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Abstract—The Graph-Massivizer project, funded by the Hori-
zon Europe research and innovation program, researches and
develops a high-performance, scalable, and sustainable platform
for information processing and reasoning based on the massive
graph (MG) representation of extreme data. It delivers a toolkit
of five open-source software tools and FAIR graph datasets
covering the sustainable lifecycle of processing extreme data as
MGs. The tools focus on holistic usability (from extreme data
ingestion and MG creation), automated intelligence (through
analytics and reasoning), performance modelling, and environ-
mental sustainability tradeoffs, supported by credible data-
driven evidence across the computing continuum. The automated
operation uses the emerging serverless computing paradigm for
efficiency and event responsiveness. Thus, it supports experienced
and novice stakeholders from a broad group of large and
small organisations to capitalise on extreme data through MG
programming and processing.

Graph-Massivizer validates its innovation on four complemen-
tary use cases considering their extreme data properties and
coverage of the three sustainability pillars (economy, society,
and environment): sustainable green finance, global environment
protection foresight, green AI for the sustainable automotive
industry, and data centre digital twin for exascale computing.
Graph-Massivizer promises 70% more efficient analytics than
AliGraph, and 30% improved energy awareness for extract,
transform and load storage operations than Amazon Redshift.
Furthermore, it aims to demonstrate a possible two-fold im-
provement in data centre energy efficiency and over 25% lower
greenhouse gas emissions for basic graph operations.

Index Terms—Extreme data, graph processing, serverless com-
puting, sustainability

I. INTRODUCTION

In 1736, mathematician Leonhard Euler solved the problem

of traversing the seven bridges of Königsberg through a

nascent form of graph theory [1]. It took nearly one hundred

years until physicists like Gustav Kirchhoff combined graph

theory with computational techniques to formulate the fun-

damental laws of modern electrical circuits and engineering.

Pioneering solutions and discovering new problems succeeded

rapidly, and today thousands of computational methods (algo-

rithms) and findable, accessible, interoperable, and reusable

Graph-Massivizer project receives funding from the Horizon Europe re-
search and innovation program of the European Union.

(FAIR) graph datasets exist. However, current computational

capabilities fail when faced with the extreme scale of existing

graph datasets and their complex workflow. Even for known

solutions, an average graph application can exceed one hun-

dred years to complete on an average computer, threatening

to offset the benefits of this technology for most use cases.

The use, interoperability, and analytical exploitation of

graph data are essential for the European data strategy. Graphs

or linked data are crucial to innovation, competition, and

prosperity and establish a strategic investment in technical

processing and ecosystem enablers. Graphs are universal ab-

stractions [2] that capture, combine, model, analyse, and pro-

cess knowledge about real and digital worlds into actionable

insights through item representation and interconnectedness.

For societally relevant problems, graphs are extreme data that

require further technological innovations to meet the needs of

the European data economy. Digital graphs help pursue the

United Nations Sustainable Development Goals (UN SDG)
by enabling better value chains, products, and services for

more profitable or green investments in the financial sector and

deriving trustworthy insight for creating sustainable communi-

ties. All science, engineering, industry, economy, and society-

at-large domains can leverage graph data for unique analysis

and insight, but only if graph processing becomes easy-to-use,

fast, scalable, and sustainable.

The Graph-Massivizer project funded by the Horizon Eu-

rope research and innovation program of the European Union

investigates a high-performance, scalable, gender-neutral, se-

cure, and sustainable platform for multilingual information

processing and reasoning based on the massive graph (MG)
representation of extreme data in the form of general graphs,

knowledge graphs and property graphs. They integrate patterns

and store interlinked descriptions of objects, events, situations,

concepts, and semantics. Graph-Massivizer supports the any-

volume graph challenge by supporting up to billions of vertices

and trillions of edges. It tackles the velocity graph challenge

of dynamically changing topologies and proposes a novel

viridescence graph challenge for sustainable processing at

scale. The support for extreme data extends existing graph
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processing technological capabilities by orders of magnitude

for at least one “V”-characteristic in four use cases.

The project delivers the Graph-Massivizer toolkit of five

open-source software tools and FAIR graph datasets covering

the sustainable lifecycle of processing extreme data as MG.

