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Abstract. Conceptual modeling plays a fundamental role to capture
information about complex business domains (e.g., finance, healthcare)
and enables semantic interoperability. To fulfill their role, conceptual
models must contain the exact set of constraints that represent the world-
view of the relevant domain stakeholders. However, as empirical results
show, modelers are subject to cognitive limitations and biases and, hence,
in practice, they produce models that fall short in that respect. Moreover,
the process of formally designing conceptual models is notoriously hard
and requires expertise that modelers do not always have. This paper
falls in the general area concerned with the development of artificial
intelligence techniques for the enterprise. In particular, we propose an
approach that leverages model finding and inductive logic programming
(ILP) techniques. We aim to move towards supporting modelers in iden-
tifying domain constraints that are missing from their models, and thus
improving their precision w.r.t. their intended worldviews. Firstly, we
describe how to use the results produced by the application of model
finding as input to an inductive learning process. Secondly, we test the
approach with the goal of demonstrating its feasibility and illustrating
some key design issues to be considered while using these techniques.

Keywords: Conceptual modeling · Model validation · Inductive
learning · Model simulation

1 Introduction

Conceptual modeling plays a fundamental role in information systems engineer-
ing. In complex and sensitive scenarios (e.g., finance, healthcare), domain models
are paramount in supporting critical semantic interoperability tasks. To fulfill
this role, modelers must be able to systematically produce models that precisely
articulate the worldview of the relevant domain stakeholders [16].

Technically speaking, domain models should only admit instantiations (e.g.,
model interpretations, instance populations) that correspond to state-of-affairs
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that are admissible according to the conceptualizations these models are sup-
posed to represent. However, as empirical results show, modelers are subject to
cognitive limitations and biases, and, in practice, they are often unable to cre-
ate domain models endowed with this property, also due to a lack of expertise
[16,18,19,24,31]. In particular, these results show that such models are often
underconstrained, thus admitting interpretations their designers did not intend.

The issue of repairing underconstrained models has been investigated in
the past [6,9,12], however, none has been able to automatically learn complex
domain constraints yet. Some of us have developed a validation technique that
combines model finding with visual simulation to automatically generate admis-
sible model instances, which one could analyze to manually derive missing con-
straints [1]. In this paper, we combine this technique with a machine learning
algorithm from inductive logic programming (ILP) to automate this process.

With our validation technique, one naturally generates a dataset of allowed
(positive) and forbidden (negative) examples from admissible model interpreta-
tions. By combining this dataset with the constraints already embedded in the
model and feeding them to an ILP learner [2], we can automatically uncover
missing constraints. The main advantage of this approach is that it does not
require modelers to formulate the constraints themselves. Instead, they simply
need to judge whether model interpretations should be allowed or forbidden.

The remainder of this paper is organized as follows. In Sect. 2, by introducing
a running example, we explain how visual model simulation allows us to deter-
mine whether a model is underconstrained. In Sect. 3, we describe our approach,
and, in Sect. 4, we evaluate its capacity to learn complex constraints that would
be needed in practice. In Sect. 5, we discuss related work. Finally, in Sect. 6, we
make some final considerations, including implications to practice.

2 Model Validation

Conceptual modeling is an error-prone activity [31]. Modelers often dedicate
a significant amount of time to testing and debugging their models in order to
increase their reliability [7]. To cope with that, research efforts have been devoted
to devising engineering tools for model validation, which consists of assessing if
a model is: (i) overconstrained, namely, if it excludes interpretations intended by
the modeler; or (ii) underconstrained, namely, if it admits interpretations that
are not intended by the modeler.

