel(st−1) that the previous

state of the system was st−1 with the probability

p(st |st−1,ut) that it evolved to st by executing the

motion measured by ut . This gives an initial ap-

proximation bel(st) of the PDF. The correction step
in Line 3 uses the sensor observations to refine this

approximation by taking into account the likelihood

that the observation zt would be made in state st .

B. Particle Filter

A particle filter is an implementation of the re-

cursive Bayes filter. It uses a nonparametric method

such as Monte Carlo Localization (MCL) [7] to

estimate the state PDF by approximating it with

weighted samples, called particles [1].

Like the Bayes filter, the particle filter algo-

rithm (Algorithm 2) can be divided into two main

steps. First, each particle in the previous particle

set Xt−1 is propagated according to the vehicle

motion by sampling a possible new position from

the motion model p(xt |xt−1,ut) in Line 4. To correct

the prediction according to observation information,

the predicted particle set is filtered in a process
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Algorithm 2 Particle Filter Algorithm

1: procedure PARTICLE FILTER(Xt−1, zt , ut )

2: X t = Xt = /0

3: for i = 1 to |Xt−1| do
4: sample xi

t ∼ p(xt |Xt−1[i],ut)
5: wi

t = p(zt |xi
t)

6: add 〈xi
t ,w

i
t〉 to X t

7: end for
8: for i = 1 to |X t | do
9: draw k ∈ {1, ..., |X t |} with probability ∝ wk

t
10: add xk

t to Xt
11: end for
12: end procedure

called resampling. In Line 5, each particle is given

a weight proportional to the observation model
p(zt |xt), meaning the probability that the given

observation was made from the predicted position.

In Lines 9 and 10, the algorithm then draws with

replacement from the predicted particle set X t with

probability proportional to the particle weight until

the desired number of particles have been selected.

The propagation and resampling together model

the actual probability distribution over the problem

domain. As the number of particles increases, their

distribution approaches the true distribution [1].
FastSLAM: A prominent example of a parti-

cle filter is the FastSLAM algorithm [6]. Particles

represent vehicle location histories to approximate

the vehicle’s state, using an algorithm similar to

MCL [6]. FastSLAM separately estimates landmark

locations with extended Kalman filters [1].

C. Particle Deprivation Problem

A particle filter’s resampling step is vital to

incorporate observations into the belief. However,

filtering out particles can lead to loss of particle

diversity. This can reduce the accuracy of the ap-

proximation [1]. To avoid this problem, the particle

filter should resample only when necessary, use

low-variance resampling [1] or a more accurate

prediction step [8].

III. RELATED WORK

The current standard for validating SLAM al-

gorithms is execution on a public data set (e.g.

[9] [10] [11]) or in a real or simulated sample

environment (e.g. [12]). For example, MCL [7] and

FastSLAM [6] have been validated in physical test

environments. FastSLAM 2.0 [8] and GMapping

[13] [14] used public data sets. These techniques

remain standard in newer work, e.g. [15] [16] [17]

[18], but they do not systematically cover the input

space and may fail to detect errors in corner cases.

There have been some efforts to improve both the

validity and the repeatability of SLAM tests. [12]

and [19] provide metrics for SLAM evaluations.

[20] defines principles for improving the quality of

experimental robotics research by making testing

efforts more repeatable and [21] seeks to implement

these principles by using a set of floor plan maps

and simulation software to generate a variety of test

data sets. [22] [23] [24] provide a benchmarking

framework for the performance and accuracy of

SLAM algorithms. However, these works do not

provide a systematic test approach.

The testing literature contains some approaches

for testing difficult domains, for example, with evo-

lutionary testing [25]. However, a literature survey

on evolutionary testing by Rodrigues et al. [26]

mentions no such approach for SLAM testing. [27]

[28] use parameter-based equivalence class parti-

tioning to test satellite image processing. However,

their results are not applicable to SLAM.

Combinatorial testing [29] [30] [31] approaches

are also related to our work. They are concerned

with combinations and interactions between input

parameters. To the best of our knowledge, combina-

torial testing has not yet been applied to SLAM. We

consider it to be complementary to our approach.

