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A B S T R A C T

In many important subject domains, there are central real-world phenomena that span across
multiple classification levels. In these subject domains, besides having the traditional type-level
domain regularities (classes) that classify multiple concrete instances, we also have higher-
order type-level regularities (metaclasses) that classify multiple instances that are themselves
types. Multi-Level Modeling aims to address this technical challenge. Despite the advances in
this area in the last decade, a number of requirements arising from representation needs in
subject domains have not yet been addressed in current modeling approaches. In this paper,
we address this issue by proposing an expressive multi-level conceptual modeling language
(dubbed ML2). We follow a principled language engineering approach in the design of ML2,
constructing its abstract syntax as to reflect a fully axiomatized theory for multi-level modeling
(termed MLT*). We show that ML2 enables the expression of a number of multi-level modeling
scenarios that cannot be currently expressed in the existing multi-level modeling languages.
A textual syntax for ML2 is provided with an implementation in Xtext. We discuss how the
formal theory influences the language in two aspects: (i) by providing rigorous justification for
the language’s syntactic rules, which follow MLT* theorems and (ii) by forming the basis for
model simulation and verification. We show that the language can reveal problems in multi-
level taxonomic structures, using Wikidata fragments to demonstrate the language’s practical
relevance.

1. Introduction

A class (or type) is a ubiquitous notion in modern conceptual modeling approaches and is used in a conceptual model to establish
nvariant features of the entities in a domain of interest. Often, subject domains are conceptualized with entities stratified into a rigid
wo-level structure: a level of classes and a level of individuals, which instantiate these classes. In many subject domains, however,
lasses themselves may also be subject to categorization, resulting in classes of classes (or metaclasses). For instance, consider the
omain of biological taxonomies [1–3]. In this domain, a given organism is classified into taxa (such as, e.g., Animal, Mammal,

Carnivoran, Lion), each of which is classified by a biological taxonomic rank (e.g., Kingdom, Class, Order, Species). Thus, to
represent the knowledge underlying this domain, one needs to represent entities at different (but nonetheless related) classification
levels. For example, Cecil (the lion killed in the Hwange National Park in Zimbabwe in 2015) is an instance of Lion, which is an
instance of Species. Species, in its turn, is an instance of Taxonomic Rank (like Kingdom, Class, Order). Other examples of
multiple classification levels come from domains such as software development [4] and product types [5].
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Fig. 1. Four levels of classification in a representation of a biological domain.

In the last decade, the importance of phenomena involving multiple levels of classification and the limitations of the fixed two-
evel scheme have motivated the development of a number of modeling approaches under the banner of ‘‘Multi-Level Modeling’’
e.g., [5–8]). These approaches embody conceptual notions that are key to the representation of multi-level models, such as the
xistence of entities that are simultaneously types and instances (classes and objects), the iterated application of instantiation across
n arbitrary number of (meta)levels, the possibility of defining and assigning values to attributes at the various type levels, etc.

Despite these advances, a number of requirements arising from representation needs in subject domains have not yet been
ddressed in most of the modeling approaches currently available. For example, many approaches do not support domain relations
etween elements of different classification levels. Some others impose rigid constraints on the organization of elements into strictly
tratified levels, effectively obstructing the representation of genuine domain models.

These issues are addressed in the design of an expressive multi-level conceptual modeling language which we call ML2
Multi-Level Modeling Language). The language is aimed at multi-level (domain) conceptual modeling and is intended to cover
comprehensive set of multi-level domains. We follow a principled approach in the design of ML2, defining its abstract syntax

o reflect a formal theory for multi-level modeling which we developed previously (MLT*, reported in [9]). We propose a textual
yntax for ML2, which is supported by a featured Xtext-based editor in Eclipse. ML2 enables the expression of a number of multi-
evel modeling scenarios that cannot be currently expressed in the existing multi-level modeling languages. Further, we show how
L2 incorporates rules to prevent the construction of unsound multi-level models. These rules follow theorems in MLT*, providing

igorous justification for the language design. In order to show the practical relevance of the language’s rules, we select fragments
f multi-level taxonomies in the Wikidata knowledge base1 and represent them in ML2. We show that the language is able to reveal
ssues that are not ruled out by Wikidata’s representation scheme and have passed unnoticed by curators of numerous multi-level
axonomies in Wikidata.

This paper is further structured as follows: Section 2 presents the MLT* theory and its formalization in first-order logics, forming
he semantic foundation of ML2; Section 3 presents ML2’s abstract and concrete syntax; Section 4 presents MLT*’s theorems and
erived rules showing how they drive the design of ML2 rules and the language’s support for model validation and simulation;
ection 5 shows how ML2’s syntactic rules (corresponding to MLT* theorems) reveal issues in Wikidata taxonomies; Section 6
iscusses related work, comparing ML2 to existing multi-level techniques; finally, Section 7 presents our final considerations. The
aper is a revised and extended version of [10]. The original paper did not cover the role of the formalization in the language’s
esign. This paper also extends the original paper in the use of Wikidata content to demonstrate the usefulness of ML2’s rules in
large-scale scenario, effectively addressing a significant problem in Wikidata’s level-blind support that some of us had originally

dentified in [11]. There is also extended coverage of related work.

. MLT*: The Multi-Level Theory

We employ the MLT* Multi-Level Theory [9] which incorporates and extends MLT [2]. The theory was conceived as a reference
op-level ontology for types in multi-level conceptual modeling. It provides basic concepts and patterns to articulate domains that
equire multiple levels of classification [2].

Our use of MLT* as a semantic foundation for ML2 is motivated by the successful application of MLT in diverse modeling
nitiatives. For example, in [12], MLT has been used to account for a redesign of the UML’s powertype pattern support, exposing
imitations in its original support and improving its use for a broader range of multi-level modeling scenarios. A similar effort used
LT to reveal limitations in Semantic Web support for multi-level modeling [3]. In [13], MLT was combined with the Unified

oundational Ontology (UFO) [14] to support the representation of higher-order types in ontologically well-founded conceptual
odels. In addition to serving as a basis for the redesign of representation strategies, the theory has also been used in different

pplication areas. For example, in [15], MLT was used as a basis for the modeling of organizational structures in different levels
f generality. In [16], the authors report the use of MLT to support information modeling in a real data-integration project from a
eavy vehicle manufacturer (Scania CV AB).

1 Wikidata comprises a model for structuring data for projects such as Wikipedia, Wikivoyage, Wiktionary, Wikisource, among others (https://www.wikidata.
rg/).
2
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Fig. 2. PersonType and its instances.

.1. Elements of the theory

MLT* is concerned with types, their instances, and the relations between them. Types are conceived in the theory as predicative
ntities (e.g. ‘‘Person’’, ‘‘Organization’’, ‘‘Product’’) that can possibly be applied to a multitude of entities (including types as well).
f a type 𝑡 applies to an entity 𝑒 then it is said that 𝑒 is an instance of 𝑡. In contrast, individuals are entities that cannot possibly have
nstances (e.g. ‘‘John’’, an apple, my cellphone). In the philosophical literature, types are said to be repeatable, while instances are
on-repeatable [14].

Since a type can be an instance of another type, it is possible to conceive of chains of instantiations (of any size), in order to
epresent multiple levels of classification. For instance, Fig. 1 presents an example in the biological domain with four classification
evels, from the individuals Cecil and Lassie, until the type TaxonomicRank. Some of the types are both instances and classifiers of

other entities, for example, Lion classifies Cecil and is simultaneously an instance of (or is classified by) Species. In the following
examples, we use a hybrid notation inspired in both the class and object notations of UML merely for illustrative purposes. We use
dashed arrows to represent relations that hold between the elements, with labels to denote the relation that applies (in Fig. 1, the
relations depicted are instance of relations).

The theory is built up first by defining common structural relations to support conceptual modeling, starting from specialization
between types. Structural relations that reflect variants of the powertype pattern are also included, given the pervasiveness of this
pattern in descriptions of multi-level phenomena. Based on Cardelli’s notion of powertype [17], we define that 𝑡 is powertype of
𝑡′ iff every instance of 𝑡 is a specialization of 𝑡′ and all specializations of 𝑡′ are instances of 𝑡. For example, in Fig. 2, PersonType
s the powertype of Person, thus every specialization of Person (e.g. Man, Woman, Adult and even Person itself) instantiates it,

throughout the specialization hierarchy (e.g. AdultMan is also an instance of PersonType).
In order to address also the notion of powertype introduced by Odell [18], MLT* also includes the so-called categorization

relation. A type 𝑡 categorizes a base type 𝑡′ iff all instances of 𝑡 are proper specializations of 𝑡′. Differently from Cardelli’s powertype,
in a categorization, the base type 𝑡′ is not itself an instance of 𝑡. Furthermore, not all possible specializations of 𝑡′ are instances of
. For instance, as presented in Fig. 3, EmployeeType (with instances Manager and Researcher) categorizes Person, but is not

the powertype of Person, since there are specializations of Person that are not instances of EmployeeType (Woman and Man for
example).

The theory also defines useful variations of the categorization relation: (i) a type 𝑡 completely categorizes a type 𝑡′ iff every
instance of 𝑡′ is instance of at least one instance of 𝑡; (ii) a type 𝑡 disjointly categorizes a type 𝑡′ iff every instance of 𝑡′ is instance
of at most one instance of 𝑡; finally, (iii) 𝑡 partitions 𝑡′ iff every instance of 𝑡′ is instance of exactly one instance of 𝑡. In Fig. 3,
PersonTypeByGender partitions Person into Man and Woman, and thus each instance of Person is either a Man or a Woman
but not both simultaneously.

One can observe that, as presented in Fig. 2, entities in a subject domain can be organized based on their levels. For example,
Person and its specializations only classify entities that are individuals (e.g., John, Bob and Ana), while PersonType sits at a
higher level, classifying Person and other types. MLT* accounts for this organization of entities into levels using the notion of
ype order. Types whose instances are individuals are called first-order types. Types whose instances are first-order types are called
econd-order types. Those types whose extensions are composed of second-order types are called third-order types, and so on.