The tools focus on holistic 1) usability (starting from extreme

multilingual data ingestion and MG creation), 2) automated

intelligence (through analytics and reasoning), 3) performance

modelling, and 4) environmental sustainability tradeoffs sup-

ported by credible data-driven evidence 5) across high-perfor-

mance computing (HPC) systems and computing continuum.

The automated operation based on the serverless computing

paradigm [3] protected by state-of-the-art cybersecurity mea-

sures supports experienced and novice stakeholders from a

broad group of large and small organisations to capitalise on

extreme data through MG programming and processing.

The Graph-Massivizer integrated toolkit proposes ambitious

technological breakthroughs in line with the Horizon Eu-
rope Strategic Plan and data strategy, providing a unique,

fundamental building block in its target green and digital

transformation. The project leverages the world-leading roles

of European researchers in graph processing and serverless

computing. It uses leadership-class European infrastructure in

the computing continuum, from pre-exascale HPC facilities to

local computing clusters with state-of-the-art networking and

in-place cybersecurity capabilities. Graph-Massivizer validates

its innovation on four complementary use cases considering

their extreme data properties and coverage of the sustainability

pillars: economy, society, and environment. It also leverages

leadership-class graph datasets from Europe, such as the

LOD Laundromat [4], the most extensive FAIR collection of

knowledge graphs worldwide with 38 billion facts and rules.

II. GRAPH-MASSIVIZER CONCEPT

Graph-Massivizer researches and develops a novel inte-

grated toolkit for sustainable development and operation of

MG processing on extreme data (see Figure 1).

The graph operational layer facilitates generating, trans-

forming, and manipulating extreme data through basic graph
operations (BGO), comprising graph creation, enrichment,

query, and analytics.

a) Graph creation: implemented by the Graph-Inceptor

tool translates extreme data from various static and event

streams or follows heuristics to generate synthetic data, persist

it, or publish it within a graph structure.

b) Graph enrichment, graph query, and graph analytics:
are three BGO implemented by the Graph-Scrutinizer tool.

They analyse and expand extreme datasets using probabilistic

reasoning and machine learning (ML) algorithms for graph

pattern discovery, low memory footprint graph generation, and

low latency error-bounded query response. The output is a new

graph, a query, or an enriched structured dataset.

The graph processing layer provides sustainable and

energy-aware serverless graph analytics on the underlying

heterogeneous HPC infrastructure, following three phases.

Fig. 1. Graph-Massivizer conceptual architecture.

c) Graph workload modelling and optimisation: repre-

sented by the Graph-Optimiser tool, analyses and expresses

graph processing workloads into a workflow of BGO. It

further combines parametric BGO performance and energy

models with hardware models into accurate performance and

energy consumption predictions for the workload running on

a given multi-node, heterogeneous infrastructure of CPUs,

GPUs, and FPGAs. The predictions indicate the most promis-

ing combinations of BGO optimisations and infrastructure,

i.e., a codesigned solution for the given workload while

guaranteeing its performance and energy consumption bounds.

d) Sustainability analysis: implemented by the Graph-

Greenifier tool, collects, studies and archives performance and

sustainability data from operational data centres and national

energy suppliers on a large scale. This phase simulates multi-

objective infrastructure sustainability profiles for operating

graph analytics workloads, trading off performance and energy

(e.g., consumption, CO2, methane, greenhouse gas (GHG)

emissions) metrics. Its ultimate goal is to model the impact

of specific graph analytics workloads on the environment for

evidence-based decision making.

e) Serverless BGO processing: implemented by the

Graph-Serverlizer tool, uses performance and sustainability

models and data from the previous phases to deploy serverless

graph analytics on the computing continuum. It relies on

novel scheduling heuristics, infrastructure partitioning and

environment-aware processing for scalable orchestration of

serverless graph analytics with an accountable performance

and energy consumption tradeoff.

The hardware infrastructure layer considered by Graph-

Massivizer consists of geographically distributed data centres

distributed across the Cloud HPC, mid-range Fog, and low-

end Edge computing continuum. A data centre is a collection

of nodes connected through high-performance networks. A
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node represents a heterogeneous set of tightly coupled de-

vices comprising commodity multiprocessors and specialised

accelerators such as GPU or FPGA.

III. GRAPH-MASSIVIZER ARCHITECTURE

Graph-Massivizer researches and develops an modular ar-

chitecture of five integrated tools, presented in this section.