There has also been some work to identify and

use environmental features that influence the accu-

racy of SLAM algorithms. [32] [33] analyze the

relation between geometric features and the ob-

served performance of SLAM algorithms to predict

their performance in an unseen environment. [34]

provides a challenging visual data set. These works

identify challenging features but do not use these

features for systematic test generation.

To the best of our knowledge, there exists no

approach that enables systematic SLAM testing

using coverage-driven test case generation.
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Figure 1: Our coverage-driven systematic test approach for SLAM

IV. AN APPROACH FOR SLAM TESTING

In this paper, we present an approach to auto-

matically and systematically test SLAM algorithms.

The overall approach is shown in Fig. 1. Our

input consists of landmark-based maps and sensor

traces on these maps. To avoid the infeasible task

of creating an equivalence class partitioning of

the entire SLAM input space at once, we instead

identify parameters that inform the composition of

that space. For each parameter, we define domain-

specific equivalence classes that we use to guide our

test suite construction. To increase the effectiveness

of our test approach, we are especially interested in

coverage criteria that are likely to push faulty code

into observable erroneous behavior. We achieve this

by tailoring both the parameters we use and the

equivalence class partitioning for the parameters

according to difficulties for SLAM algorithms de-

scribed in the literature. As these difficulties cannot

be directly translated into input data, but stem from

particular characteristics such as phases of inactivity

and loops in the vehicle’s path, we define the

coverage criteria in a declarative style (e.g. map size

small/medium/large) and systematically construct

test cases based on these coverage criteria.

Our approach is based on feature maps [1] with

point features. We assume a range-and-bearing sen-

sor model. As the input space for our test approach,

we use long sensor traces through landmark-based

test maps. To consider the entire execution of the

algorithm on this sensor trace is necessary in order

to test the integration of new information into the

•
••
•

•••
••

•

•

•
•

Figure 2: Test case design example

existing belief, rather than just testing a single call

of the update function. Another advantage is that

a ground truth map is available for comparison

against the SLAM algorithm’s result.

Fig. 2 shows an example test case. It consists

of a map with a number of landmarks (orange

circles) and the vehicle’s path through the map (blue

trace), separated into discrete time steps. Each step

contains both motion (blue arrow) and sensor infor-

mation (green arrows) obtained from simulation.

V. DOMAIN-SPECIFIC COVERAGE CRITERIA

To systematically cover the input space and in-

crease the test difficulty, we define parameters that

influence the difficulty and expose typical errors.

We have identified such parameters by a thorough

analysis of the literature and searching for typical

errors and difficulties. The parameters we have

identified, our proposed partitioning for each pa-

rameter, and default ranges for each equivalence

class are shown in Table I. The default ranges

are predefined ranges that have been found to be

useful in our experiments. Our coverage criterion

for each parameter is defined as the number of

equivalence classes that are covered by a given

28
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Parameter Equivalence classes Unit Default ranges
1 Directionality random, loop – –

2 Rotation Error none, positive, negative rad {0},{2πn|n ∈ N
+},{−2πn|n ∈ N

+}
3 Inactivity no inactivity, inactivity steps {0},{2000}
4 Map Size small, medium, large m2 [4,16], [16,100], [100,400]

5 Landmark Density low, medium, high lm
m2 [1,3], [3,9], [9,15]

6 Step Size small, medium, large cm [25,50], [50,100], [100,200]
7 Symmetry low, medium, high % [0,10], [10,60], [60,90]
8 Outlier Probability none, low, high % {0}, [0,5], [5,15]
9 Field of View small, large rad [ π

2 ,π], [π,2π]

10 Variance none, low, high
mm {0}, [0,20], [20,100]
rad {0}, [0,0.04], [0.04,0.2]

11 Bias high neg, low neg, none, low pos, high pos
mm [−25,−10], [−10,0],{0}, [0,10], [10,25]
rad [−0.05,−0.02], [−0.02,0],{0}, [0,0.02], [0.02,0.05]

Table I: Equivalence classes by parameter (values outside the defined ranges are not considered)

test suite per total number of equivalence classes.