Since they fall under a strictly stratified scheme, i.e., they only have instances pertaining to the level immediately below, these
ypes are called ordered types. The theory explicitly accounts for orders using the notion of basic type. A basic type is the most abstract

type of its order, i.e., the type whose extension includes all entities in the order immediately below. For example, Individual is the
basic type whose extension includes all individuals, 1stOT is the basic type whose extension includes all first-order types, 2ndOT
is the one that classifies all second-order types, and so on. Due to this definition, all basic types are related in a chain of powertype
relations, as presented in Fig. 4, with every ordered type specializing the basic type of the same order and instantiating the one of
3
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Fig. 3. Examples of the categorization and partitions relations.

Fig. 4. Example of MLT*’s basic types.

the order above (e.g., Person). The ellipsis in the figure represents that this chain of basic types can be extended as far as demanded,
given the entities involved in the subject domain. However, the formalization of MLT* does not necessitate infinite chains of basic
types, allowing the description of finite models (see [9] for details).

This stratification into type orders provides for a structure useful to guide modelers in producing sound models. However, this
is unable to account for types whose instances do not fall into a unique order. Examples of such types include the notions of
Entity [14], Thing [19,20] and Property [21], which are key to a number of comprehensive conceptualizations. In MLT*, types
that do not conform to the stratified scheme are termed orderless types. Consider the notion of BusinessAsset as an economic
esource owned by some enterprise. In this context, we may say that Apple’s AppleParkMainBuilding is a business asset as well as
ts cellphone models, e.g., IPhone5. Note that while the former is an individual, the latter is a first-order type that has individual
obile phones as its instances. Since BusinessAsset has instances in different orders, it is an example of a domain orderless type.

inally, MLT* can also be used to describe its own categories of types resulting in the model shown in Fig. 5.

.2. Features in multi-level models: Deep instantiation

The theory also accounts for a multi-level phenomenon called deep instantiation [22], when the attributes of a higher-order type
affect entities at lower levels. For example, whether a species is warmblooded in fact determines whether particular animals of that
species are warmblooded. In MLT, this phenomenon is addressed through the so-called regularity attributes [2,23]. In the case of a
regularity attribute, values defined for a higher-order type (such as second- and third-order types) affect the intension of the instances
of the higher-order types. In other words, some attributes of a higher-order type aim at capturing regularities over instances of its
instances, constraining the set of possible instances of its instances. Here, we could say that the attribute warmbloodedSpecies of
4
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Fig. 5. MLT* basic scheme extended by a domain example.

AnimalSpecies regulates the attribute isWarmblooded of Animal. In the case warmbloodedSpecies is true for an animal species
(such as Lion) all its instances (such as Cecil) must have isWarmblooded equals true.

2.3. Axiomatization in first-order logics

MLT* is formalized as an axiomatic theory in first-order logics, quantifying over all possible types and individuals, which together
constitute the entities we are interested in (a1). Every entity (type or individual alike) can be related to one or more types through
a primitive 𝗂𝗇𝗌𝗍𝖺𝗇𝖼𝖾𝗈𝖿 relation (or 𝗂𝗈𝖿 , for short). Since types can themselves be related to other types through 𝗂𝗈𝖿 , this enables chains
f instantiation of arbitrary lengths. Unlike types, individuals can never play the role of type in instantiation (a2). We assume that
he theory is only concerned with types with non-trivially false intensions, i.e., with types that have possible instances (a3).

a1 ∀𝑥(𝖾𝗇𝗍𝗂𝗍𝗒(𝑥))

a2 ∀𝑥(𝗂𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅(𝑥) ↔ ¬∃𝑦(𝗂𝗈𝖿 (𝑦, 𝑥)))

a3 ∀𝑥(𝗍𝗒𝗉𝖾(𝑥) ↔ ∃𝑦(𝗂𝗈𝖿 (𝑦, 𝑥)))

We establish that types are ultimately grounded on individuals. Thus a super-relation (𝗂𝗈𝖿 ′) is defined including all pairs such
hat 𝗂𝗈𝖿 (𝗑, 𝗒), and also all pairs derived from a chain of pairs connected by 𝗂𝗈𝖿 relations. The transitive (𝗂𝗈𝖿 ′) relation then always

leads us from a type to one or more individuals:

a4 ∀𝑡(𝗍𝗒𝗉𝖾(𝑡) → ∃𝑥(𝗂𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅(𝑥) ∧ 𝗂𝗈𝖿 ′(𝑥, 𝑡)))

First-order types are those whose instances are individuals (a5). Second-order types are those instances are first-order types (a6),
and so on. Any number of ordered types can be defined in this way [2].

a5 ∀𝑥(𝖿 𝗂𝗋𝗌𝗍𝗈𝗋𝖽𝖾𝗋𝗍𝗒𝗉𝖾(𝑥) ↔ 𝗍𝗒𝗉𝖾(𝑥) ∧ ∀𝑦(𝗂𝗈𝖿 (𝑦, 𝑥) → 𝗂𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅(𝑦)))

a6 ∀𝑥(𝗌𝖾𝖼𝗈𝗇𝖽𝗈𝗋𝖽𝖾𝗋𝗍𝗒𝗉𝖾(𝑥) ↔ 𝗍𝗒𝗉𝖾(𝑥) ∧ ∀𝑦(𝗂𝗈𝖿 (𝑦, 𝑥) → 𝖿𝗂𝗋𝗌𝗍𝗈𝗋𝖽𝖾𝗋𝗍𝗒𝗉𝖾(𝑦)))

Specialization between types is defined as usual, i.e., a type specializes a supertype whenever all its instances are also instances
of the supertype (a7). Proper specialization is defined for the cases in which the extension of the specialized type is a proper subset
of the extension of the general type (a8).

a7 ∀𝑡1, 𝑡2(𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡1, 𝑡2) ↔ 𝗍𝗒𝗉𝖾(𝑡1) ∧ ∀𝑥(𝗂𝗈𝖿 (𝑥, 𝑡1) → 𝗂𝗈𝖿(𝑥, 𝑡2)))

a8 ∀𝑡1, 𝑡2(𝗉𝗋𝗈𝗉𝖾𝗋𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡1, 𝑡2) ↔ 𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡1, 𝑡2) ∧ ¬𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡2, 𝑡1))

Finally, two types are considered equal iff all their possible instances are the same (i.e., if they are necessarily co-extensional):

a9 ∀𝑡1, 𝑡2(𝗍𝗒𝗉𝖾(𝑡1) ∧ 𝗍𝗒𝗉𝖾(𝑡2) → (𝑡1 = 𝑡2 ↔ ∀𝑥(𝗂𝗈𝖿 (𝑥, 𝑡1) ↔ 𝗂𝗈𝖿(𝑥, 𝑡2))))

Powertypes and variants. Relations between types were defined accounting for different notions of powertype used in the literature,
more specifically clarifying and positioning conflicting definitions of Cardelli [17] and Odell [18]. A type 𝑡1 isPowertypeOf a (base)
type 𝑡2 iff all instances of 𝑡1 are specializations of 𝑡2 and all possible specializations of 𝑡2 are instances of 𝑡1 (a10). Powertypes in
this sense are analogous to powersets. The powerset of a set 𝐴 is a set that includes as members all subsets of 𝐴 (including 𝐴 itself).

The categorizes relation between types was defined to reflect Odell’s notion of powertype [18]. Differently from Cardelli’s, Odell’s

5
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definition excludes the base type from the set of instances of the powertype. Further, not all specializations of the base type are
required to be instances of the powertype (a11). Odell’s definition corresponds more directly to the notion of powertype that was
incorporated in UML. Thus, there may be specializations of the base type that are not instances of the categorizing higher-order
type. For example, we may define a type named Organism Type by Habitat (with instances Terrestrial Organism and Aquatic
Organism) that categorizes Organism. Organism Type by Habitat is not a (Cardelli) powertype of Organism since there are
specializations of Organism that are not instances of Organism Type by Habitat (e.g. Plant and Golden Eagle) [3].

10 ∀𝑡1, 𝑡2(𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡1, 𝑡2) ↔ 𝗍𝗒𝗉𝖾(𝑡1) ∧ ∀𝑡3(𝗂𝗈𝖿 (𝑡3, 𝑡1) ↔ 𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡3, 𝑡2)))

11 ∀𝑡1, 𝑡2(𝖼𝖺𝗍𝖾𝗀𝗈𝗋𝗂𝗓𝖾𝗌(𝑡1, 𝑡2) ↔ 𝗍𝗒𝗉𝖾(𝑡1) ∧ ∀𝑡3(𝗂𝗈𝖿 (𝑡3, 𝑡1) → 𝗉𝗋𝗈𝗉𝖾𝗋𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡3, 𝑡2)))

Specializations of the categorization relation were defined in order to capture different scenarios of categorization: disjoint
ategorization, when each instance of the base type is instance of at most one instance of the higher-order type; complete categorization,
hen each instance of the base type is instance of at least one instance of the higher-order type; and partitioning, when an instance
f the base type is instance of exactly one instance of the higher-order type.2

ubordination. A unique feature of MLT* (and hence ML2) is the support for the so-called subordination relation. Subordination occurs
etween higher-order types implying proper specializations between their instances i.e., a higher-order type 𝑡1 is subordinate to 𝑡2
ff every instance of 𝑡1 proper specializes an instance of 𝑡2 (a12). A representative application of subordination relations occurs in the
omain of biological taxonomy for living beings. For example, according to that taxonomy, every instance of Breed (e.g. Collie) must
pecialize an instance of Species (e.g. Dog). Therefore, Breed isSubordinateTo Species (See [9] for a full example on the application
f MLT* to the domain of biological taxonomy).

12 ∀𝑡1, 𝑡2(𝗂𝗌𝖲𝗎𝖻𝗈𝗋𝖽𝗂𝗇𝖺𝗍𝖾𝖳𝗈(𝑡1, 𝑡2) ↔ 𝗍𝗒𝗉𝖾(𝑡1) ∧ ∀𝑡3(𝗂𝗈𝖿 (𝑡3, 𝑡1) → ∃𝑡4(𝗂𝗈𝖿 (𝑡4, 𝑡2)
∧ 𝗉𝗋𝗈𝗉𝖾𝗋𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡3, 𝑡4))))

onstants for MLT’s basic scheme. The entities in MLT’s basic scheme are also entities in the domain of quantification of the axiomatic
heory. They can be identified by using constants whose interpretation is properly restricted (see (a13), (a14), (a15), which define
ndividual, 1stOT, and 2nOT respectively, corresponding to the classes in Fig. 4).