Checking if a domain model is overconstrained can be easily represented as a
classical model checking problem, namely, as the activity of verifying whether a
given state of affairs holds in a given model [4]. Take, for instance, the OntoUML1

model depicted in Fig. 1 (a fragment of a model about vehicles and their parts,
which could be used to devise a vehicle dealer knowledge base). Model-checking
allows one to detect whether a given state of affairs like “x is both a wheel and
an engine” violates the logical rules encoded by the model. In this example, it is
1 OntoUML is a version of UML designed in accordance with the UFO foundational

ontology principles and axiomatization [15,17].
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Fig. 1. An OntoUML model on (a subset of) the vehicle dealership domain.

trivial to see that such a state-of-affairs is not allowed2, but that is not always
the case. Nonetheless, if this state-of-affairs was intended by the author of this
model, and yet not allowed by it, the model would be considered overconstrained.
To adjust it, one would need to “relax” it by removing or “weakening” some of
its constraints [33].

Checking whether a conceptual model is underconstrained is another model
validation task, but one that cannot be handled via model checking. It can be
informally expressed as follows: “check if the model only allows instantiations
representing the state of affairs intended by the modeler”. Let us come back to
the example in Fig. 1. Suppose we have a state of affairs like “x is both a car
and a boat, but it is not an amphibious car”. While running model checking, this
statement does not violate the model, but still, the modeler may consider it a
violation of her domain conceptualization.

From now on we use the terms “admitted state of affair”, “configuration”,
and “simulation run” interchangeably, where a simulation run is the result of
an interpretation function satisfying the conceptual model. In other words: if we
take the (Onto)UML diagram of Fig. 1 as a M1-model (in OMG’s MDA sense), a
configuration is a M0-model that could instantiate that M1-model; if we take the
UML diagram as a logical specification, then a configuration is a logical model
of that specification. Finding these valid configurations given a specification is
the classical task performed by a model finder.

While the two aforementioned tasks are both important when validating
conceptual models, there are important differences between them. On the one
hand, the task of checking whether a given state of affairs holds in a given model
can be algorithmically addressed by satisfiability solvers [20]. On the other hand,
as anticipated in [11], the task of identifying what in a conceptual model allows
for an unintended state of affairs, implies that the intended model, which is
assumed to be implicit in the mind of the modeler, is involved in the validation
phase. This enables an empirical process where humans cannot be left outside
the loop. The latter challenge is what we focus on in this paper.

2 In OntoUML, all kinds are mutually disjoint [15].
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Fig. 2. Approach overview.

3 From Model Finding to Inductive Learning

An overview of the proposed approach is summarized in Fig. 2 below. Besides
the domain model M, the ILP process takes as input a list of negative (neg) and
positive (pos) examples, which are elicited by applying model finding. The final
output is a set of logical constraints that can be used by the modeler to complete
the input domain model.

The core steps involved in the approach we envision are like from the pseu-
docode represented in Listing 1. These steps can be grouped into three main
phases, namely the generation, the assertion and the induction phase.

Listing 1. Model Finding and ILP combination process.

Result: Set of logical constraints LM

1 get input conceptual model M ;
2 for conceptual model M do

/* (1) Generation */

3 convert conceptual model into model finder specifications MF ;
4 execute model finding;

5 store simulations files into SM ;

6 for unintended and intended simulations SM admitted by MF do

/* (2) Assertion */

7 combine SM with MF ;

8 elicit positive and negative examples E−/+;

/* (3) Induction */

9 run ILP with E−/+ and M as inputs;

10 store ILP outputs into set LM ;

11 end

12 end

(1) Generation. The first task here is to take a domain model [15] as input
and convert it into a format (see step 3 in Listing 1) so that it can be vali-
dated through model finding. We achieved this by using a compiler that runs
a transformation on the input (OntoUML) model, and relies on the mappings
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proposed by previous work [1]. Here the model is fully converted into a neutral
logical layer3, which is then converted into Alloy [21], an expressive language
for specifying and analyzing structures based on relational logic, which includes
existential and universal quantifiers from first-order logic, operators from set the-
ory (e.g., union, intersection), and relational calculus (e.g., relational join). Alloy
is equipped with a powerful model analysis service that, given a context, gener-
ates possible instances for a given specification (it can also allow model checking
and counterexamples generation). An example of the model showed in Fig. 1
converted into an Alloy specification is available in https://github.com/unibz-
core/Mind-the-Gap/blob/main/CarDL.als. After converting the input concep-
tual model, the Alloy Analyzer APIs are applied to validate the model (step
4 in Listing 1). The analysis is performed to simulate arbitrary instances that
conform to the model constraints. This step requires a definition of the scope
of the analyzer, which consists of the type of concepts to be analyzed and the
number of instances to be produced.