Note that the number of and boundaries between

equivalence classes can easily be adjusted by setting

the corresponding parameters in our implementation

to achieve a more fine-granular coverage if needed.

In the following, we summarize the main justifi-

cation for the parameters and equivalence classes.

1) Directionality: Loops in the vehicle trajectory

increase the time between re-observations of the

same landmark and thus opportunities for correction

of the state estimate. This makes the test case more

difficult for SLAM algorithms [1] [12]. Thus, we

include the equivalence classes loop, indicating a

unidirectional map traversal, and random, indicating

a random map traversal (Table I, Row 1).

2) Rotation Error: A common problem for mo-

tion and observation models is to account for rota-

tions of less than 0 or more than 2π [1]. If the

algorithm assumes that all rotations are between

0 and 2π , this may cause errors when compar-

ing rotation values that differ by multiples of 2π .

Intentionally inducing a positive and a negative

rotation error will find this fault. Thus, we include

equivalence classes with no such error as well as

negative and positive deviations from the expected

rotation interval (Table I, Row 2).

3) Inactivity: If a resampling procedure is im-

plemented incorrectly, then a run of the algorithm

without any input can cause erroneous behavior [1].

If a resampling step is executed at every empty

update, as it would be in a naive implementation,

then over time, this resampling filters out ever

more samples until the belief converges on one

single hypothesis that does not resemble the true

distribution. A period of inactivity, followed by a

normal test run, can expose such a design flaw. We

include test cases with no inactivity (0 steps idle

time) and with a longer phase of inactivity, e.g. 2000

steps idle time (Table I, Row 3).

4) Map Size: The size of the map is a challenge

for SLAM algorithms [35], especially if it exceeds

the effective range of the vehicle’s sensors [1]. We

include test cases with varying map sizes, e.g. small,

medium and large maps (Table I, Row 4).

5) Landmark Density: The density of landmarks

is a significant factor in SLAM performance. The

fewer landmarks are available, the harder it becomes

to localize the vehicle [1], which can also lead

to inaccuracies in the estimated map [12] [34].

On the other hand, if the density of landmarks

becomes too high, the chances of an error in data

association increase [1]. Since both low and high

landmark densities can cause difficulties, a variety

of landmark densities should be included, e.g. low,

medium and high density maps (Table I, Row 5,

number of landmarks per square meter).

6) Measurement Step Size: The step size be-

tween measurements affects the difficulty of the

test in multiple ways. A longer step size reduces

the number of observations on landmarks, since it

takes the vehicle out of the maximum observation

range to a landmark faster. It also allows a larger

accumulation of motion error, thus increasing the

uncertainty of the vehicle’s position [1]. Since the
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step size influences the difficulty for the SLAM

algorithm [19], we consider various step sizes, e.g.

small, medium and large steps (Table I, Row 6).

7) Symmetry: Symmetrical environments make

it more difficult to localize the vehicle in the

environment, since multiple hypotheses about the

location may have to be maintained at any point

in time [1]. Symmetry may also lead to faulty

loop closures and consequent filter divergence [35].

Thus, we include maps with varying degrees of

point symmetry around the center. This causes

similar landmark constellations at different points

on the map, increasing the difficulty for the SLAM

algorithm [33] [35]. We achieve this by forcing the

placement of a given percentage of landmarks to

be symmetrical. The percentage is given by the

equivalence classes, describing, e.g. a low, medium

or high percentage of landmarks (Table I, Row 7).

We exclude 100 % symmetry, as this would make

it impossible to distinguish different map locations.

8) Outlier Probability: Outlier detection is an

essential part of dealing with sensors prone to

return false results. To detect flaws in the outlier

detection, we include various outlier frequencies,

e.g. equivalence classes with no outliers, low, and

high outlier probability (Table I, Row 8).