13 ∀𝑡(𝑡 = 𝖨𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅 ↔ ∀𝑥(𝗂𝗈𝖿 (𝑥, 𝑡) ↔ 𝗂𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅(𝑥)))

14 ∀𝑡(𝑡 = 𝟣𝗌𝗍𝖮𝖳 ↔ ∀𝑥(𝗂𝗈𝖿 (𝑥, 𝑡) ↔ 𝖿𝗂𝗋𝗌𝗍𝖮𝗋𝖽𝖾𝗋𝖳𝗒𝗉𝖾(𝑥)))

15 ∀𝑡(𝑡 = 𝟤𝗇𝖽𝖮𝖳 ↔ ∀𝑥(𝗂𝗈𝖿 (𝑥, 𝑡) ↔ 𝗌𝖾𝖼𝗈𝗇𝖽𝖮𝗋𝖽𝖾𝗋𝖳𝗒𝗉𝖾(𝑥)))

rdered and orderless types in general. Finally, as discussed in Section 2.1, the notions of ordered and orderless types are anchored
n the notion of ‘‘basic type’’ defined in (a16). A basic type is either the type whose instances are all and only the individuals
Individual) or a type whose instances are all types that specialize another basic type (𝑏𝑖−1) (1stOT, 2nOT, and so on). Note that 𝑖
s only used to improve the intuition in the definition, and is not formally a variable. This definition forms a chain of basic types
f higher-order (without necessitating an infinite chain). The axiom allows for as many orders as required.

16 ∀𝑏𝑖(𝖻𝖺𝗌𝗂𝖼𝖳𝗒𝗉𝖾(𝑏𝑖) ↔ 𝗍𝗒𝗉𝖾(𝑏𝑖) ∧
(∀𝑥(𝗂𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅(𝑥) ↔ 𝗂𝗈𝖿(𝑥, 𝑏𝑖)) ∨
∃𝑏𝑖−1(𝖻𝖺𝗌𝗂𝖼𝖳𝗒𝗉𝖾(𝑏𝑖−1) ∧ ∀𝑡𝑖−1(𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡𝑖−1, 𝑏𝑖−1) ↔ 𝗂𝗈𝖿(𝑡𝑖−1, 𝑏𝑖)))))

An ordered type is a type that specializes a basic type (a17). All other types are orderless types (a18).

17 ∀𝑥(𝗈𝗋𝖽𝖾𝗋𝖾𝖽𝖳𝗒𝗉𝖾(𝑥) ↔ 𝗍𝗒𝗉𝖾(𝑥) ∧ ∃𝑏(𝖻𝖺𝗌𝗂𝖼𝖳𝗒𝗉𝖾(𝑏) ∧ 𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑥, 𝑏)))

18 ∀𝑥(𝗈𝗋𝖽𝖾𝗋𝗅𝖾𝗌𝗌𝖳𝗒𝗉𝖾(𝑥) ↔ 𝗍𝗒𝗉𝖾(𝑥) ∧ ¬𝗈𝗋𝖽𝖾𝗋𝖾𝖽𝖳𝗒𝗉𝖾(𝑥))

3. ML2: The multi-level modeling language

ML2 is a textual modeling language for multi-level conceptual models that reflects the concepts and rules of MLT*. MLT* provides
to ML2 sound theoretical foundations needed to address the demands of multi-level modeling with a high degree of generality. The
development of ML2 has been based on the Xtext framework and provides a featured Eclipse editor, including model validation
capabilities and compatibility with EMF-based technologies.3

3.1. Modeling multi-level entities

The constructs of ML2 reflect the categories of entities defined by MLT*, as shown in the Ecore model of Fig. 6.
Besides minor terminological differences (with Class representing the notion of type for consistency with EMF terminology,

and EntityDeclaration representing entities in general), there are specific constructs for every sort of entity previously presented:

2 Formalization for these cases, which was omitted here, is quite straightforward and can be found in details in [9].
3 The ML2 editor can be found at https://github.com/nemo-ufes/ML2-Editor.
6
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Fig. 6. Entities and classes in ML2.

ndividual representing entities with no instances; FirstOrderClass representing regular classes from the two-level scheme;
ighOrderClass representing an ordered class at a certain order; and OrderlessClass representing entities whose extension span
cross different orders. Instantiation of multiple classes may be declared for all entities, thus including classes and individuals.
pecialization (proper) and the other structural relations of the theory are considered for classes. For a class that categorizes another
lass, a categorization type should be defined to reflect which variant of the categorization relation applies.

The syntax of ML24 is inspired in mainstream object-oriented languages. The statements for entity declaration follow a common
attern, varying the available structural relations for each type of entity. Listing 1 revisits some of the examples presented so
ar, to illustrate ML2’s concrete syntax. It includes an orderless class (BusinessAsset) and three second-order classes (namely,
ellphoneModel; PersonType which is declared as a Cardelli powertype of first-order class Person; and, EmployeeType which

s declared an Odell powertype of Person.) With respect to first-order classes, an instance of CellphoneModel (IPhone5) and two
instances of EmployeeType (Manager and Researcher) are provided. An individual (Bob instance of Person and Researcher) is
lso declared. Note that a namespace mechanism is supported with ‘‘modules’’.

1 module example.model {
2 orderless class BusinessAsset;
3
4 order 2 class CellphoneModel;
5 order 2 class PersonType isPowertypeOf Person;
6 order 2 class EmployeeType specializes PersonType
7 categorizes Person;
8
9 class IPhone5 : CellphoneModel , BusinessAsset;

10 class Person : PersonType;
11 class Manager : EmployeeType specializes Person;
12 class Researcher : EmployeeType specializes Person;
13
14 individual Bob : Person, Researcher;
15 }

Listing 1: Examples of entity declarations in ML2.

3.2. Features and assignments

Classes contain common features of their instances, while entity declarations contain value assignments for the features of the
classes that an entity instantiates. Fig. 7 presents how features are handled in the abstract syntax. ML2 distinguishes features into
references and attributes (not unlike Ecore and OWL, for example). A feature has a type, which is a class in the case of references
or a datatype in the case of attributes. Datatypes are first-order classes that have as instances particular values. For example, the
datatype String is a first-order class that has as instances all well-formed sequences of characters. ML2 supports both user created
datatypes and a set of primitive types, namely String, Number and Boolean. The set of primitive types covers a minimal set of
data types for conceptual modeling and was inspired in JSON’s specification [24].

4 The language’s grammar is available at https://github.com/nemo-ufes/ml2-grammar.
7
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Fig. 7. Features and assignments in ML2.

Listing 2 presents an example of usage of features in an ML2 model. This model expands the one in Listing 1 by explicitly
capturing the cross-level reference owns between Enterprise and BusinessAsset and adding some other entities (business assets at
different orders such as IPhone5 and AppleParkMainBuilding, which exemplify BusinessAsset being applied as an orderless
class). Note that ML2 does not require exhaustive feature assignment, thus intentionally allowing partial representations (see
IPhone5 without an assignment for belongsTo). However, cardinality constraints are checked for every assignment that is explicitly
captured in a model.

1 orderless class BusinessAsset {
2 ref belongsTo : Enterprise isOppositeTo owns
3 };
4
5 class Enterprise {
6 ref owns : [0..*] BusinessAsset isOppositeTo belongsTo
7 };
8 class Building;
9

10 order 2 class CellphoneModel categorizes Cellphone;
11 class Cellphone {
12 screenSize : Number
13 };
14 class IPhone5 : CellphoneModel , BusinessAsset
15 specializes Cellphone
16 {
17 ref belongsTo = Apple
18 };
19
20 individual AppleParkMainBuilding : Building, BusinessAsset;
21 individual Apple : Enterprise {
22 ref owns = { AppleParkMainBuilding , Iphone5 }
23 };
24 individual MyIphone : IPhone5 {
25 screenSize = 4
26 };

Listing 2: Examples of features in ML2.

ML2 also accounts for a special kind of feature called regularity feature (see [2,23]). This kind of feature has the characteristic of
constraining features at a lower level. Consider the previous example of CellphoneModel with an instancesScreenSize feature
that represents the specific screen size of a certain model. This feature regulates the screenSize feature of Cellphone, since
every cellphone will have the same screen size specified by its respective model. Instances of CellphoneModel such as IPhone5
specialize Cellphone and determine specific value for instancesScreenSize, in this case, 4 inches. Thereby, all instances of IPhone5
have screenSize following the value assigned to instancesScreenSize, i.e., 4 inches. Note that, in order to regulate a feature of
ellphone, the high-order type CellphoneModel must categorize Cellphone, since the regulation of a feature is defined in instances
8
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of the high-order type affecting specializations of the categorized type. Listing 3 presents a modification of Listing 2 illustrating the
usage of regularity features.

1 order 2 class CellphoneModel categorizes Cellphone {
2 regularity instancesScreenSize : Number
3 determinesValue screenSize
4 regularity ref compatibleProcessorModel : ProcessorModel
5 determinesType installedProcessor
6 };
7
8 class Cellphone {
9 screenSize : Number

10 ref installedProcessor : Processor
11 };
12 class IPhone5 : CellphoneModel specializes Cellphone {
13 instancesScreenSize = 4
14 ref compatibleProcessorModel = A6
15 };
16
17 order 2 class ProcessorModel categorizes Processor;
18
19 class Processor;
20 class A6 : ProcessorModel specializes Processor;
21
22 individual Processor01 : A6;
23 individual MyIPhone : IPhone5 {
24 screenSize = 4
25 ref installedProcessor = Processor01
26 };

Listing 3: Examples of regularity features in ML2.

ML2 foresees six types of regularity features. In the case above, values of instancesScreenSize determine the exact value of
screenSize. However, a regularity feature can also: determine maximum or minimum values for a number feature (e.g., to model
the maximum storage capacity of a cellphone model); determine the set of allowed values for a feature (e.g., to model that a phone
model has either 16GB or 32GB of internal storage capacity); or further constrain the type of assignment for a feature, by either
determining its type(s) or determining a set of allowed types [14]. The specification of the regularity type can be omitted when the
type of regulation does not fit one of the six foreseen types of regulation.