Once a set of configurations is produced (SM in Listing 1), the modeler
can classify them into intended or unintended. For the validation of the model
configurations, we followed the strategy in [31]. If some unintended configurations
are found the process continues, otherwise it terminates (meaning by this that
the input conceptual model is correct according to the modeler scope).

Fig. 3. Example of vehicle parts model simulation.

Figure 3 presents an example of configuration generated out of the model
represented in Fig. 1, with three instances. The colors of the boxes represent the
different kinds of objects involved in the simulation. Notice that “this/...”
refers to a class, and the values “TOPx” refer to its generated instances. So if
TOP2 is marked with this/Car and this/Airplane then this individual is both
a ‘Car’ and a ‘Airplane’ at the same time. This simulation could be, for instance,
annotated as unintended, since we may do not want to allow for a “Car (TOP2)
to be also an Airplane”. Notice that all the output configurations collected in
SM are saved in a file collecting all the information generated through the Alloy
analyzer visualization tool.

3 Currently, the logical layer can be encoded by First Order Logic FOL syntax or by
Description Logic (DL) syntax, covering ALC, SHOIQ, and SROIQ expressivity.

https://github.com/unibz-core/Mind-the-Gap/blob/main/CarDL.als
https://github.com/unibz-core/Mind-the-Gap/blob/main/CarDL.als
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(2) Assertion. Once the set of intended and unintended configurations is gen-
erated, we apply another conversion step. Here we use the trace of the original
domain model as input and all the files of the annotated simulations to cre-
ate a new output. The file generated out of this step is the domain model and
all the instances coming from the intended and unintended simulations. This
is what can be used by the modeler to elicit negative and positive examples.
Each imported configuration, indeed, involves a mix of allowed and proscribed
relations (i.e., particular individuals that instantiate a class in the model). For
example, in Fig. 3, the instance ‘TOP2’ may be proscribed, while ‘TOP1’ may
be allowed. The assertion step allows the modelers to mark which instances in
the unintended simulations represent negative (proscribed) or positive (allowed)
examples. Notice that the plan is to use an ad hoc editor to support the anno-
tation process together with the example set generated in the assertion step.
In particular, we will employ the capabilities embedded in the OntoUML editor
[10] with some additional features, such as i) exploration of Alloy simulations;
ii) simulations annotation; iii) neg/pos example set generation.

(3) Induction. In this phase, the elicited negative and positive examples, along
with the structure of the original conceptual model, are given as input to a
learning system. Considering the scope of this paper, the learning process we set
up must accounts for the ability of identifying missing formal constraints in a way
that is easily accessible to the modeler, which should be able, then, to process
the suggested output and repair the input source model. For this particular
goal, we adopted the CELOE algorithm, an extended version of the OCEL [25]
algorithm. This is considered one of the best available state-of-the-art Inductive
Logic Programming (ILP)[28] options for Class Expression Learning, and has
been applied to a large number of cases [2]. Notice that, multiple ILP algorithms
are available. Accurate analysis and benchmark of the existing options for our
task is out of the scope of this paper, and is part of immediate future work.

