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Abstract—Given their ubiquity in conceptual modeling lan-
guages, it is no surprise that properties have been subject to
attention and specialized support in multi-level modeling ap-
proaches (including mechanisms such as deep characterization).
This paper examines consequences of a typology for properties
of high-order types that distinguishes them into: direct, resultant
and regularity properties. We discuss several implications of
the proposed classification considering a number of aspects of
multi-level modeling including: specialization between high-order
types, applicability to powertype variants, property change, and
potency.

I. INTRODUCTION

Conceptual models capture invariant aspects of entities in

a domain of interest. They are often defined through the

identification of the relevant types (or “classes”) of entities

that are admitted in a domain, along with the relations that

these entities may have and the features they may exhibit.

Relations and features are specified with constructs such as

“associations”, “properties” and “attributes” (in UML [15]) or

“(object and data) properties” (in OWL [16]).

Given their ubiquity in conceptual modeling languages, it is

no surprise that relations and features alike have been subject

to attention and specialized support in multi-level modeling

approaches. In fact, a key feature of multi-level modeling

techniques is the capacity to consider a class as an instance of

a metaclass and possibly assign values to properties defined

at the metaclass level. For example, if we consider Car Model
as a metaclass, with instances such as Ferrari F40 and

Volvo S60, then a property model designer may be defined

for Car Model and attributed to Ferrari F40 and Volvo S60.

Beyond this basic support for assigning values to properties

of metaclasses, some multi-level modeling techniques iden-

tify the opportunity to establish correlations or connections

between features of classes at different levels of classification,

what has been referred to as “deep characterization” [4].

Deep characterization is an important mechanism for multi-

level modeling as it enables a modeler to capture invariants at

a certain level that influence not only the level immediately

below (what would constitute a “shallow” mechanism) but

also other subsequent levels deeper in the classification level

scheme (hence the term “deep” characterization). For exam-

ple, if we conceive Animal Species as a metaclass, whose

instances include the classes Platypus, Dog, and Lion, then

whether the lion Cecil has the property of being warmblooded

is in fact determined by a property of its classifying species

[9] (i.e., determined by Lion being a species of warmblooded

animals). If we consider Mobile Phone Model as a metaclass,

whose instances include iPhone 12 and Samsung S21, we may

include screen size as a property of Mobile Phone Model,

and assign values to it for iPhone 12 and Samsung S21 (6.6
and 6.2 inches respectively). The screen sizes of instances of

iPhone 12 and Samsung S21 will then follow those values.

Different multi-level modeling techniques address deep

characterization in different ways. In MLT and in the MLT-

based language ML2, this phenomenon is addressed through

“regularity attributes” [6], [10]. In Melanie [2], they are

supported through a combination of the notions of “po-

tency” along with attribute “durability” and “mutability”.

In MetaDepth [7] they are also supported by potency and

durability. (See [9] for a review of several MLM approaches

with respect to their support for this kind of attribute.)

This short paper examines different phenomena involving

properties in multi-level modeling building up on the typology

for properties for metaclasses identified earlier in [10]. We

discuss here some implications of that typology. In particular,

we show that the different types of properties have different

implications for their inheritance along specialization hier-

archies, for their applicability in powertype variants, their

(im)mutability and use in potency-based schemes.

This paper is further structured as follows: Section II

establishes basic terminology and presents the typology of

properties introduced originally in [10], Section III discusses

various implications of the typology for multi-level modeling,

and Section IV concludes this paper.

II. BACKGROUND

A. Preliminary Considerations

Establishing uniform terminology for the phenomena we

are considering here is a challenging task. We settle here to
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establish some basic terminology for the purpose of this paper.

We will adopt here the term “property” in alignment with

the UML, which introduces it in the context of a classifier

as follows (extracted from [15]): “A Property related by

ownedAttribute to a Classifier [...] represents an attribute and

might also represent an association end. It relates an instance

of the Classifier to a value or set of values of the type of

the attribute.” By doing so, we can address at the same time

UML’s attributes and association ends. The same account is

also suitable for OWL object properties (which can roughly be

understood as navigable association ends) and data properties

(which can roughly be understood as attributes typed with

datatypes).

Further, we consider each type to be characterized by an

intension (or principle of application [11]), which is used

to judge whether the type applies to an entity (e.g., whether

something is a Person, a Dog, a Chair). If the intension of a

type t applies to an entity e then it is said that e is an instance

of t. The set of instances of a type is called the extension of

the type [12]. We admit that types may have a time-varying

extension, when entities that fall under the type’s intension are

created and destroyed.