Listing 3 also presents an example in which the regularity reference compatibleProcessorModel of CellphoneModel determines
the type of installedProcessor for instances of Cellphone. Since IPhone5 assigns A6 to compatibleProcessorModel, instances
of IPhone5 can only have processors that are instances of A6. This is the case of MyIPhone, with Processor01 installed on it.
Assignments of regulated features, when present in a ML2 specification, are subject to conformance checks.

4. Derivation of language rules

A key aspect of the design of ML2 concerns its adoption of a clear theoretical foundation. Not only the language’s abstract
syntax follows the conceptual backbone of the theory (as shown in the metamodel presented in Fig. 6), but further, syntactic
rules in the language are directly derived from theorems of the formalized theory, with verification by the ML2 editor. These
syntactic rules ensure that multi-level models produced in the language are sound with respect to the theory. The objective is to
ensure that syntactically-valid models in ML2 can be given semantics in terms of MLT*, corresponding to a valid model (now in the
model-theoretic sense) of the theory.

Section 4.1 presents the rules that apply to the relations between the various elements in MLT* and consequently ML2
(instantiation, specialization, subordination, powertype, and categorization). Section 4.2 focuses specifically on additional rules
that can be imposed on the supported powertype pattern variants. Section 4.3 discusses the role of the Alloy formal method [25]
in the design of MLT* and in the simulation of ML2 models.5

The rules discussed throughout this section are later applied in Section 5 in fragments obtained from Wikidata, exposing modeling
problems that can be directly detected with our language.

5 By model simulation here, we mean the formal validation approach provided by Alloy [25] It consists of automatically generating visual representations
f model-theoretical instances of a formal specification (in this case, ML2 specifications).
9
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Table 1
Summary of constraints and properties of MLT* relations between types.

Relation Domain and Range Constraint Properties

specializes(𝑡, 𝑡′)
orderless:orderless
ordered:orderless
ordered:ordered

if 𝑡 and 𝑡′ are ordered types, they
must be at the same type order

Reflexive,
antissymetric,
transitive

properSpecializes(𝑡, 𝑡′)
orderless:orderless
ordered:orderless
ordered:ordered

if 𝑡 and 𝑡′ are ordered types, they
must be at the same type order

Irreflexive,
antissymetric,
transitive

isSubordinateTo(𝑡, 𝑡′)
orderless:orderless
ordered:orderless
ordered:ordered

𝑡 and 𝑡′ cannot be first-order
types
if 𝑡 and 𝑡′ are ordered types, they
must be at the same type order

Irreflexive,
antissymetric,
transitive

Fig. 8. ML2 Editor verification of specialization constraints.

.1. Addressing level blindness

The structure imposed on the instantiation relation and the notions of orderless and ordered types allow us to identify unsound
ulti-level structures. Some of these rules concern the stratified scheme imposed on ordered types. Some other rules apply to the

elation between orderless and ordered types.
Concerning the instantiation relation: whenever instantiation involves solely ordered types, it is irreflexive, anti-symmetric and

nti-transitive, leading to stratification rules, i.e. whenever an ordered type is instantiated its instances are at one order lower.
hus, ordered types cannot have orderless types as instances. However, when involving orderless types, there are situations in which

nstantiation can be reflexive (e.g., Type is instance of itself), symmetric (e.g., Entity is instance of Type and vice-versa) or transitive
e.g., OrderedType is instance of Type which is instance of Entity and OrderedType is also instance of Entity). Orderless types
ay have ordered types, orderless types and individuals as instances. All these MLT* rules are expressed as syntactic constraints in
L2, and follow assertions that were verified in Alloy.6

Table 1 summarizes the logical properties and rules for types involved in MLT* structural relations.
Concerning specialization, if the supertype is an ordered type, the subtype must be an ordered type at the same order (afterall,

nstances of the subtype are instances of the supertype, and if the instances of the supertype are all in the same order, so are the
nstances of the subtype). In case the supertype is an orderless type, the subtype may be also an orderless type or may apply only
o instances at a specific order, being thus an ordered type (in which case the subtype selects from the instances of the supertype
ntities in the same order). Detection of violations of the rules involving specialization are shown in Fig. 8. First, there is a violation
f the same order constraint in the specialization of Species (a second-order class) into Animal (a first-order class). Second, there
s violation of irreflexive specialization for Thing (ML2 represents proper specializations). Notice, however, that specializations of
rderless classes into ordered ones (Thing into Species and Animal) are allowed and are consistently represented. (Many other
xamples involving instantiation and specialization are discussed in Section 5.)

Concerning subordination, since it implies specializations between the instances of the involved types, whenever involving two
rdered types, subordination can only hold between higher-order types of equal order. In cases the subordinate type is an ordered
ype, the other involved type may be an orderless type. Nevertheless, orderless types can only be subordinate to other orderless types.
f orderless types were allowed to be subordinate to ordered types, as a consequence we would have orderless types specializing

6 The complete Alloy specification of MLT* including the corresponding assertions and verification directives can be found at https://github.com/nemo-
fes/mlt-ontology.
10
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Fig. 9. ML2 Editor verification of subordination constraints.

Fig. 10. ML2 Editor verification of powertype constraints.

ordered types, which leads to a logical contradiction, and is thus ruled out by MLT*. The example in Fig. 9 presents two constraint
violations in a model involving the subordination of instances of Breed to instances of Species: the inconsistent subordination of a
second-order class, SpeciesType, to a class of different order, Species; and an instance of Breed, Collie, that lacks specialization
to an instance of Species (which is required by the subordination declaration in line 6).

4.2. More power to the powertype pattern

Some theorems arise from the MLT* definitions of is powertype of (a10) and categorization (a11) relations. These theorems
also suggest concrete syntactic constraints to ML2. In addition to verification in Alloy, they have been subject to automated proof7

with a specification written in the TPTP first-order logics syntax [26].
According to the is powertype of relation definition (a10), all instances of the powertype are specializations of the base type

and, conversely, all specializations of the base type are instances of the power type. From this definition and from the notion of
type equality, it follows that each type has at most one powertype (t1) and that each type is powertype of, at most, one other type
(t2). These uniqueness constraints are syntactically verified in ML2 models, and the ML2 editor will flag as syntactically incorrect
any model that includes more than one Cardelli powertype for a base type or that includes more than one base type for a Cardelli
powertype.

t1 ∀𝑡1, 𝑡2(𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡1, 𝑡2) → ¬∃𝑡3(𝑡1 ≠ 𝑡3 ∧ 𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡3, 𝑡2)))

t2 ∀𝑡1, 𝑡2(𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡1, 𝑡2) → ¬∃𝑡3(𝑡2 ≠ 𝑡3 ∧ 𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡1, 𝑡3)))

Some other theorems entailed by MLT* concern the soundness of hierarchies of higher-order types. Theorem (t3) captures that
f a type 𝑡1 specializes a type 𝑡2 then the (Cardelli) powertype of 𝑡1 specializes the (Cardelli) powertype of 𝑡2. Theorem (t4), in its turn,
eflects that Odell powertypes (categorizations in MLT*) proper specialize the Cardelli powertype of a base type, i.e. if a type 𝑡2 is
he (Cardelli) powertype of 𝑡1 and a type 𝑡3 categorizes the same base type 𝑡1 then all instances of 𝑡3 are also instances of 𝑡2 and, thus,
3 proper specializes 𝑡2. Finally, theorem (t5), captures a consequence of the partitions definition, namely: if two types 𝑡1 and 𝑡2 both
artition the same type 𝑡3 then it is not possible for 𝑡1 to proper specialize 𝑡2. Founded on these three theorems ML2 implements
yntactic verification of higher-order types hierarchies on its models. Further, based on (t3) and (t4) ML2 checks the completeness
f models, verifying if specializations between (Cardelli and Odell) powertypes are omitted.

t3 ∀𝑡1, 𝑡2, 𝑡3, 𝑡4(𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡1, 𝑡2) ∧ 𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡3, 𝑡1) ∧ 𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡4, 𝑡2)
→ 𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡3, 𝑡4))

t4 ∀𝑡1, 𝑡2, 𝑡3(𝗂𝗌𝖯𝗈𝗐𝖾𝗋𝗍𝗒𝗉𝖾𝖮𝖿 (𝑡2, 𝑡1) ∧ 𝖼𝖺𝗍𝖾𝗀𝗈𝗋𝗂𝗓𝖾𝗌(𝑡3, 𝑡1) → 𝗉𝗋𝗈𝗉𝖾𝗋𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡3, 𝑡2))

t5 ∀𝑡1, 𝑡2, 𝑡3(𝗉𝖺𝗋𝗍𝗂𝗍𝗂𝗈𝗇𝗌(𝑡1, 𝑡3) ∧ 𝗉𝖺𝗋𝗍𝗂𝗍𝗂𝗈𝗇𝗌(𝑡2, 𝑡3) → ¬𝗉𝗋𝗈𝗉𝖾𝗋𝖲𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑡1, 𝑡2))

ML2 also provides syntactic constraints founded on MLT* properties concerning the order of types involved in powertype
elations. When involving ordered types, powertype relations (both Odell and Cardelli powertypes) only occur between types of
djacent levels. Further, a (Cardelli) powertype of an orderless type must also be an orderless type, while an Odell powertype

7 The TPTP specification along with the proof reports for each of the theorems in this paper can be found in https://github.com/nemo-ufes/mlt-ontology.
11
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Table 2
Summary of constraints and properties of MLT* relations between types.