An illustrative case of a populated model transformation for this particular
task can be represented as follows (this case reuses the car simulation output of
Fig. 3, along with elicited neg/pos examples):

∗ E+ = {Engine(TOP1), Wheel(TOP0), VehiclePart(TOP1), VehiclePart(TOP0)}
∗ E− = {Car(TOP2), Airplane(TOP2), Vehicle(TOP2)}
∗ PCM = {E+, E−, ∀x.(Airplane(x) → V ehicle(x)), ∀x.(Car(x) → V ehicle(x)),
∀x.(Engine(x) → V ehiclePart(x)), ∀x.(Wheel(x) → V ehiclePart(x)), ∀x.(V ehi-
clePart(x) → ∃y.(V ehicle(y) ∧ isComponentOfV ehicle(x, y)))}
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where E+ represents the set of positive examples, namely the examples that
are admitted by the intended models as well as (e.g., in this case) allowed frag-
ments in unintended models; where E− represents the set of negative examples,
namely those instances that are proscribed in unintended models; and where
PCM (Populated Conceptual Model) represents the model file, with the model
axioms and all its instances along with negative and positive examples. By using
the model, the positive examples and the negative examples, the algorithm is
able to highlight the rule(s) describing the non-admitted instance(s):

∗ Structural error = ∃x.(Car(x) ∧ Airplane(x))
∗ Suggested constraint = ∀x.(Car(x) → ¬Airplane(x))

The axiom identified by the algorithm uncovers that the problem is due to an
overlap between the class ‘Car’ and the class ‘Airplane’. Once possible undercon-
straing problems are uncovered, in order to forbid the unintended instance(s),
the axioms are then simply negated.

4 Evaluation

We evaluate the proposed approach by addressing the two following research
questions: (1) To which extent the proposed combination between model finding
and ILP is able to discover constraints that can be used to avoid unintended
configurations in practice? (2) To which extent the process we propose is able to
produce constraints that are expected?

The first question aims at assessing the feasibility of the approach, namely if
the two technologies together can be used to find useful constraints. The second
question aims at assessing performance issues from a qualitative perspective,
namely if the design choices we adopted in the presented process allow us to
identify the constraints that are expected.

4.1 Setup

Method. To address both questions we ran an experiment involving a simple
example model.4 We take here the general methodological practice employed
in natural sciences of starting with simple models to explore a fuller extent
of the ideas at hand [3]. In this particular case, irrespective of its size, the
conceptual model used in this experiment allows for the investigation of relevant
constraints, which are likely to be needed in practice. For this goal, we used, as
a preliminary “litmus test”5 recurrent modeling issues that appear in models of

4 All data used for the case study described in this section are available for research
purposes at https://github.com/unibz-core/Mind-the-Gap.

5 A litmus test is “a critical indicator of future success or failure”. A is a litmus test
for B if A can be effectively used to measure some property of B [5].

https://github.com/unibz-core/Mind-the-Gap
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all sizes, namely: i) a possible occurrence of completeness error, usually caused
by the difficulty of balancing the flexibility and consistency of the model [24,
26]; ii) a possible occurrence of “or” operator misuse, usually caused by the
overlap between the linguistic and logical usage of “and” and “or” [30] ; iii) a
possible occurrence of imprecise association, usually caused by the fact that the
range of an association is too broad, thus allowing to miss some domain-specific
constraints [31]. The evaluation is performed in a controlled environment, in
which we know in advance the constraints to be learned. The configurations to
be assessed are generated randomly through Alloy, and, to force the analyzer in
creating the unintended configurations, the target constraints were negated.

To answer question (1) we checked whether the approach can learn con-
straints able to avoid occurrences of issues like i), ii) and iii). To answer the
research question (2) we analyzed the process we followed to derive the expected
constraint with 100% accuracy, as the sum of all the true elicited positive exam-
ples and all the true elicited negative examples divided by all the examples.