9) Sensor Field of View (FoV): Many vehicles

using SLAM do not have an ability to sense land-

marks at arbitrary angles [32] [33]. Instead, they

can only sense landmarks in a given range in front

of them. This influences the accuracy of the result

[33]. Thus, we include varying values for the FoV,

e.g. small FoVs that allow only detection in front

of the vehicle and large FoVs that allow detection

also in an area behind the vehicle (Table I, Row 9).

We exclude FoVs that are too small, as this would

make the test too difficult.

10) Measurement Variance: Increasing the un-

certainty of sensor and odometry measurements

increases the difficulty of the test [1] [33] [19]. We

include test cases with varying levels of uncertainty,

e.g. none, low and high (Table I, Row 10).

11) Measurement Bias: Introducing a bias into

the measurements reduces their accuracy and

thereby increases the difficulty for the SLAM algo-

rithm similarly to the variance. We include varying

biases, e.g. none, low and high positive and low and

high negative (Table I, Row 11).

There are some other candidate parameters that

we currently ignore. [32] [33] suggest sensor range

as a relevant feature, but this is subsumed by map
size and landmark density in our abstract map

representation. The frequency of SLAM updates can

also be relevant, but is subsumed by measurement
step size and inactivity. Further, we ignore some

situational challenges that are incompatible with our

abstract map and observation representation, e.g.

lighting conditions for visual SLAM [34] [35] or

an uneven road surface [34].

VI. COVERAGE-DRIVEN TEST CASE

CONSTRUCTION

The parameters we consider for the definition

of domain-specific coverage criteria determine the

structure of both map and vehicle path as well as

the level of noise in the simulated observations.

To systematically construct a test suite with a high

coverage, we choose an equivalence class from each

parameter, preferably one that is not yet included

in the suite. From each equivalence class, we uni-

formly choose a value to derive constraints for the

test case. We then generate a map and a sensor trace

in compliance with these constraints to obtain a test

case. Test cases are added to the suite in this way

until every equivalence class of every parameter is

covered at least once. Each such test case consists

of a map and a simulated sensor trace of the vehicle

driving around and observing landmarks in this

map. However, the parameter values only provide

constraints for the test case, not an executable

procedure to generate the concrete map and sensor

trace. In this section, we describe our method for

constructing a test map and sensor trace such that

it complies with its parameter values. We go into

detail on three components, namely the map, the

sensor trace and the observation simulation.

A. Map Generation

The map generation needs to take into account

map size, landmark density and symmetry. For the

sake of simplicity, our map design is limited to

square feature maps with a side length determined
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by the size and a number of point features de-

termined by the landmark density. Each landmark

has a unique identifier, accommodating SLAM al-

gorithms that require external object association

because they assume known correspondences. The

locations of landmarks on the map are randomly

generated according to a uniform distribution. To

control the symmetry in the map, the given per-

centage of landmarks are placed in pairs that are

mirrored through the center of the map. After all

symmetrical pairs have been placed, the remaining

landmarks are placed individually. To preserve the

distinctness of landmarks, a draw is rejected and

repeated if a landmark is chosen at a position that

is too close to another landmark.

B. Sensor Trace Generation

The sensor trace generation needs to take into

account directionality, inactivity, measurement step

size, and sensor FoV. A sensor trace consists of

a predetermined number of update steps with in-

formation about the previous vehicle motion and

simulated measurements of all obstacles within the

vehicle’s FoV. The distance between update steps

is the measurement step size. To incorporate the

inactivity parameter, a number of steps (given as

parameter value) without any motion or observation

information are inserted into the sensor trace. These

steps are inserted in the middle of the sensor trace

to maximize their effectiveness, as the inactivity is

intended to cause particle deprivation in a poorly

implemented resampling filter. Inserting it in the

middle of the trace allows time for the filter to build

up uncertainty, which is artificially removed through

particle deprivation, and then also allows time for

the resulting error to manifest itself in the estimate.