A. Graph-Inceptor: Extreme Data Ingestion, Massive Graph
Creation, and Storage

The Graph-Inceptor tool consists of two graph creation and

storage components, detailed below.

a) Graph creation: consists of a series of data extract,

transform and load conversions into graph data, parameteriz-

able graph generators and techniques to stream the data to an

endpoint or persist it to the graph storage. The ingested data

undergoes a use case-specific preprocessing phase, comprising

multilingual data reported in 100 languages. The ingestion

supports batch and streaming, posing additional challenges

related to data generation velocity. Graph-Massivizer envis-

ages a solution compatible with Apache Spark, offering highly

scalable processing capabilities with low latency. The graph

creation phase consumes raw data or uses insights from the

Graph-Scrutinizer tool to enrich the graph further.

b) Graph storage: generates complementary graph

views covering two types of graphs: RDF graphs [5] mod-

elling semantic aspects of the data and labelled property
graphs addressing data modelled with edge properties. RDF-
star graphs [6] logically unify the two views and cover most

real-world use cases. Graph storage is a flexible component

that stores data in multiple formats, depending on the graph

and processing requirements. Moreover, it converts the data

into a different form when repeating analytics requires switch-

ing from edge-centric to node-centric storage. Graph-Inceptor

uses information from Graph-Scrutinizer to predict the type of

ingested data, optimise the ingestion, and distribute the graph

to the geographical locations where computational analytics

occur. Data redundancy handled at the filesystem level ensures

replication, fault tolerance and consistency across the nodes.

B. Graph-Scrutinizer: MG Analytics and Reasoning

The Graph-Scrutinizer tool exploits MG using analytics,

querying, sampling, and probabilistic reasoning.

a) Graph analytics and querying: use statistical and ML

models to provide critical insights for each use case. On top

of the graph algorithms and ML models, Graph analytics

supports arbitrary user queries to gain insights into facts and

patterns observed in the graphs. This component builds on top

of open-source software with proven distributed processing

capabilities, such as Apache GraphX, to enable extreme data

computation (i.e., billions of edges). Graph-Scrutinizer creates

compatibility with PyTorch Geometric to scale ML models

such as neural networks and other embedding approaches

and integrates summarisation approaches to scale approximate

reasoning techniques to these MG.

b) Graph sampling: optimises the analysis or query on

a data subset depending on the operation type. The graph

sampler supports a wide range of graph sampling strategies,

such as random walks, meta path, node degree distribution,

topK, edge weight, or pruning ones, such as the k-core

graph. These techniques retain critical information from the

original graph but reduce the size such that the analysis

becomes feasible on small-scale infrastructure. Furthermore,

they enable sophisticated analytics with a slight loss in preci-

sion [7] or lower energy consumption. While such results are

probabilistic, scientific literature shows the insights are close

to those obtained by processing the whole graph.

c) Probabilistic reasoning: provides capabilities to en-

rich MG with expanding extreme data sets, enable transparent

graph queries, and provide insights into the underlying un-

certain knowledge valuable to the stakeholders. For this pur-

pose, it uses ML algorithms for graph pattern discovery, low

memory-footprint graph generation (with no materialisation),

real-time query latency, and error-bounded query response.

d) Graph enrichment: materialises persistent insights

obtained through analytics or probabilistic reasoning into the

graph and makes them available without repeated computa-

tion. Successive enrichments enlarge the information explicitly

encoded in the graph, discover new patterns, and provide a

rich ground for further analytics and reasoning.

C. Graph-Optimizer: Workload Modelling with Performance
and Energy Guarantees

The Graph-Optimizer tool uses optimised BGO and com-

position rules to capture and model the workload. It further

combines the workload model with hardware and infrastruc-

ture models, predicting performance and energy consumption.

Combined with design space exploration, such predictions

select codesigned workload implementations to fit a perfor-

mance objective and guarantee their runtime bounds.

a) Hardware models: They capture the BGO-relevant

hardware operations (H-Ops) per device (CPU, GPU, FPGA),

including memory latency, bandwidth, throughput for ba-

sic arithmetic operations, or I/O communication bandwidth.

Newly designed, specialised microbenchmarks determine run-

time and energy costs for H-Ops.

b) Graph processing workload models: All BGO and

composition rules model sequences of H-Ops. Graph-

Optimizer proposes a formalism to express workloads combin-

ing BGO in sequences of H-Ops through composition rules,

following ideas like GraphBLAS [8] and GBTL-CUDA [9].