Data. The model we used in the experiment is the one depicted in Fig. 1. We
firstly highlighted three kinds of error (e) that can be hosted by the input model
and. Secondly, we identified possible target constraints (c). Selected errors and
constraints were paired as follows:

(1.e) “some vehicles are neither cars, boats nor airplanes”
(2.e) “some vehicles are both cars and boats, but not amphibious cars”
(3.e) “some vehicles have no engines”
(1.c) “all vehicles are either cars, boats or airplanes”
(2.c) “all vehicles which are both cars and boats are amphibious cars”
(3.c) “all vehicles have at least one engine”

(1.e) is generated by the fact that the specialization of the class “Vehicle”
is not complete. (2.e) occurs because the class “AmphibiousCars” is taken as a
sub-class of “Car” “or” “Boat” instead of being equivalent to the intersection
between “Car” “and” “Boat”. (3.e) is generated by the fact that the “com-
ponentOf” relation is used at a very abstract level, namely between “Vehicle”
and “VehiclePart”, thus missing the specific constraint between “Vehicle” and
“Engine”. To check whether we are able to learn constraints for avoiding errors
(1.e-2.e-3.e), we ran 15 simulations and collected a total of 17 examples. For
each error, we then created a populated model by selecting the negative exam-
ples highlighting each error and the related positive example. This was in order
to test if we are able to learn the constraints (1.c-2.c-3.c).



72 M. Fumagalli et al.

4.2 Results

Question 1. We firstly highlighted the error (1) by selecting instances of the
concept ‘Vehicle’ that are neither cars, nor boats, and nor airplanes. The output
constraint was the following:

∀x.(V ehicle(x) → (Airplane(x) ∨ Boat(x) ∨ Car(x))) (1)

The rule was straightforwardly derived with 100% of accuracy.6 Secondly, we
selected negative examples highlighting error (2) where the elicited negative exam-
ples were both ‘Cars’ and ‘Boats’, but not ‘Amphibious Cars’. The derived rule was
the following:

∀x.((Boat(x) ∧ Car(x)) → AmphibiousCar(x)) (2)

The output constraint was straightforwardly derived with 100% of accuracy. Finally,
we learned a constraint for defining a target class through a target relation. Here we
highlighted vehicles without an engine as negative examples. The final output axiom
was the following:

∀x.(V ehicle(x) → ∃y.(Engine(y) ∧ isComponentOfV ehicle(y, x))) (3)

Again, the output constraint was derived with 100% of accuracy. The selection of
the target classes for the above trials worked as a scope restriction to focus on the part
of the model we wanted to analyze and repair.

Question 2. The amount of data we generated to identify the target constraints was
relatively small. As anticipated before, we just needed to generate 15 simulations and
17 example instances. The amount of time used to run the transformation steps and
the induction of the constraints was trifling, in the order of few milliseconds. However,
in order to avoid not useful, i.e., noisy, simulations (e.g., simulations with concepts,
such as ‘Wheel’, which are not related to the errors), during the model finding step,
we had to manage the scope of the analyzer. Moreover, before learning the expected
constraints with 100% accuracy we had to go through each input populated model
and identify possibly conflicting negative/positive examples. For instance, in order to
learn rule (1), we had to exclude negative examples highlighting other possible errors.
By running the first trial we got indeed 66% for the target constraint rule. This was
because we firstly selected a total of 6 examples, which, with the provided annotation,
returned 4 true positive examples, two false-positive examples, and, accordingly, 2
false-negative examples and 4 true negative examples. The two ‘outliers’ (annotated
as negative examples) in this case, were selected to avoid overlapping issues (e.g., a
‘Vehicle’ which is both an ‘Airplane’ and a ‘Boat’, thus allowing for a negative and a
positive example for both ‘Airplane’ and a ‘Boat’), which were not directly connected
to error 1.e.

6 Notice that the output provided by the applied algorithm can be taken as a rule
composed by axioms encoded in Description Logic (DL) or manchester owl syntax
(www.w3.org/owl2-manchester-syntax/), and in order to map the output into FOL
language, a further mapping must be applied. For instance, the output resulting
from the conjunction of the first three axioms provided as solution by the algorithm
applied for the rule (1) above was: (V ehicle � ((Airplane) 	 (Boat) 	 (Car))).

https://www.w3.org/TR/owl2-manchester-syntax/
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Fig. 4. Number of trials and accuracy trends.