Finally, we classify types of a multi-level model into orders.
The types whose instances are individuals are called first-
order types. The types whose instances are first-order types are

called second-order types, and so on. Second-order types (also

termed metaclasses), third-order types (also termed metameta-

classes), and so on, are termed collectively high-order types.

B. Typology for Properties

Following [10], we make use of examples in the domain of

biological species to illustrate the various types of properties.

The modeling of species (and animal breeds alike) is evoked

as a typical example of multi-level modeling in the literature

(see, e.g., “tree species” in [15] and “dog breed” in [3]). We

also employ examples of product types [6].

Consider the example shown in Figure 1, using a notation

inspired in UML. Bird is specialized in two subtypes, namely,

Blue Macaw and Golden Eagle. According to this model,

particular birds have a particular birth date, a particular

height, and a name. This model uses the powertype pat-

tern: the two subtyping relations between the latter types

and Bird are part of a generalization set related to the

powertype Bird Species. The relation that connects Bird
and Bird Species represents instantiation, declaring that the

instances of Bird are classified by instances of Bird Species.

Furthermore, the powertype Bird Species is connected to the

type Bird by being referred to in the generalization set spe-

cializing Bird and containing the subtypes Blue Macaw and

Golden Eagle. Hence, Blue Macaw and Golden Eagle are

instances of Bird Species. (Bird Species is a second-order

type, whose instances are first-order types.) Two instances of

Bird in this model are Blu (a particular Blue Macaw) and Joe
(a particular Golden Eagle). The instances are related to their

types through dashed arrows labeled instance of.

Figure 1. Bird Species example.

Note that instances of Bird Species provide specific val-

ues for all the general properties that characterize the type

Bird Species. For instance, the type Golden Eagle may

have a number of living individuals = 250,000, and an

average height = 85 centimeters. Notice that these are not

properties of particular birds (e.g., Joe does not have an aver-

age height, or a number of living individuals), but properties

of each species of birds as a whole. Indeed, properties such as

number of living individuals or average height are properties

of instances of Bird Species that result from properties of

the instances of Bird (e.g., the average height of a particular

species such as Golden Eagle is derived from individual

heights of particular instances of Golden Eagle). We term

these properties resultant properties of the species. They are

derived (or derivable) from the extension of the type (the

population of birds and their properties). A fully specified

resultant property includes the definition of the means for

derivation, e.g., in terms of the counting of instances or any

other form of aggregation of values of properties of a lower-

level type.

In contrast, a property such as feeding habit for

Bird Species capture regularities over the instances of

a particular type. When declaring that feeding habit is

"carnivorous" for Golden Eagle, we are capturing that

all instances of that type are carnivores. To be precise,

the type Golden Eagle is not itself a carnivore; it has the

property of having instances that exhibit that property. In

other words, it has the property of bestowing to all its

instances a particular feeding habit1. We term here these

properties regularity properties. The aforementioned property

screen size of Mobile Phone Model is another example of

regularity property. Regularity properties can be understood

as parameters in the intension of the instances of the types

that have it. Since regularity properties affect the intension of

instances of a type, they can only be defined for high-order

types [6] (thus neither for individuals nor for first-order types).

Finally, a property such as the species name or the year in

which it was officially recognized are properties of yet a third

1This model reflects the assumption of “intrinsic biological essentialism”
that there are some essential intrinsic properties shared by members of a
species [8].
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kind. For instance, being officially recognized as a species in

1760 and being named Aquila chrysaetos are properties of

the type Golden Eagle and not a property that any individual

instance of Golden Eagle has. We term these properties direct
properties.

III. IMPLICATIONS OF THE TYPOLOGY OF PROPERTIES

A. Implications to Specialization

When a type specializes another type, all instances of

the subtype are also instances of the supertype. This means

that the intension of the subtype includes the conditions in

the intension of the supertype; often, subtypes add further

classification criteria to a supertype, restricting those instances

of the supertype that fall under the subtype; in this case,

specialization may be termed “proper specialization” [6].

This basic understanding of specialization allows us

to draw a rather straightforward consequence for reg-

ularity properties: whenever a supertype is given a

value to a regularity property—say, when we estab-

lish that Mobile Phone Model is characterized by the

screenSize regularity property, and iPhone X instantiating

Mobile Phone Model has screen size=5.85 inches—all its

subtypes (such as Red iPhone X) impose that same value on

their instances. In other words, since regularity properties

establish invariant aspects of the instances of a type, and the

instances of a subtype are also instances of the supertype, the

invariants defined for the instances of the supertype must also

be respected by instances of the subtypes.