Graph-Optimizer generates different workload designs and the

corresponding models using automated design-space explo-

ration and selects promising designs for implementation (via

semi-automated code generation), upscaling, and deployment

using workload prediction.

c) Workload execution prediction: Workload (i.e., H-Ops

sequences) and hardware models (i.e., H-Ops costs) combined

in the presence of data models for the actual inputs can predict

the performance and energy consumption on heterogeneous

(multi-node, multi-device, heterogeneous) infrastructures.
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Fig. 2. Graph-Massivizer technical architecture.

D. Graph-Greenifier: Sustainable and Energy-aware Massive
Graph Processing

The Graph-Greenifier tool provides sustainability analysis

and decision-making capabilities for extreme graph processing

workloads. It aims to inform providers and consumers on op-

erational sustainability aspects, requiring mutual information

sharing, reducing the energy consumption for graph analytics,

and increasing the use of electricity from renewable sources.

Graph-Greenifier has four design components.

a) Monitoring: Graph-Massivizer identifies relevant sus-

tainability metrics based on extensive state-of-the-art analysis

and establishes effective means to monitor and calculate them

depending on installed measurement capabilities. For example,

it uses software energy counters where hardware counters and

power meters are unavailable and deploys the infrastructure to

collect and archive these metric calculations.

b) Power grid data interface: Graph-Greenifier auto-

mates data gathering based on the offer and price of elec-

trical energy on the open market and its energy source and

greenness. It uses monitoring data from local data centre

operators such as the SURF operational dataset [10], availabil-

ity insights from cloud operators and third-party aggregators

of user reports such as Outage Report1, and energy- and

sustainability-related data published by national infrastruc-

tures such as the EU-wide ENTSO-E (https://www.entsoe.eu/)

transparency platform or the Dutch national data source (https:

//energieopwek.nl/) coupled with credible energy-consumption

analyses such as those provided by national statistics bureaus.

c) Work-driven simulation toolchain: Graph-Greenifier

utilises and extends the OpenDC [11] simulator, encompassing

public information from national energy suppliers to model

the impact of graph processing on the climate and, therefore,

society. The simulator uses the selected sustainability indica-

1https://github.com/atlarge-research/outage report characterization

tors, such as carbon footprint, CO2 and methane emissions

calculated by the sustainability predictor, to estimate the

impact of different scenarios.

d) Sustainability predictor: Graph-Greenifier extends

and upscales Graph-Optimizer’s predictions to rank graph

processing scenarios based on performance, energy efficiency

and sustainability at scale. Data centre operators use this

ranking to choose the most sustainable operational procedures

at runtime, with the help of Graph-Serverlizer that steers the

workload to more appropriate infrastructure resources. The

process is transparent and evidence-based.

e) Sustainability benchmark: Graph-Greenifier proposes

a sustainability benchmark providing runtime energy labels,

including information about energy sources derived from data

centres and energy operation models. Graph-Greenifier cre-

ates a closed monitoring loop, encompassing simulation and

estimations of the emitted GHG pollutants for performing the

BGO processing. The GHG estimates engage the data centre

operators and other stakeholders in meaningful dialogues for

reaching informed graph processing decisions with reduced

impact on the environment.

E. Graph-Serverlizer: Scalable Serverless Graph Analytics
over a Codesigned Continuum Infrastructure

The Graph-Serverlizer tool encapsulates BGO as serverless

functions and automates their deployment on the computing

continuum according to the performance and sustainability

metrics and labels communicated by Graph-Optimizer and

Graph-Greenifier. The serverless technology allows deploying

BGO with minimal operational delay and reduced “pay-as-
you-go” financial cost. Furthermore, it lessens the burden

on developers by providing transparent runtime management.

Graph-Serverlizer has three components.

a) Similarity resource partitioner: Graph-Serverlizer

employs a three-step approach that partitions the underlying
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infrastructure nodes by considering the resources, I/O, and

network BGO requirements. It first applies resource extraction

to identify HPC, Cloud and Edge codesigned infrastructure

nodes’ characteristics based on resource types, such as pro-

cessing cores, memory, storage, and energy consumption.

Next, the multilayer infrastructure facilitation clusters the

infrastructure nodes comprising specialised hardware (GPUs,

FPGAs) requested by the Graph-Optimizer design(s) in re-

source layers based on their topological (betweenness central-

ity) and similarity relationships between the related resources.