Figure 4 shows the trials we run, for each rule, to get 100% accuracy. The chart
shows how the deletion of the given outliers improves the accuracy of the learning task
(for sake of clarity we showed the improvement by deleting an example per trial). The
conclusion we can draw from this experience is that, in order to get the best from
the learning task and allowing the modeler to decrease the effort of trial-and-error
activities, a set of formal guidelines for the annotation and the ILP set-up must be
provided (for instance, processing sub-fragments of the model, focusing on associations
and generalization relations separately, deleting irrelevant instances, minimizing the set
of examples). The definition of these guidelines will be part of the immediate future
work.

4.3 Threats to Validity

As for any experimental evaluation, some threats can affect the validity of our findings.
These threats are mainly concerned with the generalization of the observed results to
a real-case scenario.

Firstly, we did not account for random annotation. In this experiment, indeed,
the errors we found in the configurations were generated by knowing in advance the
rules to be learned. The main focus here is on assessing whether the given approach
is valid in learning the selected repairing solutions. In order to check the types of
rules that can be learned when the modeler does not know in advance the required
output, an experiment considering a larger population of modelers and, possibly, a
larger set of conceptual models should be conducted. Moreover, to make the approach
usable by teams of engineers that may vary in size and complexity, the proposal must be
evaluated across a breadth of annotation data sets, both varying in size and complexity,
to also provide a precise assessment of the limits of the new technique. Secondly, in
the experiment we did not compare the observed results with what could be obtained
by using alternative ILP algorithms. We recognize that the approach could potentially
benefit from assessing different algorithms in terms of what types of rules can be learned
(or not) and how efficiently they can be learned. We intend to do this as future work
after gathering more data from concrete models in different domains.

5 Related Work

Model Validation. Our work builds primarily upon the large amount of work done
in the recent years on conceptual model validation. [1] proposed a solution to assess
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conceptual models defined in OntoUML by transforming these models into Alloy spec-
ifications. Similarly, [32] devised a methodology to test the conceptual models semantic
quality, in terms of correctness and completeness, which is based on the generation of
automated conceptual test cases [23]. The approach presented in [13] is also related to
what we propose. Here the solution is based on the application of a system, namely the
USE system, that allows for a model-driven validation of UML models and OCL con-
straints, by generating multiple instances of the model, or snapshots. These snapshots,
like the Alloy simulations, can be then assessed by the modeler to detect overcon-
straining and underconstraining issues. The recent work described in [14], even if from
a higher-level perspective, is related to our proposal as well. There, the main goal is
to formalize the process by which modelers analyze and modify the model as a sort
of “dialogue”, which must be iterated in order to better identify and capture the final
intended worldview.

Compared to these key works, the main difference in our approach is the exploita-
tion and the integration of model finding and statistical relational learning techniques,
like ILP, in order to identify refactoring solutions.

