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ABSTRACT
Risk Propagation (RP) is a central technique that allows the calcula-
tion of the cascading effect of risk within a system. At the current
state, there is a lack of risk propagation solutions that can be used
to assess the impact of risk at different levels of abstraction, ac-
counting for actors, processes, physical-digital objects, and their
relations. To fill this gap, in this paper, we propose a process-aware
risk propagation approach that builds on two main components:
i. an ontology, which supports functionalities typical of Semantic
Web technologies (SWT), and ii. an ad hoc method to calculate the
propagation of risk within the given system. We implemented our
approach in a proof-of-concept tool, which was validated in the
cybersecurity domain.

CCS CONCEPTS
• Information systems → Decision support systems; • Risk
→ Assessment and propagation;
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1 INTRODUCTION
Risk is a pervasive phenomenon, depending on events that occur in
a connected world, where objects interact and cannot be taken in
isolation. This structural aspect of risk-affected environments mo-
tivates the large application of graph algorithms for analyzing how
risk spreads in a given system. The application of these algorithms
is commonly known as Risk Propagation (RP) [9].
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At the current state, RP techniques are applied in different do-
mains for risk analytics, where processes play a central role. For
instance, RP is broadly adopted to analyze how occurrences of risk
affect the sustainability of producer-consumer networks in supply
chains [2]. Similarly, the propagation of risk is used to assess the
impact of cyber-attacks on different assets of a given system [10]. In
this context, it has been widely recognized that one key open chal-
lenge is to devise a solution that can be used to measure the propaga-
tion of risk in systems that involve dependencies between processes
and physical objects [4, 7]. For instance, how can cybersecurity risk
be propagated from a cyberinfrastructure to the business processes
of an organization? How may a machine breakdown affect the pro-
ductivity of a company? How can we quantify the risk of machinery
energy consumption deviation from the allowed thresholds and prop-
agate the risk to the business processes of the host organization? All
these challenges can benefit from a process-aware1 approach to
achieve better risk propagation. Such an approach should be able
to leverage information about how different processes, objects, and
activities connect with each other, in domain-specific contexts (e.g.,
customer relationships, enterprise planning, cyber assets, and supply
chain), and also at a domain-agnostic level, by covering concepts
that are always present in different application contexts.

This paper advances the state-of-the-art in the research of RP
techniques, by proposing a process-aware approach that is aimed
at facilitating the assessment of RP between processes and objects
with different levels of abstraction. The contribution leverages the
combination of i. an ontology, which supports functionalities typical
of Semantic Web technologies (SWT) and semantics-based intelligent
systems, encoding a set of rules to be used for representing the risk
dependencies within a system composed of objects and processes,
and ii. a method to calculate the propagation of risk within the
represented system. We implemented our approach in a proof-of-
concept tool, which was validated in the cybersecurity domain.

The remainder of this paper is structured as follows. Section 2
describes the method embedded in our approach. In Section 3 we
discuss some implementation aspects and we report on a demon-
stration to validate our solution. Finally, in Section 4 we reflect on
our results and elaborate on future work.

1Here, by adapting the definition provided in [3], we take “process-aware” as “regarding
systems that involve processes”.
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Figure 1: An overall view of the approach.

2 APPROACH DESCRIPTION
Our approach is grounded on the definition of “risk” provided in
[8]. Then, we use risk to “quantify the possibility of reaching some
given objectives”, where such a quantity value is derived from the
combination of the probability that a certain risk event occurs and
a set of “severity values”. For example, suppose that an attacker has
read/write access to a database, namely, he can damage the data-
base integrity and confidentiality. The read/write access represents
the risk event and the severity values will be associated with the
database integrity and confidentiality features. We employ here a
simplified definition of risk as “an effect of uncertainty on objec-
tives”. An in-depth analysis of risk with regards to the proposed
approach (inspired by [11, 12]), is part of the future work.