Finally, the layer partitioning clusters each resource layer of

the multilayer infrastructure in disjoint resource partitions of

nodes with similar resource types, including operational delay,

sustainability, and energy consumption metric.
b) Sustainable BGO function operation: Graph-

Serverlizer targets three BGO function operation phases,

considering heterogeneous resources and sustainability

profiles. Firstly, feature partitioning identifies nodes with

similar features, cost and sustainability characteristics to the

resource requirements of the BGO encompassed as functions.

Afterwards, function scheduling allocates appropriate virtual

instances within the nodes of the same feature partition

and highly connected network layer partition based on

the performance and sustainability metrics provided by

Graph-Optimizer. Graph-Serverlizer envisions a scheduling

algorithm inspired by matching theory opposing two

conflicting players (i.e., BGO and hardware nodes), bounded

by the sustainability metrics provided by Graph-Greenifier.
c) BGO serverlization: implements function wrapping

techniques for BGO and the required execution libraries for a

set of serverless platforms, such as OpenWisk or Lambda.
d) Cybersecure deployment: addresses runtime aspects

of the serverless functions and provides elastic and scalable

deployment of the BGO while minimising the operational

costs. It further features real-time sustainability analysis and

automated decision-making with a reduced negative impact

on the environment. Graph-Serverlizer employs state-of-the-

art security and privacy mechanisms [12] installed at the use

case providers to protect against malicious attacks.

IV. GRAPH-MASSIVIZER USE CASES

Graph-Massivizer selects four real-world use cases (UC)
with complementary economic, social, and environmental

sustainability profiles. They need to tackle complementary ex-

treme data processing and massive graph analytics challenges,

going order of magnitude beyond big data in at least three

“V”-characteristics each. Graph-Massivizer proposes a novel

“V”-characteristic called “Viridescence”, representing the sus-

tainability of processing extreme data from an environmental

perspective. Table I summarises seven V-characteristics en-

hanced from “big-to-extreme” dimensions and their balanced

distribution across the four use cases.

A. UC-1: Green and Sustainable Finance
Green finance focuses on financial products, investments,

and services that channel investment into green-focused com-

panies. Green finance comprises green bonds, green lending,

TABLE I
“BIG-TO-EXTREME” V-CHARACTERISTIC ENHANCEMENTS IN

GRAPH-MASSIVIZER USE CASES.

Volume Velocity Value Veracity Variety Viscosity Viridescence
UC-1 � � � �
UC-2 � � � �
UC-3 � � � �
UC-4 � � � �

and green equity investment. Green finance aims to achieve

economic growth while reducing pollution and GHG emis-

sions, reducing waste, and improving efficiencies. Sustain-

able finance considers environmental, social, and governance

(ESG) factors for investment decisions leading to long-term

sustainable economic activities and projects. UC-1 focuses

on improving and optimising green investments and trading,

facing significant barriers. Existing historical securities’ data,

particularly on ESG data (starting from the early 2010s), is

not enough for in-depth, massive volume testing, de-risking

financial algorithms and training ML models due to erroneous,

scattered, unavailable, proprietary, incomplete, or expensive

data. The ever-growing complexity of novel ML-driven fi-

nancial algorithms that require much data for advanced ML

training and simulations further amplifies the data scarcity.

Therefore, a common practice is using one historical record

per security to optimise a financial strategy. However, a

financial model that overfits the training data shows good

returns and low risk but can deliver disastrous financial losses

in live trading. Few ML insurance policies are commercially

available and considered risky as they do not cover ML losses.

a) Synthetic Financial Data Multiverse: Graph-

Massivizer aims to remove the limitations of financial data

providers (low volume, accessibility, high costs) by enabling

semi-automated creation of realistic and affordable synthetic

extreme financial data sets, unlimited in size and accessibility.

Financial companies use the financial multiverse for improved

ML-based green investment and trading simulations, free

of critical biases such as prior knowledge, overfitting, and

indirect contaminations due to present data scarcity.