Relation Domain and Range Constraint Properties

isPowertypeOf(𝑡, 𝑡′) orderless:orderless
ordered:ordered

𝑡 cannot be a first-order type
if 𝑡 and 𝑡′ are ordered types,
𝑡 must be at a type order im-
mediately above the order of
𝑡′

Irreflexive,
antissymetric,
antitransitive

categorizes(𝑡, 𝑡′)
disjointlyCategorizes(𝑡, 𝑡′)

orderless:orderless
orderless:ordered
ordered:ordered

𝑡 cannot be a first-order type
if 𝑡 and 𝑡′ are ordered types,
𝑡 must be at a type order im-
mediately above the order of
𝑡′

Irreflexive,
antissymetric,
nontransitive

completelyCategorizes(𝑡, 𝑡′)
partitions(𝑡, 𝑡′)

orderless:orderless
ordered:ordered

𝑡 cannot be a first-order type
if 𝑡 and 𝑡′ are ordered types,
𝑡 must be at a type order im-
mediately above the order of
𝑡′

Irreflexive,
antissymetric,
antitransitive

(captured in MLT* by the notion of categorization) of an orderless type is not necessarily an orderless type. These latter constraints
on the different notions of powertype relations implemented in ML2 are summarized in Table 2.

These constraints prevent the modeler from building unsound models, such as the one in Fig. 10 which includes an isPow-
rtypeOf relation connecting a class declared as orderless to another declared as ordered, between TaxonomicRank and Taxon;
nd includes a completelyCategorizes relation involving two classes declared in the same order (second-order), between Taxon
nd Species. In this example, the issues arise from the mistaken declaration of TaxonomicRank as orderless (when it should
e a third-order class), and the wrong usage of a categorization relation whereas Species should be connected to Taxon via
pecialization.

.3. Specification and validation in alloy

In addition to model-checking the formal properties of the theory as discussed in the previous sections, Alloy’s simulation and
odel-finding features can show that MLT* is a generalization of the two-level classification scheme. This is done by showing that

dding an axiom imposing the existence of only one basic type and no orderless type still leads to a satisfiable theory. The same
an be said for a three-level fixed architecture. See the formal specification for corresponding simulation directives.8

The Alloy specification also serves as a basis to verify and simulate ML2 models. A transformation from ML2 to Alloy described
n [27] and implemented in the ML2 editor9 produces Alloy code that imports the MLT* Alloy module. This guarantees that any
erification and simulation of ML2 models adhere to the formal foundations.

ML2 model simulation provides an opportunity for modelers to investigate the consequences of their modeling choices, and
hereby gain confidence on the domain adequacy of models. In particular, model simulation may reveal models that, while
yntactically correct according to ML2, fail to capture the intended domain conceptualization. This case is illustrated in the sequel.
isting 4 and Fig. 11 present, respectively, an ML2 model on the domain of animal species and its simulation in the Alloy analyzer.

1 module species {
2 order 3 class TaxonomicRank;
3 order 2 class AnimalSpecies : TaxonomicRank
4 categorizes Animal
5 {
6 regularity warmbloodedSpecies : Boolean
7 determinesValue isWarmblooded
8 ref taxonAuthor : Person
9 };

10 class Person {
11 name : String
12 };

8 The complete specification can be found in https://github.com/nemo-ufes/mlt-ontology.
9 The Alloy transformation can be found in https://github.com/nemo-ufes/ml2-to-alloy
12
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Fig. 11. Alloy simulation of a ML2 model on animal species.

13 class Animal {
14 isWarmblooded : Boolean
15 };
16 class Lion : AnimalSpecies specializes Animal {
17 warmbloodedSpecies = true
18 ref taxonAuthor = CLinnaeus
19 };
20 individual CLinnaeus : Person {
21 name = ’Carl Linnaeus ’
22 };
23 individual Cecil : Lion;
24 }

Listing 4: ML2 model on animal species.

The simulation shows that – given Listing 4 – it is possible for instances of Animal (Entity14 and Entity12) not to instantiate an
instance of AnimalSpecies. This is a consequence of the use of categorizes between AnimalSpecies and Animal. If this fails to
apture the domain conceptualization, which typically requires all animals to have a species, the modeler could amend the model
o use a complete categorization or a partitioning relation. Simulations of the amended ML2 model would then never produce such
scenario, as it would be ruled out intentionally.

In conclusion, beyond formal compliance with MLT* (which rules out a number of frequently occurring problems in practice as
emonstrated in the following section), the ML2 editor facilitates a domain validation task.

. Empirical assessment

Wikidata [28] is a large, free and open knowledge base that is part of a family of projects surrounding the Wikipedia project.
ts aim is to provide a structured representation of Wikipedia’s content. All data representation in Wikidata is based on triples
i.e., subject–predicate–object statements), often serialized into RDF syntax. As a result, Wikidata can be conceived of as a large
nowledge graph, constantly curated by humans and software agents. Nodes of this graph are called ‘‘items’’. Items in Wikidata can
e used to represent instances and classes alike. For example, there are items to represent ‘‘London’’ as well as the ‘‘city’’ class. Edges
f the Wikidata graph are formed by applying ‘‘properties’’. The instance of property (wd:P31), which is Wikidata’s equivalent of
DF’s rdf:type, serves to connect a node representing an instance to a node representing a class it instantiates. For example, the item
epresenting ‘‘London’’ is related to the item representing the class ‘‘city’’ through the instance of property, to represent the fact
hat London is a city. Chains of instantiation are simply chains in the graph using instance of several times. The native Wikidata
pproach can be considered level-blind, i.e., with no built-in mechanisms to apply level segregation and/or cohesion principles [29].

An empirical analysis performed in 2015 [11] indicated at that time that Wikidata presented thousands of concepts involved in
ulti-level anti-patterns. Thousands of entities were found to be involved in violation of MLT level stratification rules. Since then,
owever, Wikidata has incorporated some support for level stratification relying on a basic scheme from OpenCyc [19] similar to
he one presented in Fig. 5. In light of these advances, we revisit here an assessment of the representation of multi-level domains in

ikidata.10 Despite the advances, we show that there are still many problematic multi-level structures in Wikidata. We show that
L2 can identify such problems as syntactically invalid expressions. This provides empirical evidence of the value of the language

n uncovering representation problems in a realistic setting.

10 This new empirical analysis was finalized during second semester of 2020 and may be affected by updates to Wikidata’s dataset. Please refer to Wikidata
umps generated within the same time window when verifying the results of this research.
13
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5.1. Wikidata’s approach to multi-level modeling

Wikidata’s current approach to multi-level modeling relies on OpenCyc’s basic scheme [19], which is nearly equivalent to MLT*’s
asic scheme of Fig. 5, including both orderless and ordered entities. As a result of employing this scheme, Wikidata can represent
oth entities that follow a rigid stratification principle as well as those that do not, using instantiation and specialization (P279

termed subclass of) to the entities in the basic scheme to identify an entity’s order. The following items compose this basic scheme:11

• something (Q35120): a class whose instances are all entities; equivalent to MLT*’s Entity;
• (meta)class (Q23960977): a subclass of something whose instances are all classes; equivalent to MLT*’s type;
• individual (Q23958946): a subclass of something whose instances are all individuals; equivalent to MLT*’s Individual;
• fixed-order metaclass (Q23959932): a subclass of (meta)class whose instances are classes that fall into a strict stratification

scheme; equivalent to MLT*’s Ordered Type;
• variable-order metaclass (Q23958852): a subclass of (meta)class whose instances are classes that do not fall into a specific

level; equivalent to MLT*’s Orderless Type;
• first-order metaclass (Q24017414): a subclass of fixed-order metaclass whose instances are second-order classes; equivalent

to MLT*’s Second-Order Type;
• second-order metaclass (Q24017465): subclass of fixed-order metaclass whose instances are third-order classes; equivalent

to MLT*’s Third-Order Type;
• third-order metaclass (Q24027474): subclass of fixed-order metaclass whose instances are fourth-order classes;

In addition to the list above, Wikidata also defines the concept class (Q16889133), which seems to be (at least from most
common usage in current Wikidata) equivalent to MLT*’s First-Order Type. We leave this class outside our analysis, as this entity
is defined outside Wikidata’s basic scheme outlined above, which may be a consequence of an ongoing effort of reconciling legacy
data.

5.2. ML2-based analysis of Wikidata

In this sub-section, we consider three anti-patterns of multi-level representation that we identified in Wikidata. The number
of occurrences of these anti-patterns show that, even with the classification of items with the multi-level basic scheme, errors in
multi-level taxonomies still remain common in Wikidata.

For each of the anti-patterns, we show unsound fragments of the Wikidata graph. We also show that, when these fragments are
formalized as corresponding ML2 models, the problems become plain syntactic errors in the language.

5.2.1. Anti-pattern 1: Individuals with instances
The first anti-pattern concerns items classified as individuals that themselves have instances. These items can be identified with

the SPARQL query in Listing 5. It selects entities ?x in Wikidata that instantiate individual (Q23958946) (directly or through its
subclasses), and, at the same time, themselves have instances (?y):

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 SELECT DISTINCT ?x ?y WHERE {
4 ?x (wdt:P31/(wdt:P279+)) wd:Q23958946.
5 ?y wdt:P31 ?x
6 }
7 LIMIT 45000 # results in 58072 ms

Listing 5: Instances of Individual that have instances of their own.

This SPARQL query selects pairs in Wikidata that violate (t6), which is a direct consequence of the definition of individual (a2).

t6 ¬∃𝑥, 𝑦(𝗂𝗈𝖿 (𝑥, 𝖨𝗇𝖽𝗂𝗏𝗂𝖽𝗎𝖺𝗅) ∧ 𝗂𝗈𝖿 (𝑦, 𝑥))

When applied to Wikidata’s SPARQL endpoint, this query reaches the established limit of 45,000 matches (this limit was
established to avoid the one minute timeout in Wikidata’s server). In other words, there are at least 45,000 items in Wikidata’s
knowledge graph classified as individuals that themselves have instances!

These problems fall into two main cases: (i) ?x is indeed supposed to represent an individual but is inadequately instantiated by
some other entity ?y (and thus the error should be rectified by fixing the statements that instantiate ?x), or (ii) ?x is inadequately
classified as an individual, when it in fact represents a class (and hence the error should be rectified by reclassifying ?x).

An example for the first case involves the United Nations (Q1065) item, which clearly stands for the multilateral organization.
nadequately declared ‘‘instances’’ of the United Nations concept include Green Climate Fund (Q3075923), United Nations
epartment of Global Communications (Q3708827) and Universal Postal Union (Q17495). Even though these items are most

11 Note that there are some conflicting statements and usage problems in Wikidata, so this is our best interpretation of the intended semantics.
14
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Fig. 12. Representation of Wikidata’s United Nations (Q1065) example.