In the scope of this paper, the main observation is that we cal-
culate the risk as 𝑅 = 𝑃 ∗ (𝑆1, ..., 𝑆𝑛), where 𝑃 provides the prob-
ability that a risk event occurs, and each 𝑆 𝑗 encodes a severity
value. Accordingly, the propagation task will start from a risk value,
associated to a “risk event” (e.g., “device damaging”). The whole ap-
proach is aimed at capturing how the risk associated with this risk
event can spread through all the elements (objects and processes)
involved (directly or indirectly) in the event itself.

Figure 2: 𝑆2 concepts and relations.

Figure 1 provides an overall view of our solution, which is com-
posed by two main components.

2.1 Knowledge Component
The knowledge component holds an ontology (see Figure 1, Risk-
Process Ontology), which is divided into three scopes. The first scope
𝑆2, is composed of a set of generic concepts and relations related
to risk, which are always required independently of any specific
business domain. The second scope, 𝑆1, extends 𝑆2 with a set of
domain-specific concepts and relations. 𝑆1, is then mapped into the
third scope 𝑆0, composed of a use-case-specific types and instances.

Figure 2 provides a lightweight representation of 𝑆2, composed
of the minimal set of constructs required for the process-aware
RP task. The main concept in this scope is ElementAtRisk which
stands for both process types or objects at risk. For example, an
ElementAtRisk could be specialized in 𝑆1 by a concept representing
a physical component of a system, such as a “machine”, or a business
abstract concept such as a “business activity”. We keep implicit
the different types of ElementAtRisk (as objects, process types)
including their relations, and that the ultimate scope is with regards
to business objectives, and values. However, since our main goal is
to describe the overall approach, we take this lightweight model,
which will be extended in future work.

Within a system, the risk is propagated from one ElementAtRisk
to another according to some given relations. In the current ap-
proach, in order to model risk propagation, we identified two main
types of relations. First, Dependency relations, which are used to
model phenomena where the risk is propagated through a workflow
composed of processes. For instance, two business activities can be
connected by Dependency relations like “triggers” or “causes”. Sec-
ond, Abstraction relations, represent cases where the risk is prop-
agated from a lower to a higher level of abstraction. For example,
the risk of a physical machine can be propagated to related business
activities. Given a network of elements at risk and their connec-
tions, we identify three types of Risk. We call FollowedRisk the
risk propagated through Dependency relations and DirectedRisk
the risk propagated through Abstraction relations. TotalRisk, in
turn, stands for the overall risk of an object, considering both its
DirectedRisk and FollowedRisk.

Note that the knowledge component is aimed at supporting risk
calculation from different perspectives, which can be represented
within 𝑆2 through the Measure concept and some ad hoc attributes.
For example, in a cybersecurity use case, the risk could be quan-
tified as from the CIA-triad standard [6], namely according to its
potential impact on availability, confidentiality, and integrity of
the related business activities. Finally, the knowledge component
allows the user to control the amount of risk propagated from one
element to another via the Importance concept, which is used to
weight any given relation. For example, a confidentiality risk that
was measured over a device and propagated to its correlated busi-
ness activity should not necessarily be propagated to the following
activity. In that case, the system supports omitting the propagation
of a confidentiality risk from an activity to the following by setting
an Importance of zero.

2.2 Analytics Component
The analytics component is used for a data extraction step that
consists of querying the ontology of the knowledge component
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Figure 3: Risk propagation steps, a running example.

Figure 4: A subgraph of the case scope (𝑆0).

through the 𝑆2 constructs. Data extraction returns a labeled prop-
erty graph structure where nodes and edges represent instances of
ElementAtRisk and Relation respectively. Risk and Importance
values are represented, instead, as vectorized properties of nodes
and relationships respectively. Notice that we assume the risk over
the leaf nodes (elements with a lower level of abstraction) as being
given prior to the RP task.