The most challenging aspect to take into account

for the sensor trace generation is to control the

direction of traversal. To overcome this challenge,

we use the landmarks as guidance. With a fixed

vehicle starting position in the center of the map,

the generator picks a target landmark that has not

been seen before and moves the vehicle towards

that landmark until it is in view. If all landmarks

have been seen, they are marked as unseen and the

process repeats until the desired number of steps

•
•

• •

•

1

3

4

5

2

Figure 3: Sensor trace generation

is reached. Fig. 3 illustrates the trace generation

process. Starting near Landmark 1, the generator

picks Landmark 3 as a target. It then simulates

the vehicle driving towards this landmark until it is

within sensor range. Once it is in view, the generator

selects a new target, disregarding those that were

already observed (marked as black), here Landmark

5. This process repeats until the predetermined

number of time steps has elapsed.

The target selection ensures that all landmarks

are visited at least once per complete traversal,

giving the SLAM algorithm a chance to accurately

map landmarks on the rim. Most importantly, using

the landmarks as guidance allows us to control the

direction of traversal and to incorporate the direc-

tionality parameter. If the parameter value specifies

a random traversal, landmarks are randomly picked

from the list of unobserved landmarks. If it specifies

a unidirectional traversal, the unobserved landmarks

are sorted by polar angle relative to the center

of the map and the vehicle moves towards the

next landmark according to that order. To avoid

a deterministic and unchanging traversal, we add

noise to the simulated vehicle path.

C. Observation Simulation

The observation simulation needs to account for

rotation error, outlier probability, variance and bias.

Measured values for range and bearing to landmarks

as well as the vehicle motion are distorted accord-

ing to a Gaussian distribution with the given bias

and variance. Additionally, the outlier probability

defines the probability of declaring an observation

as an outlier. Outliers can be either maximum range
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readings or chosen from a uniform distribution

between 0 and the actual observation distance.

This roughly represents the expected distribution of

outliers due to missed measurements and sensor ob-

struction [1]. Lastly, if a rotation error is specified,

2π is added to or subtracted from landmark bearing

and vehicle turn information.

VII. EVALUATION

To validate our test approach, we have imple-

mented a compliant test generator and a simulation

environment for executing the test cases. The source

code, raw data and all material needed to replicate

our evaluation are available at [36]. In the following,

we present our evaluation methodology, evaluation

metric, and our experimental setup and results.

A. Methodology

To demonstrate the error detection capability

of our approach, we have injected three faults

into a slightly modified version of the FastSLAM

1.0 implementation of the PythonRobotics software

project [5]. Two of the three are based on com-

mon mistakes according to [1], namely a naive

resampling filter and a missing treatment of angle

values exceeding the full rotation. Both of these are

covered by our parameters. The third fault is a sign

error in the motion model, intended to evaluate the

test suite’s capability of detecting an error for which

it was not explicitly designed, as well as the general

ability of SLAM tests to find such errors. Please

note that classical fault injection approaches like,

e.g. mutation testing [37] [38] can not easily be ap-

plied to SLAM testing due to the data-intensity but

little control flow of SLAM algorithms. However,

our manually injected faults are representatives of

typical faults in SLAM that are hard to detect and

thus are well suited for the evaluation.

Our evaluation criterion is the increase in map

error between the correct implementation and the

faulty implementation. If this error increases by a

value exceeding the expected noise, we consider

the test case capable of finding the fault in the

implementation. We set this threshold to 250mm.

Since the noise in map error increases with larger

map error, we additionally require an increase of at

least 25 % for larger map errors to consider a test

case effective at finding a fault.

An alternative approach would be to define a test

oracle to judge whether a test passed or failed, and

to judge error detection capability by counting the

number of failed tests on faulty implementations.

However, giving an appropriate test verdict is a ma-

jor challenge for SLAM algorithms. As the sensor

data is inherently imprecise and SLAM algorithms

only give estimates of the vehicle positions, it is

not trivial to distinguish whether a result is faulty

or of acceptable precision with the given inputs.

Especially varying map sizes and sensor uncertain-

ties make it hard for our approach to compare

different test cases. Since our aim is to evaluate

the effectiveness of our testing approach and not

to test the correctness of the algorithm under test,

we leave the definition of a test oracle capable of

dealing with these problems for future work.