Fig. 13. Representation of Wikidata’s diocese of the Catholic Church (Q3146899) example.

likely somehow related to the United Nations, the relation between them is not instantiation, as there are no repeatable properties
defined by the later that could be exemplified by the former three, which is a defining characteristic of instantiation.

A noticeable example of the second case (when an item in incorrectly classified as an individual) is the case of the item diocese
f the Catholic Church (Q3146899), described as ‘‘a diocese of the Catholic Church under the supervision of a bishop’’. This
escription contributes to the interpretation of the item not as a singular individual, but rather as a whole category of individual
ioceses (religious administrative territorial entities) that have these characteristics. This item has over 2,000 instances in Wikidata,
ith items for the various individual dioceses of the Catholic Church worldwide, such as the Roman Catholic Diocese of Oslo
Q44171) and the Roman Catholic Diocese of Auckland (Q369407). These two aspects contribute to the conclusion that the
oncept was improperly classified as an individual rather than a first-order type. Given the apparently obvious semantic problem,
ow did this escape the various curators of Wikidata? We explore this issue further in the sequel, and conclude that automated
upport would prevent such errors from arising.

The classification of diocese of the Catholic Church (Q3146899) as an individual (Q23958946) is the consequence of a long
chain of instantiation/specialization relations, summarized in Listing 6:

1 # "diocese of the Catholic Church" instantiates
2 # "religious administrative territorial entity":
3 wd:Q3146899 wdt:P31 wd:Q20926517.
4 # "religious administrative territorial entity" specializes
5 # "religious organization":
6 wd:Q20926517 wdt:P279 wd:Q1530022.
7 # "religious organization" specializes "organization":
8 wd:Q1530022 wdt:P279 wd:Q43229.
9 # "organization" specializes "agent":

10 wd:Q43229 wdt:P279 wd:Q24229398.
11 # "agent" specializes "individual":
12 wd:Q24229398 wdt:P279 wd:Q23958946.

Listing 6: Classification chain connecting Q3146899 to individual.

Because religious administrative territorial entity specializes individual indirectly, all its instances should be individuals,
including the item we are considering in this analysis (diocese of the Catholic Church). We can only speculate on how this situation
came to be. Perhaps, the agents that provided information regarding Q3146899 to Wikidata indeed intended to represent the concept
as an individual. However, its textual description and the presence of further specialization relations towards diocese (Q665487)
and religious administrative entity (Q51041800) suggest that this is not the case (afterall it is only classes and not individuals that
are related by specialization). Most likely, the deep chain of relations presented in Listing 6 obscures the relation from the item to
individual, and in fact, specialization and not instantiation should relate diocese of the Catholic Church to diocese (Q665487)
and religious administrative entity, making the item a first-order class, which is consistent with the so many instantiations.

The representation of these examples in ML2 cannot be parsed as, according to the language’s metamodel, only classes can be
the target of instantiation relation. This is presented in Figs. 12 and 13, where red underlining indicates to the user references that
could not be resolved by the parser.

5.2.2. Anti-pattern 2: Entity instantiates entity in the same order
In the second anti-pattern, we investigate the presence of strictly stratified types of the same order connected through instance

of relations. More specifically, we apply the query for this anti-pattern in Listing 7 selecting ?x and ?y such that both are instances
15
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Fig. 14. Representation of Wikidata’s research professor (Q27177003) example.

f first-order metaclass (Q24017414) (directly or through specializations) and ?x instantiates ?y. The anti-pattern is a violation of
tratification for ordered types.

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 SELECT DISTINCT ?x ?y WHERE {
4 ?x wdt:P31/(wdt:P279*) wd:Q24017414.
5 ?y wdt:P31/(wdt:P279*) wd:Q24017414.
6 ?x wdt:P31/(wdt:P279*) ?y.
7 }

Listing 7: Same order entities holding an instance-of relation.

The query selects pairs in Wikidata that violate (t7), which is a consequence of instantiation only applying to entities in adjacent
rders.

t7 ¬∃𝑥, 𝑦(𝗂𝗈𝖿 (𝑥, 𝟤𝗇𝖽𝖮𝖳) ∧ 𝗂𝗈𝖿 (𝑦, 𝟤𝗇𝖽𝖮𝖳) ∧ 𝗂𝗈𝖿 (𝑥, 𝑦))

Over 4900 second-order types are found in this query, a significant phenomenon considering that Wikidata contains about 13,000
econd-order types currently (37,7%). In terms of domains related to this constraint violation, most seem to be related to instances
f taxonomies of social roles, including profession (Q28640), military rank, (Q56019), and baronetcy (Q18759100), the latter an

example of aristocratic rank. One of such violations is presented in Listing 8 for the case of research professor (Q27177003).

1 # "research professor" instantiates "profession":
2 wd:Q27177003 wdt:P31 wd:Q28640.
3 # "profession" instantiates "first-order metaclass":
4 wd:Q28640 wdt:P31 wd:Q24017414.
5
6 # "research professor" instantiates "academic rank":
7 wd:Q27177003 wdt:P31 wd:Q486983.
8 # "academic rank" specializes "rank" (social role)
9 wd:Q486983 wdt:P279 wd:Q4189293.

10 # "rank" (social role) specializes "rank" (hierarchical)
11 wd:Q4189293 wdt:P279 wd:Q4120621.
12 # "rank" (hierarchical) specializes "first-order metaclass"
13 wd:Q4120621 wdt:P279 wd:Q24017414.

Listing 8: Classification chain connecting Q27177003 to first-order metaclass.

The research professor class has two chain of classification relations connecting it to first-order metaclass. The first chain is
n instance-of relation towards profession, which in turn holds an instance-of relation towards first-order metaclass, resulting
n an interpretation of profession as a second-order class and research professor as a first-order class. This interpretation is in line
ith the description of research professor, whose instances are individual professors (e.g., Marie Currie or Albert Einstein). The

econd chain is an instance-of relation towards academic rank, which in turn holds a chain of subclass of relations towards
rank (Q4189293), rank (Q4120621), and finally first-order metaclass, resulting in an interpretation of academic rank, rank
(Q4189293), and rank (Q4120621) as a third-order classes and research professor as a second-order class. The representation
of this model excerpt in ML2 (Fig. 14) highlights this inconsistent classification that places a concept simultaneously in two distinct
levels.

In order to solve this violation, we must understand which interpretation is the correct one, allowing us to reflect where lies
the problem. As ML2 requires explicit declaration of an entity’s order, we have opted in Fig. 14 to follow the first interpretation
16
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Fig. 15. Representation of Wikidata’s military rank (Q56019) example.

of research professor as a first-order class as its description suggests. Therefore we conclude that either academic rank does not
classify research professor, or it should be a second-order class, instantiating first-order metaclass rather than specializing it.
Other examples of ranks in Wikidata, including taxonomic rank (Q427626) which is aligned with our earlier example discussed
earlier in Fig. 1 suggest that the former is more likely, leading us to believe that academic rank is indeed a third-order class that
should not classify research professor, but other second-order classes.

5.2.3. Anti-pattern 3: Explicitly inconsistent order declarations
The third query we explore selects items defined simultaneously as instances of first-order metaclass (i.e., items that represent

second-order types) and as specializations of first-order metaclass (i.e., items that represent third-order types). The query for this
anti-pattern is presented in Listing 9.

1 PREFIX wd: <http://www.wikidata.org/entity/>
2 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
3 # Query for ?x such that ?x instantiates and specializes Q24017414
4 # (first-order metaclass)
5 # 1266 results in 1731 ms
6 SELECT DISTINCT ?x WHERE {
7 ?x wdt:P31/(wdt:P279*) wd:Q24017414.
8 ?x (wdt:P279+) wd:Q24017414.
9 }

Listing 9: Instantiation and specialization of basic type.

The query selects pairs in Wikidata that violate (t8), which is a consequence of instantiation only applying to ordered types in
adjacent orders, and specialization only applying to ordered types in the same order.

t8 ¬∃𝑥(𝗂𝗈𝖿 (𝑥, 𝟤𝗇𝖽𝖮𝖳) ∧ 𝗌𝗉𝖾𝖼𝗂𝖺𝗅𝗂𝗓𝖾𝗌(𝑥, 𝟤𝗇𝖽𝖮𝖳))

This query results in 1266 entities, out of the 13,260 entities that are instances of first-order metaclass (9,5%). Among the
entities involved in anti-pattern 3, a number of them represent social roles which are also involved in anti-pattern 2 due to the same
indirect relations. For example, the class military rank (Q56019) which both instantiates and specializes first-order metaclass, as
detailed in Listing 10 and highlighted in Fig. 15.

1 # "military rank" instantiates "first-order metaclass"
2 wd:Q56019 wdt:P31 wd:Q24017414.
3
4 # "military rank" specializes "rank" (social role)
5 wd:Q56019 wdt:P279 wd:Q4189293.
6 # "rank" (social role) specializes "rank" (hierarchical)
7 wd:Q4189293 wdt:P279 wd:Q4120621.
8 # "rank" (hierarchical) specializes "first-order metaclass"
9 wd:Q4120621 wdt:P279 wd:Q24017414.

Listing 10: Classification chain connecting Q524980 to first-order metaclass.

In order to assess the order of an entity, we must identify a chain of classification relations (i.e., instantiations and specializations)
rom the entity to Wikidata’s basic scheme. For example, an entity specializing first-order metaclass is in the same level of it

(i.e., a third-order class) whereas an entity instantiating it is in one level below (i.e., a second-order class). As detailed, the chains
connecting military rank to first-order metaclass do not assessing whether it is a second-order or third-order class as they are
connected through both instantiation and specialization. Still, following the same reasoning of academic rank, it appears to be the
case that military rank should represent a third-order class.
17
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6. Related work

In this section, we review other efforts most closely related to our work. We establish key requirements for a multi-level
onceptual modeling language, substantiating these requirements with sources from the literature on multi-level modeling and
ustifying them based on intended usage scenarios (i.e., representation needs) (based on [30]). We then examine the capabilities of
he various multi-level approaches using the established features.