Fig. 3. UC-1: green and sustainable finance.

b) Methodology: UC-1 (Figure 3) defines a financial
MG (F-MG) as a hybrid metadata structure representing time-

series, text, values, boolean and monetary taxonomies. On

top of it, it researches novel financial algorithms and testing

methodology operating in five steps: 1) map the historical
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financial data structure into an F-MG; 2) generate synthetic

data using the graph that preserves the original historic data

statistical features; 3) interpolate missing data (e.g. gaps,

errors) using ML-based inference and reasoning; 4) simulate

various green financial investment and trading, and 5) recom-

mend the “greenest” investments and trading opportunities.

c) Extreme financial data (Table II): UC-1 uses five

types of significant financial data sources of 10TB in size:

purchased historical data, data acquired from financial data

providers (e.g., S&PCapitalIQ, Thomson Reuters, Factset),

open social media data (e.g., StockTwits, Twitter), open gov.

data (USA, UK, Ireland), and various NGO repositories ful-

filling the GDPR requirements. Based on this data, Graph-

Massivizer aims to generate an extreme synthetic financial

data multiverse of 1PB to 5PB for highly advanced and

accurate financial simulations (backtesting). UC-1 will provide

a Financial Data Multiverse service to stream this extreme

volume of data to financial customers’ facilities and offer

selective samples for internal testing and open data.

TABLE II
EXTREME FINANCIAL DATA CHARACTERISTICS.

Data CharacteristicBig financial data state-of-the-art Extreme financial data dimension
Volume Real financial data: 10TB Synthetic streaming data: 1PB to 5PB
Value > e 200000 per year e 5000 – e 30 000 per year

Veracity 20% missing data 100% complete data

Viridescence Unsustainable resource Sustainable and energy-
intensive analytics accountable graph analytics

B. UC-2: Global Foresight for Environment Protection

Global foresight for environment protection focuses on

geopolitical and business aspects related to sustainable en-

vironmental goals, including climate action, responsible pro-

duction and consumption patterns, clean water and sanitation,

and clean and affordable energy. The foresight comprehends

insights on future trends and scenarios to guide decision-

making in developing better policies. A contextual graph built

through data available from the Common Crawl, Linked Open

Data Cloud, and global media news provides unique insights

into the convergence of the three societal systems (economy,

politics, science) in mass media. Foresight requires complex

data and operations to extract causal templates, understand

future events, and predict consequences. Geopolitical and

business foresight concerning global warming and the envi-

ronment are essential for taking timely decisions, maximising

impact, and mitigating negative scenarios.

a) Environment Protection Foresighter: Graph-

Massivizer removes the limitations of classic strategic

geopolitical and business foresight (e.g., expert surveys) by

resorting to MG encoding crawling Web data and multilingual

live media news. The ML-based analysis enables frequent

horizon scanning, megatrend analysis, and higher scalability

for processing and combining different data sources and

events while avoiding human-prone biases. UC-2 provides

an innovative subscription-based foresight service, targeting

the four environmental SDGs of the UN: climate action,

responsible production and consumption, clean water and

sanitation, and clean and affordable energy.

Fig. 4. UC-2: global foresight for environment protection.

b) Methodology: UC-2 (Figure 4) introduces the fore-
sight MG (FOR-MG) as a hybrid structure consisting of Web

data (Common Crawl Index), multilingual news media data,

and expert domain knowledge correlating past scenarios with

current environmental geopolitical and business events. ER

fulfils its goals by mapping historical news media events

and web data structure into a FOR-MG, sampling the graph

data while preserving essential structure information and per-

forming analytics using statistical, ML models, and reasoning

methods. Horizon scanning systematically analyses new data

to identify potential threats, risks, and emerging issues and

opportunities (e.g., predicting new FOR-MG nodes and their

relationships). Megatrend analysis explores the relation of

subgraph structures to shifts in behaviours and attitudes,

geographies, and industries (e.g., through embeddings clus-

tering and data drift analysis). It predicts their impact by

projecting their expected structure on forecasting future nodes

and relations (link prediction). Human experts analyse the

analytics insights to provide a reasonable interpretation.

c) Extreme news media data (Table III): UC-2 uses

Web data available at the Common Crawl, Linked Open Data

Cloud, and historical and streaming news media data provided

by a media event monitoring system. Both datasets encompass

over seven years of multilingual data and enable the creation

of an ever-evolving dynamic graph of billions of nodes and

trillions of edges describing events and meaningful context.

TABLE III
EXTREME FORESIGHT DATA CHARACTERISTICS.