B. Evaluation Metric

To evaluate the result of the SLAM algorithm

after execution, we compare the final map estimate

of the algorithm with a ground truth map retained

by the executed test case. Since a small error in

the pose estimate of the vehicle may lead to a

translation or rotation of its local coordinate system,

a naive comparison of absolute landmark positions

is undesirable for evaluation, as it would potentially

create a large error even if the resulting map is in-

ternally consistent with the ground truth map. Fig. 4

illustrates this problem. In the left picture, almost all

error in the SLAM estimate is caused by a rotational

misalignment at one single point. The right picture

shows a chaotic error that can be expected only

from an incorrect SLAM implementation. Since we

are interested in detecting faulty implementations,

we focus on the latter type of error. To correct

for translation and rotation, we employ the Kabsch

algorithm [39]. We then use the root-mean-square

(RMS) error between the corrected map and the

ground truth for algorithms that preserve landmark

correspondences. To support algorithms that do not

preserve landmark correspondences, our implemen-

tation integrates the earth mover’s distance [40] as

an alternative.
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Figure 4: Rotational and chaotic errors (orange: land-
mark, green: SLAM estimate, blue: correspondance)

C. Setup

We generate our systematic test suite such that

it covers all equivalence classes with the default

ranges from Table I. We achieve this with a total

of five test cases. A sample visualisation of the

resulting test cases is shown in Fig. 5. It demon-

strates the diversity of test cases our approach

generates. Notable is the difference between the

loop traversal shown in Cases 1 and 4 and the

random traversal in Cases 2, 3 and 5, as well as

the effect of different map sizes. While in Cases

2 and 5, the vehicle mostly drives back and forth

between the landmarks with many opportunities to

correct flawed observations, Case 1 only has the

vehicle revisit a landmark a few times.

Our approach is based on two key concepts. One

is the structuring of the SLAM problem’s input

space with our parameter definitions and the other is

the enforcement of high coverage with regard to our

equivalence class partitioning. To be able to evaluate

both components, we use two separate control suites

as comparison. To evaluate the effectiveness of

our parameter definitions, we contrast our approach

against a control suite with fixed parameter values

(fixed), i.e. all of its test cases are generated from

the same default parameter values. This compar-

ison shows the effect of varying the parameters

we identify. To evaluate the effectiveness of our

coverage-driven test generation, we use a control

suite with random parameter values (random), i.e.

each parameter value is randomly chosen for each

test case. This shows the effect of enforcing a high

coverage of the input space. Both control suites

also contain five test cases. They are intended to

be approximations of the current standard approach

of executing the algorithm under test on a public

data set or in an experimental environment. As

such an experimental setup contains some diversity

in environmental conditions, but is not constructed

systematically to cover the input space, we expect

it to lie somewhere between the fixed and random
suites.

All test suites are run in simulation on the varia-

tions of the SLAM algorithm described above. We

have repeated each experiment three times (Evalu-

ation Run 1, 2, 3). In each run, new test cases were

generated for each suite for a total of 15 test cases

per test suite generation method. Each evaluation

run took approximately 8 to 9 hours (see [36]).

D. Results

Table II shows the RMS errors resulting from

executing the test cases on the original implemen-

tation of the SLAM algorithm (nonfaulty baseline)

and on the three faulty versions. RMS errors above

our thresholds for fault detection represent test cases

capable of detecting the respective fault and are

highlighted in green. The Detected Faults column

shows which percentage of total test cases detected

the respective fault and the by Suite column shows

the percentage of faults that the test suite detected

in total over the three runs.

Comparing the fixed suite to the systematic and

random ones shows the effectiveness of the pa-

rameter definitions. While the fixed suite managed

to achieve a 100 % detection rate for the rotation

and sign errors, this is likely caused by the high

similarity between all test cases in this suite due

to the fixed parameter values. Varying parameter

values in the other suites led to a greater diversity

of test cases. This caused slightly lower detection

rates for the rotation and sign errors, but also the

inclusion of some test cases that managed to detect

the naive resampling error, which the fixed suite

could not detect in any run.