.1. Features for multi-level conceptual modeling approaches

First of all, given the nature of a multi-level scheme, an essential feature for a multi-level modeling approach is the ability to
epresent entities of multiple (related) classification levels, capturing chains of instantiation between the involved entities (Feature F1).

In opposition to the traditional two-level scheme, this feature allows multi-level approaches to classify classes that break with the
class/individual divide.

The size of the instantiation chains may vary according to the nature of the represented phenomena and the model’s purposes.
Because of this, a general-purpose multi-level modeling language should allow the representation of an arbitrary number of classification
levels [6,11,31] (Feature F2) (including the two-level scheme as a special case).

Another feature of a multi-level modeling approach is to define guiding principles for the organization of entities into levels (Feature
F3). These principles should guide the modeler on the adequate use of classification (instantiation) relations. This feature is widely
adopted in multi-level modeling, being present, e.g., in ML2, through the guiding notion of ‘‘order’’; in Wikidata, with its basic
scheme; and in techniques adhering to the strict metamodeling principle [32].

While these principles are intended to guide the modeler in producing sound models, they should not obstruct the representation
of genuine multi-level phenomena. The strict metamodeling principle, for example, excludes from the domain of inquiry abstract
notions such as a universal Type or, the even more abstract notion of Thing. We conclude that to support the representation of types
that defy a strictly stratified classification scheme (Feature F4) is an important feature to deal concepts such as Resource, Property,
or Thing, present in scenarios like the Semantic Web [20], ontology engineering [14,19,33], and others.

Structural relations are often employed to support multi-level approaches, as discussed here with the notions of Odell [18] and
Cardelli [17] for powertypes. Being employed in a number of modeling approaches, among which the Unified Modeling Language
(UML) [34], we consider the ability to represent rules that govern the instantiation of related types at different levels (Feature F5) among
the listed features.

In addition to the features supporting the representation of instantiation relations, we also consider features regarding how
properties of classes and individuals reflect the particularities of multi-level modeling in a specific approach. Since these approaches
are characterized for admitting the presence of types as instances of other types, we consider the feature of supporting the
representation of properties (attributes and relationships) of types as well as the assignment of values to their instances (Feature F6).

While in the traditional two-level scheme, types capture invariant properties of individuals, in higher-order types invariant
properties may also constrain properties at lower levels. This feature is frequently present in approaches following the strict
metamodeling principle [22] and is present in ML2 in the form of regularity features. We consider among the list of multi-level
features the ability to support rules relating properties of entities in different levels (Feature F7).

Finally, in various domains, there are relations that may occur between entities of different classification levels [35]. For example,
in Wikidata, the property taxon author (P405) relates a first-order class, such as Lion (Q140), to an individual, which in this case
is Carl Linnaeus (Q1043). Thus, a multi-level modeling language should allow the representation of domain relations between entities
of various classification levels (Feature F8).

6.2. Capabilities of current multi-level modeling approaches

In this section, we position ML2 with respect to the existing work in multi-level representation approaches regarding the list of
features from Section 6.1. We consider the following (multi-level) modeling approaches: UML [34], DeepTelos [7], DeepJava [36],
Melanee [6], M-Objects [5], MetaDepth [8], Kernel [37], OMLM [38], SLICER [39], TOTEM [40], and MultiEcore [41]. Table 3
summarizes our evaluation of the various modeling approaches: a plus sign (+) indicates support for the feature, a minus sign (−)
indicates no support, while plus/minus (±) indicates partial support. This also serves as a comparison to ML2, which implements
all of the listed features.

In the UML 2.5.1 specification [34], a class plays the role of powertype whenever it is connected to a generalization set composed
by the generalizations that occur between a base classifier and the instances of the powertype. Given that generalization sets only
exist when specializations of the base type are modeled, the UML cannot capture simple multi-level models in which instances of
a powertype are omitted. As discussed in [12], this rules out simple models such as DogBreed categorizing Dog, when specific
breeds are omitted. Hence, we consider the UML to only partially support F1. In UML, chains of instantiation of arbitrary size can
be captured by cascading the powertype pattern iteratively (again requiring the use of explicit specializations in generalization sets),
thus partially supporting F2. Further, the UML specification does not provide principles to guide the organization of entities into
(classification) levels. The only rule in UML concerning the consistency of instantiation chains aims at avoiding a ‘‘powertype’’ to
be an instance of itself. Due to this incompleteness, it does not support F3. This very same constraint rules out some orderless types,
such as the type Type. Therefore, we consider that the UML only partially supports F4. We consider that the notion of powertype
in UML corresponds to MLT’s notion of categorization, failing to capture Cardelli’s powertype, since all instances of the powertype
18
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Table 3
Summary o multi-level approaches and their capabilities according to the list of multi-level features.
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F1: represents entities of multi-
ple classification levels ± + + + + + + + + + +

F2: arbitrary number of classi-
fication levels

± + + + + + + + + + +

F3: defines guiding principles
for organization of models − ± + + + + − + ± + +

F4: types that defy a stratified
classification scheme

± + − ± − ± + − − ± ±

F5: represent rules to govern
instantiation of related types ± ± ± − − − − − + − −

F6: represents features and
feature assignments − + + + + + + + + + +

F7: relates features of entities
in different levels

− − ± + − + − − + + +

F8: domain relations between
entities in various levels

− + + − + + + − + + −

must be members of an identified generalization set. Thus, we consider that F5 is only partially supported by UML. Given that
instances of powertypes cannot have values assigned to their features, UML does not support F6, F7 and F8.

DeepTelos is a knowledge representation language that approaches multi-level modeling with the application of the notion of
‘‘most general instance (MGI)’’ [7]. In [42], the authors revisit the axiomatization of Telos and add the notion of MGI to Telos’
formal principles for instantiation, specialization, object naming and attribute definition. The notion of MGI can be seen as the
opposite of Odell’s powertype relation. For example, to capture that ‘‘Tree Species’’ is a ‘‘powertype’’ (in Odell’s sense) of ‘‘Tree’’,
in DeepTelos it would be stated that ‘‘Tree’’ is the ‘‘most general instance’’ (MGI) of ‘‘Tree Species’’. Considering that the MGI
construct allows representing entities in multiple classification levels and that DeepTelos allows representing chains of MGI to
represent as many levels as necessary, we consider that DeepTelos supports features F1 and F2. DeepTelos builds up on Telos, whose
architecture defines the notions of simple class and w-class, which are analogous to the notions of ordered and orderless types we
use. Nevertheless, stratification rules for simple classes (constraining specialization and cross-level relations) are not provided. Thus,
we consider that it partially supports F3 and that it supports F4 with the notion of w-class. Considering that DeepTelos provides only
the concept of MGI to constrain the instantiation of types in different levels, not elaborating on the nuances of the relations between
higher-order types and base types, we consider that it partially supports F5. It supports both the declaration and assignments of
attributes (F6), but it does not include constraints over related attributes at different levels as one of its primitives (F7). Finally,
DeepTelos also allows users to declare relations between entities in different classification levels, thus supporting F8. See [43] for
an in-depth analysis of the relation between DeepTelos and MLT*, in which some of the missing features have been incorporated
into a DeepTelos-based MLT* deductive realization.

DeepJava is an extended version of Java that supports multi-level mechanisms for programming languages [36]. The language
allows the specification of potencies for Java classes and fields along with instantiation for classes. In DeepJava, the potency of
an element denotes the maximum depth of its instantiation chain, or how many times a type can be instantiated. Through this
mechanism, DeepJava is able to define entities at an arbitrary number of classification levels, defining the level on which each
entity sits, thus supporting F1–F3. As the language only accounts for defined potencies with direct instantiation, it does not account
for entities that defy the stratification in levels, not supporting F4. Applying potencies in tandem with specializations, DeepJava
allows representing that all instances of a (higher-order) type specialize another type. Considering that such mechanism maps Odell’s
19
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notion of powertype (and MLT’s notion of characterization), not elaborating on further nuances of the relations between higher-order
types and base types, we consider that it partially supports F5. As a programming language, DeepJava supports references between
any objects in memory, and both feature specification and assignment at any classification level (except at the highest one, since
a pure Java class does not have features to which values can be assigned). However, the only mechanism available for relating
features across levels is potency, which is limited to defining how deep a feature is present in an instantiation chain. Therefore,
DeepJava supports F6 and F8, and partially supports F7.

Melanee [6] is a tool that supports multi-level modeling founded on the notions of strict metamodeling, clabjects and potency. It
is based on the idea of defining clabjects and fields (attributes and slots) within the levels of a strictly stratified scheme (i.e., strict
metamodeling [32]) and assigning to both clabjects and fields a potency, which defines how deep the instantiation chain produced
by that clabject or field can become. This allows Melanee to represent entities in multiple classification levels (F1), organizing
and capturing the instantiation chains allowing an arbitrary number of levels (F2), and providing users guiding principles for the
organization of models (F3). Melanee also defines ‘‘star potency’’ as a means to support the representation of types having instances
f different potencies. While this allows the representation of types that defy a stratified scheme (F4), star potency does not allow
elf-instantiation, which is required for the abstract types we have dealt with here. Therefore, we consider that Melanee partially
upports F4. In Melanee, no constructs are provided to capture rules concerning instantiation of related types at different levels (F5).

For example, it is not possible to represent in Melanee that ‘‘CellphoneModel’’ categorizes (in MLT* sense) ‘‘Cellphone’’, and thus,
it is not able to capture that every instance of ‘‘CellphoneModel’’ must specialize ‘‘Cellphone’’. Further, in Melanee, instantiations
are the only relations that may cross level boundaries and, thus, it is unable to capture certain domain scenarios in which an
entity is related to other entities at different instantiation levels (F6). For example, consider a scenario in which every instance of
‘‘CellphoneModel’’ has a ‘‘designer’’ being an instance of ‘‘Person’’ and every instance of an instance of ‘‘CellphoneModel’’ (i.e., every
instance of ‘‘Cellphone’’) has an ‘‘owner’’ which is also an instance of ‘‘Person’’. Since domain relations in Melanee cannot cross
levels, both ‘‘Person’’ and ‘‘Cellphone’’ must be placed in the same level to capture the ‘‘owner’’ relation. Because its instances
are specializations of ‘‘Cellphone’’, ‘‘CellphoneModel’’ must be placed in one level higher. This makes it impossible to capture the
‘‘designer’’ relation, as it would cross level boundaries (which, once more, is not allowed in Melanee). Concerning domain features,
Melanee supports both the representation of features of types as well as the attribution of values to those features (F7). Finally, the
combination of the notions of attribute durability and mutability [9] allows one to relate features of entities in different levels (F8).
For example, it allows one to capture that instances of ‘‘CellphoneModel’’ prescribe the exact screen size their instances must have.
Note that it supports directly only one of the six types of regularity features covered in ML2 (namely, the one in which the value is
fully determined).