Data CharacteristicBig foresight data state-of-the-artExtreme foresight data dimension
Volume Millions of vertices and edges Billions of vertices and edges

Viscosity Manual, weekly insight creation Automatic daily insight creation

Variety Media data in Common Crawl Index,
nearly 100 languages Linked Open Data Cloud

Viridescence Unsustainable resource Sustainable and energy-
intensive analytics accountable graph analytics

C. UC-3: Green AI for Sustainable Automotive Industry

Following Industry 4.0 in manufacturing, the automotive

industry undergoes a massive transformation towards digitali-

sation across the whole value chain, from multi-tier suppliers

and original equipment manufacturers to logistics, customers,

and recycling companies. The automotive value chain involves

extreme data flows of heterogeneous, distributed, fast-growing
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and often disconnected or hardly compatible information. ML

methods face new challenges and opportunities to holistically

analyse the massive and unprecedented data integrated across

these chains, to support decisions that fundamentally change

automotive manufacturing processes towards a sustainable,

circular, and climate-neutral automotive industry.

a) Green Manufacturing Line Diagnoser: Graph-

Massivizer enables new graph-based encoding that captures

several value-chain stages to predict their outcome better

and detect anomalies. Better and quicker analysis prevents

defect propagation and unnecessary waste, contributing to a

sustainable, circular, and climate-neutral automotive industry.

By combining graph-based ML methods with digital twins,

Graph-Massivizer provides new insights and boosts the effi-

ciency and scalability of the diagnosis beyond that of more

expensive alternatives (e.g., excessive sensor deployment for

continuous monitoring). The insights gained will help opti-

mise manufacturing operations and improve the operational

quality of the resulting products.

b) Methodology: UC-3 (Figure 5) defines manufacturing

MG (Man-MG) that integrates a collection of digital twins

expressed as OWL 2 ontologies and SHACL constraints.

Man-MG captures several domains of discrete manufacturing,

such as welding, specifications of production robots and the

embedding manufacturing environment and products such as

car bodies-in-white (BiW). The digital twins align with the

ISO 18 278, 14 327, and 14 732 standards that guarantee scal-

ability to various discrete production machines and processes

for broad adoption. UC-3 plans to enrich and integrate its ex-

treme welding data as a Man-MG enhanced with digital twins

in the form of ontologies that determine the shape of the data

and allow for ML reasoning. UC-3 evaluates the ML meth-

ods for Man-MG alignment, summarization, search, pattern

mining, quality assurance and trustworthiness analyses. UC-3

demonstrates their benefits for automated welding of BiW

and surrounding manufacturing environments by predicting

the quality of welding spots produced by welding machines,

their optimal configuration, remote diagnostics, schedules of

their repairs and accessory replacements.

Fig. 5. UC-3: green AI for the sustainable automotive industry.

c) Extreme manufacturing data (Table IV): One BiW

assembly line with 1500 car bodies per day comprises ap-

proximately 14 billion daily data items, corresponding to half

a billion records in large integrated tables with more than 250
fields. Sensor data from one welding spot consists of 1000

samples. Each BiW contains roughly 6000 spots resulting in

tens of billions of samples per day for one factory with sev-

eral BiW productions lines. One robot’s welding controlling

system has up to 10 000 programs yielding millions of robotic

program combinations across a production line.

TABLE IV
EXTREME MANUFACTURING DATA CHARACTERISTICS.

Data Characteristic Big manufacturing data state-of-the-art Extreme manufacturing data dimension
Variety 100s of measurement types 1000s of IoT-driven measurement types
Velocity Gigabytes per day Terabytes per day
Veracity Sparse, incomplete, and low-quality data Complete high-quality synthetic data

Viridescence Unsustainable resource Sustainable and energy-
intensive analytics accountable graph analytics

D. UC-4: Data Centre Digital Twin for Sustainable Exascale
Computing

Supercomputers are the backbone of HPC, supporting

computational science discoveries and massive engineering

analyses. They maximise their societal and economic impact

through high computation and scientific throughput per in-

vestment. As the community focuses on peak performance

in its race towards exascale machines, two critical factors

limit HPC sustainability. Firstly, energy consumption is a vital

factor in the total cost of ownership (TCO) of data centres

and a de-facto barrier to their peak performance. While data-

driven heat dissipation models exist in digital devices, they

do not capture complex spatiotemporal dependencies between

the cooling equipment, computing nodes, and computational

workloads. Secondly, system utilisation is critical and directly

impacts a supercomputer’s productivity, quantified by the

science, research and innovation throughput. However, system

utilisation is hard to maximise while preserving fairness and

fulfilling the requirements of jobs and workloads.