Once the labeled property graph is generated, RP can be per-
formed. This task occurs in two steps: .i the graph is traversed via
a Depth-first Search (DFS) algorithm [1]; .ii the RP for each node is
defined according to a risk function denoted as max_per_aspect. In
the proposed method we take a worst-case scenario approach by
quantifying the risk according to the maximal risk per perspective.
For example, in a case where a business activity depends on two
devices, and each has a different availability risk, a worst-case sce-
nario approach assumes that both devices could be compromised
by an attacker, and a shutdown of at least one device will disable
the correlated activity. Thus, the propagated risk towards the busi-
ness activity is set according to the maximal availability risk of

both devices. The risk function gets a bag of vectors ordered by the
different risk perspectives and returns the maximal value for each
perspective.

Figure 3 provides an example of an RP task and the two steps
composing it. The risk in the running example is a vector made
of four values, each one representing a risk quantification from
a different perspective. For example, in a cyberattack the follow-
ing device perspectives could be affected: confidentiality, integrity,
safety, and availability.

1 In the first step of the risk propagation task, the DirectedRisk
(see

−−→
𝐷𝑅 in Fig. 3, Step 1) is propagated from the leaf nodes to the

nodes with a higher level of abstraction using the Abstraction
relation. The bag of vectors for each node is composed of the
DirectedRisk vectors of the incoming nodes (

−−→
𝐷𝑅𝐵 and

−−→
𝐷𝑅𝐶 ),

multiplied by the corresponding Importance vectors (
−→
𝐼𝑉𝐴𝐵

and
−→
𝐼𝑉𝐴𝐶 ) over the incoming edges. Themultiplication is an ele-

ment wise, namely, each element in the DirectedRisk vector is
multiplied with the corresponding element in the Importance
vector.

2 Once the DirectedRisk is propagated, the second step occurs
according to two main sub-steps:
2.1 The FollowedRisk vector of a node (denoted as

−−→
𝐼𝐷𝑅) is

calculated. In this case, the bag of vectors for each node
is composed of the TotalRisk vectors (denoted as

−→
𝑇𝑅)

of its incoming nodes multiplied by the corresponding
Importance vectors over the incoming edges. Notice that,
the FollowedRisk vector over leaf nodes is set to zero.

2.2 The TotalRisk of a node is calculated. In that case, the bag
of vectors is composed of its FollowedRisk and Directed-
Risk vectors. After step 2.2., the Risk-Process ontology can
be updated with new risk values.

Finally, the analytics component also accounts for another step,
what we call here “risk assessment”. Here, the ontology can be
queried to assess and analyze the risk state of the whole system
in multiple ways. For instance, elements can be queried according
to their level of abstraction and risk. Furthermore, alerts can be
generated considering the deviation of the quantified risk from a
pre-defined threshold (denoted as a cardinal risk). Similarly, analysts
could analyze what is the element at cardinal risk, identify the risk’s
root causes, and prioritize mitigation steps accordingly.

3 IMPLEMENTATION AND DEMONSTRATION
This section discusses implementation details, and reports on a
demonstration to validate the approach.

Implementation. The knowledge component is deployed on Neo4J
graph database platform, the analytics component and the whole
pipeline orchestration are implemented as a Python application
which interacts with Neo4J via an ad hoc Neo4J python library2.
The program and the database interact as described in Figure 1.

To represent the ontology scopes, we adopted the Ontology Web
Language (OWL)3. The model’s concepts, relations, and attributes

2https://neo4j.com/, https://www.python.org/
3https://www.w3.org/OWL/
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are expressed as classes, object properties, and data properties, respec-
tively. 𝑆0 is expressed as classes’ individuals and their properties
assertions. Once the OWL file of the three scopes is constructed,
we import it to the database using the Neo4J NeoSemantics plu-
gin4. This plugin transforms the OWL file into a Labeled Property
Graph (LPG) structure. In this structure, the constructs of the model
and the data are represented as nodes and edges within a graph
database.

Demonstration. We demonstrate the approach through a cyber-
security risk assessment use case of a vehicle assembly manufac-
turing process. This example serves for showing how the proposed
approach can be used for quantifying the risk of devices being com-
promised by a cyberattack, and then measuring the impact over
the domain-specific risk scope.