Constraint Learning. Our work can be also placed in the general research area
of constraint learning for conceptual models. In this respect, of direct relevance to our
effort on using the validation process to then infer model constraints, is also the work in
[29]. This approach aims at identifying and solving possible (UML) model design flaws,
by exploiting model finding and adopting constraint logic [22]. Similarly, the work in
[9] proposes a genetic algorithm [27] in order to generate Object Constraint Language
(OCL) invariants from examples. Moreover, the work in [6] propose an approach to
infer OCL invariants from valid/invalid snapshot by checking the relevance of the gen-
erated outputs. Another work that is close in spirit to ours is discussed in [18,31],
where the main goal is to efficiently identify recurrent error-prone structures across
conceptual models and then manually uncover possible missing constraints. Compared
to these pivotal works, the main difference in our approach are the following: i) we
employ ILP (as opposed to CSP as, e.g., in [6]) to address the constraint learning
problem. As discussed in [8], there might be some relevant advantages in addressing
CSP problems from an ILP perspective; ii) we support multiple representational lan-
guages for the input conceptual model to be assessed and repaired, namely, OWL,
UML and OntoUML (approaches like the ones present in [6,27], for instance account
for UML models only). In fact, our aim is to build an infrastructure for learning: a)
ontological constraints such as the ones expressible in OntoUML [15]; b) anti-patterns
for that language [31]; iii) we provide a set-up of the model finding facility that can
be used to curate a database of positive and negative examples for conceptual models,
covering different application domains. In fact, our approach seamlessly leverages and
extends on the existing methodological and computational support for model validation
via visual simulation (visual model finding) provided by the OntoUML toolset [1,10].
In that sense, it requires less intrusive manual interventions for eliciting and curating
examples and counterexamples than, for example, [6].

6 Discussion

In the sequel, we discuss the implications of this novel approach. Moreover, by iden-
tifying the limitations of our current setting, we also discuss opportunities for future
work.
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Implications. A first central implication is that the proposed approach can support
the modelers in better exploiting the analysis they run with the model finding model
simulator. Indeed, by collecting and annotating the simulations generated through the
application of the model finder, a large data set of intended/unintended simulations
can be generated, and then (re-)used to derive possible repair options. This can be
taken as a backup facility that allows storing and keeping track of information that
may be lost during the run-time analysis.

Secondly, another key point is that, by enabling modelers to generate populated
models with a related set of elicited negative/positive examples, the proposed frame-
work paves the way to a large number of case studies, especially on the application
of different learning approaches, to identify constraints, or to address other tasks that
can support the conceptual modeling activities (like for instance the identification of
unintended instances across models, exploiting the annotation of previous activities).
In the current setting, we adopted one single algorithm, but the same algorithm can be
tuned in multiple ways and can produce different kinds of outputs. A benchmark of the
available technologies and the possible configurations is out of the scope of this paper,
but it is still a pivotal research issue, especially to check what kind of constraints can
be learned and how easily they can be understood and reused to repair the model.

Thirdly, by adopting ILP the constraint learning task can leverage on a very small
amount of data. Similarly, relying on ILP allows inducing human-understandable logical
rules. Still, this does not prevent us to exploit a much larger amount of data. Even just
by applying the CELOE algorithm, we selected, indeed, we can measure the accuracy
of each derived rule, thus leveraging the feedback provided by multiple annotations
and/or users.

Fourthly, the application of the automated steps of the framework, see for instance
the conversion of the conceptual model into Alloy specifications, or the automatic
identification of possible erroneous axioms, along with the suggestion of possible repair
solutions, return to be useful allies in the conceptual modeling process. While they
cannot be seen as alternatives to most of the modelers’ activities, still they can be
seen as useful means for improving the efficiency of some key steps. For instance, the
modeler does not need to know how to encode its model into Alloy specifications, or she
can start from a set of multiple repair suggestions, before deciding how to change the
source model, this being particularly helpful in a scenario with very complex models,
or involving non-expert (i.e., novice) modelers.

Limitations. Applying the presented framework over OntoUML configurations, and
then learning more complex constraints is our long-term objective and it triggers the
agenda for the immediate future work. In order to achieve this goal, with the current
set-up, there is still a gap that needs to be bridged.