In [5], the authors propose a multi-level modeling approach founded on the notion of m-object. M-objects encapsulate different
levels of abstraction that relate to a single domain concept, and an m-object can concretize another m-object. The concretize
relationship comprises indistinctive classification, generalization and aggregation relations between the levels of an m-object [5].
This approach allows the representation of entities in an arbitrary number of levels relating them through chains of concretize
relationships, we consider that it supports F1 and F2. Given that the approach adopts a stratified schema in which concretize
relationships may only relate types at adjacent levels, we consider that it supports F3 and does not support F4. Further, since the
concretize relationships are the only structural relationships that cross level boundaries, the approach fails to support F5. In [35], the
authors observe that the approach was unable to capture certain scenarios in which there are domain relations between m-objects
at different instantiation levels. To address this limitation, the approach was extended with the concept of Dual-Deep Instantiation,
which allows the representation of relations between m-objects at different instantiation levels through the assignment of a potency
to each association end, thereby supporting F6. Finally, it provides support to represent features of types (F7), but it does not include
support to explain the relationship between attributes of entities in different classification levels (not supporting F8).

MetaDepth is a textual multi-level modeling language founded on the same notions of clabject, potency, durability and star
potency used by Melanee. Differently from Melanee, MetaDepth supports the representation of domain relationships as references,
such that each reference has its own potency (a solution similar to the one adopted in Dual-Deep Instantiation [35]), allowing the
representation of domain relations between clabjects at different instantiation levels. Therefore, MetaDepth supports all the features
Melanee supports, and further supports F6.

Kernel [37] was proposed as a foundation for model-based language engineering. A Kernel class is also an object and, as such,
it can instantiate other classes iteratively, thereby supporting F1 and F2. It supports F4, F6 and F8, since it is rather unconstrained
in order to support the definition of various multi-level modeling mechanisms. Given its focus as an agnostic basis, it does not
aim at directly supporting organization principles, structural rules nor deep instantiation mechanisms (therefore it does not aim
at supporting F3, F5 or F7). Nonetheless, this focus of Kernel allows it to describe others approaches, such as potency-based and
powertype-based approaches.

The Open integrated framework for Multi-Level Modeling (OMLM) [38] is a multi-level approach focused on a strict separation
of concerns between three dimensions: the ontological dimension, concerned with the subject domain; the linguistic dimension,
concerned with the linguistic elements involved in the representation of the domain; and the realization dimension, which focus on
mapping models to a implementation target of choice. By making use of Flora-2 [44], an F-Logic dialect, OMLM supports a clabject-
based representation of multi-level domains, with the advantage of allowing the user to extend the language by adding constructs
and syntactic rules. Originally, OMLM supports the representation of entities in multiple (unbound and related) classification levels,
supporting F1–F3. OMLM, however, in its ontological dimension, does not support types that defy the organization of entities into
levels (F4), solely allowing instantiation relations between adjacent levels. The language also does not support F5, as there are
no other relations besides instantiation for guiding the classification of entities. Attributes in OMLM are considered single-potency
20
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elements, i.e., elements that can be instantiated only once in the ontological dimension. This treatment of attributes is able to support
F6, but not F7, since there is no mechanism for supporting the representation of related features at different levels. In a previous
version of OMLM called MiF [45], the same authors claim that their language does not support cross-level domain relations (F8),
even though can potentially be extended in that sense.

Selway et al. [39] propose the SLICER conceptual framework, which also accounts for multi-level models. SLICER provides to the
user a set of level-aware relations that enable multi-level modeling, such as specializations, instantiations and powertype (‘‘subset by
specification’’) relations. In SLICER, not only instantiation characterizes the transition between levels, but also specialization when
properties are added to a super type. Some rules for levels are provided using these relations. SLICER is able to support F1 and F2
through the definition of entities in an unbound number of classification levels, but we consider it to partially support F3 since the
rules for organization into levels are rather loose (despite being well defined). The rules imposed on specialization and instantiation
prevent some general types such as Type and Thing from being represented (e.g., because of self-instantiation), lacking support to
F4. SLICER is able to support F5 through the Subset-by-Specification relation, which has the same semantics of Odell’s notion of
powertype [18] and includes variations based on complete and disjoint constraints. Finally, the language supports both shallow and
deep instantiation, and does not impose constraints over domain relations between entities of different levels (supporting F6–F8).

TOTEM [40] is a modeling approach consisting of a tool designed for the development of Ecore-based multi-level models. The
goal in TOTEM is to enable the user to harness the available Ecore MDE technologies (e.g., executables as well as constraining
and transformation languages). In order to achieve this goal, TOTEM models are built following the metamodeling principle and
employing a potency-based approach, much like Melanee and MetaDepth. These models may be compiled then (i.e., transformed)
into Ecore meta-models enriched with constraints to preserve their consistency in Ecore’s two-level scheme. TOTEM follows
MetaDepth’s choices for the representation of multi-level models, having similar capabilities in terms of the list of features discussed
here. Therefore, TOTEM support features F1–F3, and F6–F8, while partially supporting F4 due to a limitation in regard to anti-
symmetric instantiation (e.g., Thing as instance of Type), and not supporting F5. This analysis for supported features, however,
considers TOTEM models prior to their compilation, as the user of a model that was compiled into Ecore must be aware of further
representation limitations. For instance, in Ecore, TOTEM’s instantiation relations are transformed into specializations of abstract
classes and, for the perspective of other Ecore technologies, a TOTEM model capturing ‘‘Lion instantiates Species’’ would be
processed as ‘‘Lion specializes Species’’.

Finally, MultiEcore [41,46] is a multi-level approach that enables multi-level modeling in Ecore. MultiEcore approach organizes
models into levels (e.g., M1, M2, M3 and so on) and generates from each level both an Ecore metamodel and an instance model,
capturing class and instance facets of its concepts, respectively. Bidirectional transformations are responsible for keeping a consistent
representation between the different facets in a transparent manner to the user. Following the potency-based approach, MultiEcore
supports features F1–F3, also having the aforementioned limited support of other potency-based approaches to F4 and no support
for F5. In regard to attributes and references, MultiEcore supports F6 and F8, but the constrained usage of potency 1 to attributes
prevents it from supporting F7.

Other authors also propose guidelines for the comparison of multi-level approaches, each having specific considerations, such
s implementation aspects or intended application [40,47,48]. These proposals contribute to the effort of achieving a common set
f characteristics that support the user in selecting an approach suitable for the application at hand.

When evaluated in light of the feature set of [40], for instance, ML2 is recognized for natively supporting a multi-level
epresentation mechanism and deep instantiation [22]. However, ML2 does not support extension mechanisms that allow instances
o include unforeseen properties, a mechanism often necessary in (flexible) language engineering. ML2 opts to require explicit
roperty definition in classes.

. Conclusion

In this paper, we have presented the ML2 multi-level conceptual modeling language. The language harnesses the conceptualiza-
ion formalized in MLT*, reflecting the theory’s definitions in its constructs and syntactical constraints. Rules incorporated in ML2
ave been implemented in an Eclipse-based editor that supports the live verification of models to ensure adherence to the theory.
he use of a formally-verified semantic foundation (employing both Alloy and first-order logics) is one of the distinctive features
f ML2. In fact, the formal techniques were instrumental in the design of the theory and then language. Simulation of the theory
as revealed the various multi-level structures that it supports, in a generalization of the two level scheme. Simulation has also
evealed recurrent patterns that led to the formulation of theorems which in turn were model checked through assertions in Alloy
nd automated provers. In Alloy, these assertions are verified exhaustively by the Alloy Analyzer within a finite scope setting. The
erified assertions formed the basis for the definition of semantically-motivated syntactic constraints for the language.

Over the decade, a number of languages have been analyzed for their adherence to reference theories a posteriori. This has been
ery fruitful to reveal a number of deficiencies in languages, under the banner of ontological analysis [49]. Rosemann, Green and
ndulska argue that a language’s abstract syntax should be isomorphic to their underlying ontology, i.e., there should be a one-to-one
apping between the constructs of a language and the concepts of its ontology. Analyzing this isomorphism reveals issues such as
onstruct overload and construct deficit in a language. In this paper, we have shown that reference theories can have a prominent
ole early in a language’s design cycle, preventing ontological deficiencies from appearing in the first place. The reference theory
s used during language design instead of a posteriori.

The formalization also forms the basis for the simulation and verification of ML2 models, through model transformation from ML2
nto Alloy. This means that multi-level models can profit from the same model simulation and verification available for two-level
21
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models [50]. In our current work, we are extending ML2 and the corresponding transformation to support the specification of OCL
constraints in ML2. This will allow us to specify invariants and derivation rules in ML2.

The language was designed to offer expressiveness to the modeler by addressing a comprehensive set of features for representing
omains dealing with multiple levels of classification. In particular, we have provided support for the representation of types in
lassification schemes that transcend a rigid two-level structure. This means that ML2 is able to capture general types that defy
strictly-stratified scheme, but can still leverage the detection of errors for the so-called ordered types. We have shown that this

upport is key to identifying errors that are not perceived by users in realistic settings. In fact, we have shown that the inclusion of
lasses of a basic scheme for multi-level representation in Wikidata (following OpenCyc [19]) has not been enough to equip users
ith the means for obtaining correct multi-level taxonomies. Instead, additional rules such as those underlying ML2 are required to
nforce adherence to a leveling mechanism, thereby revealing to users the mistakes they inadvertently commit.
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