In this scenario, the main concepts captured by the ontology
(see 𝑆2 and 𝑆1) can be grouped into a) a physical layer composed
of devices (denoted as CyberAsset) that could be compromised
by an attacker; b) potential intervention actions (denoted as Cyber-
Impact), which an attacker could perform over each device; c)
processes (each one grouped as as ProcessElement). Cyber as-
sets and process/activity elements are connected via relations of
type CorrelatedTo, process/activity elements are connected via
relations of type ComponentOf and FollowedBy. According to the
𝑆2 distinctions, CorrelatedTo and ComponentOf are classified as
Abstraction relations, FollowedBy is classified as a Dependency
relation. Considering the given conceptualization, the risk is then
measured over the different CyberImpact instances and propagated
to CyberAsset and ProcessElement instances. Notice that, in this
demonstration we measured risk according to the commonly used
CIA-triad for a cybersecurity risk assessment, where the risk vector
is composed of the perspectives of confidentiality, integrity, and
availability. For example, a denial-of-service CyberImpact holds a
substantial risk of availability, while a data manipulation Cyber-
Impact holds a substantial risk of integrity and confidentiality.
Since the risk is measured within an industrial facility, we extend
the standard approach with a safety perspective.

Figure 4 shows a snapshot of the case scope (𝑆0) instantiating
the ontology concepts. The FollowedBy (denoted as light-grey
nodes) and the ComponentOf (dark-grey nodes) represent relations
between process elements (yellow nodes), which are represented
by three processes, namely: VehicleAssembly, DoorDisassembly
and DashboardInstallation. The graph provides then the com-
mon cyber assets for each ProcessElement as well. This is repre-
sented by the CorrelatedTo relation (green nodes) between process
elements and cyber assets instances (pink nodes). As from Figure
4, DoorDisassembly is connected with two CyberAsset instances,
and DashboardInstallation relates to just one instance. Finally,
the graph encodes the potential vulnerabilities of the selected cy-
ber assets, by connecting them to a set of threat instances, cate-
gorized as CyberImpact (blue nodes), and each one is associated
with a given risk vector. The subgraph in Figure 4 shows also that
one CyberAsset instance (left) is connected to 10 CyberImpact in-
stances, while the rest of the CyberAsset instances in the subgraph
are not connected, i.e., they can be considered as “secure”.

4https://neo4j.com/labs/neosemantics/

Once the ontology is set and imported, we run the data extraction
step. Here we use Neo4J to query and extract elements at risk and
the relations that are relevant to the RP task. The query uses 𝑆2
constructs to support various domain-specific entities and relations
and returns a set of records encoding a i) relation between a source
to a destination element, ii) the risk vector over the source object,
and the iii) importance vector of the relation.

After the data extraction step, the RP algorithm can be applied,
generating values as from the example provided in Fig. 3. For in-
stance, given Fig. 4, for each CyberImpact a risk vector is provided
(e.g., in our example “C” returns

−−−→
𝐷𝑅𝐶 = [0, 0.83, 0, 0]) and this is

propagated to CyberAsset objects, then to the ProcessElement
objects given the 𝑆0 data extracted from the designed ontology
(e.g, given all the related CyberImpact nodes, “192.168.250.210”
CyberAssetwill be associated to

−−→
𝐷𝑅 = [0.53, 0.83, 0.33, 0.84]. More

details about the demonstration outputs can be found in [5] and at
https://youtu.be/x4pxBp16vOQ.

4 CONCLUSION AND PERSPECTIVES
This paper presents an application that leverages the combination
of i) a risk-process ontology and ii) a new method to calculate the
propagation of risk between processes and objects with different
levels of abstraction. Given the current promising results, we en-
vision three main future perspectives. Firstly, we plan to leverage
previous work on risk and value modeling [12] and provide a well-
founded ontology for process-aware RP. Secondly, we are going
to implement and compare different algorithms for the calculation
and propagation of risk. Finally, we are going to test the approach
over multiple risk-sensitive domains (e.g., finance and healthcare).
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