The model in Fig. 5 provides an example of one of the problems that we may want to
address in the future, but that cannot be solved without human intervention with our
current approach. In this model, while ‘Purchase’ defines a certain kind of relationship
(i.e., “Relator”, according to the OntoUML terminology), ‘Buyer’ and ‘Seller’ repre-
sents two roles that can be played by instances of the kind ‘Person’. Supposing that we
run a simulation by reducing the scope to ‘Purchase’, ‘Buyer’, ‘Seller’ and ‘Purchasable
Item’, it is possible to have an instance that is involved as both a ‘Buyer’ and ‘Seller’
in the same ‘Purchase’ relationship. An example of an unintended simulation that can
be generated would be then when an instance of ‘Purchase’ (suppose this/TOP0) is the
source of both ‘involvesSeller’ and ‘InvolvesBuyer’, and these relations have the same
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instance (suppose this/TOP1) as the target. The constraints to be learned to avoid this
problem can be then represented by the formula (4) below.

∀x.y.z((Purchase(x) ∧ involvesBuyer(x, y) ∧ involvesSeller(x, z)) → y 
= z) (4)

Fig. 5. An extension of the OntoUML model represented in Fig. 1.

Currently, we are not able to learn the exact constraints for this type of error.
This is primarily due to the fact that the algorithm we selected is limited to DL
expressivity. CELOE, indeed, is an efficient solution if the goal is to support modelers
in constructing models and resources, used to devise, for instance, reasoning systems,
or Semantic Web applications. Moreover, it is widely applied in a lot of ontology
engineering case studies and it is also implemented as part of the DL-learner framework
[2]. Still, learning complex rules, such as (4), is out of the scope of this algorithm and,
hence, will require the investigation of complementary ILP approaches. Moreover, this
kind of more complex problems brings challenges for the annotation step. We may
have cases, indeed, where to highlight a possible problematic structure we may need to
annotate as negative multiple instances involved in multiple relations, thus increasing
the level of complexity of the learning process, and affecting the accuracy of the output.

Another key observation is that, while the proposed approach aims at supporting
the conceptual modelers through the automatization of some steps of the engineering
activities, humans still need to be in the loop of the process. Since the approach aims at
making explicit unintended models, the only way to collect this information is, indeed,
to leverage on the feedback of the modeler, and to manually annotate the simulations.
The key aspect here is that we offer a facility to collect data about this (often tacit)
information. Moreover, the output provided by the ILP algorithm still needs to be
interpreted by the modeler. Depending on the applied set-up, different outputs can be
provided, and each output can be used in different ways. Similarly, constraints with
different levels of restriction can be learned, and the choice of what axiom to be selected
depends on the modeler’s goals. For instance, with the current set-up, instead of the
constraint presented by formula (4), we can learn the following constraint:

∀x.(Purchase(x) → ¬∃y.z.(involvesBuyer(x, y) ∧ Seller(y)

∧ involvesSeller(x, z) ∧ Buyer(z))
(5)
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The above rule implies, indeed, a stronger restriction as it makes the roles ‘Seller’
and ‘Buyer’ disjoint (while formula (4) only requires that they are not played by the
same person in the scope of the same Purchase). For this reason, for constraints that
depart from DL expressivity such as (4) we consider the ILP output as “repair sug-
gestions”, i.e., the learned constraints must be checked and eventually adapted by the
modeler. This strategy of providing partial solutions that are then adapted by the
modeler was successfully employed for anti-pattern rectification in [31].

7 Conclusion and Perspectives

This paper makes a contribution to the theory and practice of (ontology-driven) con-
ceptual modeling diagnosis and repair by: i) presenting a framework to combine model
finding and ILP, in order to support model validation; ii) presenting a practical solu-
tion to generate and exploit multiple simulations for any given (Onto)UML conceptual
model, thus allowing its analysis and annotation; iii) presenting a practical solution to
learn constraints from the annotated simulations output. Adopted data and processes
are available at /unibz-core/Mind-the-Gap and /unibz-core/gufo2alloy, respectively.

Based on the presented results, as future work, we plan to evaluate our approach
over different OntoUML models, encoding errors with a higher level of complexity, thus
uncovering also recurrent errors across models and related constraints. This involves
both practical and theoretical research that examines the impact of various algorithms
on the learning goal, as well as the generation of a data set of annotated simulations
coming from different OntoUML models.
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