a) Data Centre Digital Twin: Graph-Massivizer targets

“sustainable science throughput” through scalable energy-

aware, exascale operation and traceable TCO understanding,

including sustainability indicators and their environmental

effects (e.g., GHG emissions). The Graph-Massivizer tools

will enable the creation of a novel, graph-based digital twin

of a data centre; this digital twin will further support the

construction of sustainable exascale computing operational

models to support scientific discovery in the next decade.

b) Methodology: UC-4 (Figure 6) leverages the holistic

monitoring data to produce a data centre MG (DC-MG), rep-

resenting a digital twin describing spatial, semantic, and tem-

poral relationships between the monitoring metrics, hardware

nodes, cooling equipment and jobs. The DC-MG supports the

deployment of performance prediction and what-if analysis

using ML methods to change its configuration for maximising

utilisation or sustainability requirements and observing the

effects in simulation. For this purpose, UC-4 relies on a

mathematical and visually connected DC-MG model to locate

undesired effects like highly demanded racks with prohibitive

energy consumption. UC-4 investigates different clustered
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partitions of the HPC facility tuned for incoming work-

loads with accurate processing and queuing time estimates

to improve its operational model based on these DC-MG

analyses. UC-4 targets a sustainable computing operation at

exascale by optimising two parameters. Firstly, it improves

the power usage effectiveness and GHG emissions of the

data centre by creating and training DC-MG to capture the

spatiotemporal-ontological dependencies among computation,

computing nodes, and cooling equipment and predict the

impact of the spatial power distribution on cooling efficiency

and cost. Secondly, it improves the global resource utilisation

based on predictive workload, resource consumption and job

queuing models, maximising the science throughput.

Fig. 6. UC-4: data centre digital twin for exascale computing.

c) Extreme HPC monitoring data (Table V): UC-4 uses

the Marconi100 data centre scaled to the EuroHPC Leonardo

(https://leonardo-supercomputer.cineca.eu/) pre-exascale su-

percomputer. The holistic monitored data includes approx-

imately one million sensors producing 21 000 metrics per

second on the M100 system. The Leonardo supercomputer

overpasses the complexity of the graph by two orders of

magnitude compared to the current deployment.

TABLE V
EXTREME HPC MONITORING DATA CHARACTERISTICS.

Data CharacteristicBig HPC data state-of-the-artExtreme HPC data dimension
Volume 10TB of monitoring data 1PB
Variety 21 000 metrics per second 2 million metrics per second
Veracity 1 million metrics 10 million metrics

Viridescence Unsustainable resource Sustainable and energy-
intensive analytics accountable graph analytics

V. CONCLUSIONS AND AMBITION

Graph-Massivizer brings the opportunity for European

green financial investments, automotive, and media industries

to accelerate at supercomputing speed and get a competitive

advantage on graph-based powerful analytics, with evidence of

improved performance and sustainability. While other forms

of analysis rely on present assumptions about “what hap-
pened” or “what happens”, correctly building and employing

graphs can further reveal the predictive patterns suggesting

what “might happen” with clear evidence for each connec-

tion or inference step. Graph processing facilitates solving

problems in many use cases driven by metrics related to

costs, fraud, equipment failure, and inefficiencies and enables

extra revenues from better intelligence. The large-scale graph

analytics market still traverses a developing phase, hampered

by the lack of technology research and use case adoption.

Graph-Massivizer provides for Europe these missing links.

Graph-Massivizer’s ambition: is to brings a new dimen-

sion to the scale and complexity of extreme data analytics

of European ICT security products and services. Graph-

Massivizer aims to lower the extreme data streaming ingestion

latency to 500ms and targets an analytics throughput of over

three million triples per second for MG with ten billion

nodes and 100 billion edges. Graph-Massivizer will achieve

this scalability through 80% accurate BGO performance and

energy consumption models of codesigned commodity and

specialised hardware accelerators while reducing energy use

two-fold and GHG emissions by 25% for BGO. A serverless

operational engine validates the promise of targeting 40%

faster deployment and 70% faster graph analytics than busi-

ness enterprise solutions like Aligraph. Graph-Massivizer give

the EU a winning position in this area with very few European

vendors and no uncertain paths.

The Graph-Massivizer project will start on January 1, 2023

and will last three years.
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