Comparing the random to the systematic test suite

shows the effect of our coverage-driven equivalence

class partitioning. As can be seen in Table II, the

behavior of both suites is similar. In both suites,

most test cases detect the rotation and sign errors,

while some test cases detect the resampling error.

However, the systematic suite is more consistent in
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4 (e) Case 5

Figure 5: Visualization of our test suite from Evaluation Run 1 (orange: landmark, blue: vehicle path)

Suite Algorithm Evaluation Run 1 Evaluation Run 2 Evaluation Run 3 Detected by
Test Case 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Faults Suite

S
y

st
em

at
ic Nonfaulty Baseline 5616 40 55 544 42 55 859 28 201 47 2285 3951 37 5982 69 -

1
0

0
%Naive Resampling 9038 44 88 368 48 52 434 29 849 56 1127 8548 37 13640 80 27 %

Faulty Rotation 6922 627 2118 4048 1232 1770 3977 675 5320 585 7919 3998 1292 6020 2657 80 %
Sign Error 7694 755 2509 3849 920 2022 3861 798 5867 3307 6772 4084 1671 6018 2879 87 %

F
ix

ed

Nonfaulty Baseline 43 47 40 72 46 56 43 101 41 60 47 45 48 57 38 -

6
7

%Naive Resampling 68 51 58 138 44 92 44 103 67 47 58 42 40 44 50 0 %
Faulty Rotation 601 501 557 601 548 625 566 2239 583 487 533 631 479 574 611 100 %

Sign Error 3242 3083 3156 3206 3026 3323 3248 3088 2994 2985 3253 3337 3085 3176 3254 100 %

R
an

d
o

m

Nonfaulty Baseline 233 216 7462 1465 7606 102 96 4295 160 304 577 2959 1363 47 3773 -

7
8

%Naive Resampling 377 199 13267 1639 17827 93 118 5293 169 140 772 3422 1426 85 4441 13 %
Faulty Rotation 3206 497 7099 6014 7625 1532 2515 5535 869 2222 3853 7653 1241 247 6303 80 %

Sign Error 3495 2798 7822 6123 8069 1543 2392 5828 1890 2674 4522 7502 7041 1133 3254 87 %

Table II: RMS errors (rounded to mm) and error detection capability (green)

this regard. While the systematic suite generated

four test cases over the three runs that managed

to detect the resampling error, at least one for each

run, the random suite only generated two such test

cases, both in the first run. In the second and third

run, only the systematic suite managed to detect

all faults. This is likely caused by the enforced

coverage of the input space, which leads to the

inclusion of diverse test cases in every suite.

Our experiments indicate that both components

of our approach are effective for a systematic test

approach. They further show that this systematic

approach is able to detect more errors than random

approaches, especially in hard-to-test corner cases

like the naive resampling implementation. Overall,

the results indicate a significant advantage of the

full coverage on the equivalence classes compared

to random approaches.

VIII. CONCLUSION

In this paper, we have presented a systematic

approach for SLAM testing. We have identified

parameters to structure the SLAM problem’s input

space, defined equivalence classes for each param-

eter in a declarative style and developed a method

for generating test cases with a high coverage of

the input space. Based on this method, we have

implemented a freely available test case generator

and demonstrated the applicability of our approach

for the FastSLAM algorithm. Our experimental

results indicate that our systematic approach is more

effective and more consistent than random testing

at finding errors. In particular, our approach has

proven advantageous for the detection of errors in

typically hard-to-test corner cases.

As there is little research in this area, this paper

is intended as a first step in the direction of a

systematic method for SLAM testing. While our ex-

perimental results are promising, a more extensive

evaluation with other SLAM algorithms is subject

to future work. Further future research directions

include the definition of a test oracle for automated

test evaluation, a deeper analysis of potential faults

(e.g. hardware limitations or sensor faults), and to

investigate each parameter’s individual effect for a

more deliberate and effective test case selection.
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