The same cannot be said of resultant properties. Since the

value of a resultant property depends on the instances of

a type, and subtypes may have extensions that subset the

extensions of the supertype, the value of a resultant property

given for a supertype is not necessarily preserved in subtypes.

For example, currently, the number of living individuals
of the supertype Macaw is greater than that of Blue Macaw (as

this is not the sole species of macaw with living individuals).

Further, the average height of Blue Macaw differs from that

of its subtypes Male Blue Macaw and Female Blue Macaw.

Despite that, since a resultant property may be derived from

properties that characterize the supertype (in the latter case,

height that characterizes Bird), and all instances of the

subtype inherit those properties, it is possible to extend

the definition of the resultant property—but not its value

attribution—to all subtypes of the instances of the high-order

type characterized by the resultant property. In this case,

Male Blue Macaw and Female Blue Macaw may be given a

value for average height even though they are not instances

of Bird Species. In order to explain this, it is useful for

us to consider the relation of subordination between high-

order types as discussed in MLT [6]. A high-order type is

subordinate to another high-order type if, and only if, each of

its instances specialize an instance of the superordinate high-

order type [6]. For example, Bird Type by Species and Sex
is subordinate to Bird Species, and hence its instances

(Male Blue Macaw and Female Blue Macaw) specialize an in-

stance of Bird Species (Blue Macaw). We can then conclude

that subordinate high-order types may “inherit” resultant prop-

erties from their superordinate types.

Differently from regularity and resultant properties, di-

rect properties are not “inherited” in any sense, as they

pertain solely to the type, and not its instances. Consider

that Mobile Phone Model is characterized by a launch date
direct property. The fact that iPhone X has launch date
11/03/2017 does not determine the launch dates of types

specializing it. In fact, the notion of a launch date for subtypes

of iPhone X may not even be meaningful; consider the case

of Refurbished iPhone X.

In summary, the typology of properties of high-order types

we adopt here has the following consequences: (i) the values

of regularity properties are preserved in specialization, (ii)

resultant properties are inherited by subordinate high-order

types (but their values are not preserved), and (iii) direct

properties are not “inherited” in any sense.

B. Implications to Powertypes

The typology of properties of high-order types also has

consequences to the variants of the powertype pattern iden-

tified in [6]. More specifically, we refer here to the variants

of Cardelli [5] and Odell [14], which lead to the following

relations between types [1]:

A powertype relation to capture the notion of powertype as

defined by Cardelli [5]: a type pt is powertype of a (base)

type t iff all instances of pt are specializations of t and all

possible specializations of t are instances of pt. Powertypes

in this sense are analogous to powersets2. The powerset of

a set A is a set that includes as members all subsets of A
(including A itself). As an example of Cardelli powertype

consider Bird Type defined in such a way that all possible

specializations of Bird (including Bird) are instances of

Bird Type.

A categorization relation between types was defined to

reflect Odell’s notion of powertype [14]. Differently from

Cardelli’s, Odell’s definition excludes the base type from

the set of instances of the powertype. Further, not all

specializations of the base type are required to be in-

stances of the powertype. Odell’s definition is more sim-

ilar to the notion of powertype that was incorporated in

the UML. There may be specializations of the base type

that are not instances of the categorizing higher-order type.

For example, Bird Type by Species and Sex (with instances

Male Sparrow and Female Blue Macaw among many others)

categorizes Bird. Bird Type by Species and Sex is not a

(Cardelli) powertype of Bird since there are specializations of

Bird that are not instances of Bird Type by Species and Sex
(e.g. Blue Macaw and Golden Eagle).

From the definition of a Cardelli powertype, we can sug-

gest that Cardelli powertypes should not be characterized by

2Notice that we use the term ‘analogous’ and not ‘identical’. Powertypes
are analogous to powersets in the sense that they have as instances all possible
subtypes of a base type, including that base type itself. However, we do not
hold an extensional view on types. In fact, we reject the idea that, in general,
for a powertype t of base type t ′, there should be an instance of t corresponding
to any set belonging to the powerset of the extension of t ′.
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regularity properties. This is because there are, in general,

many ways to constrain the various properties of instances of

a base type, and hence, these many ways cannot be covered

by a single regularity property. For example, if we define

that screen size is a regularity property defined in the type

Mobile Phone Type it is not possible for Mobile Phone Type
to be a powertype in Cardelli’s sense since there are pos-

sible specializations of Mobile Phone that do not impose

constraints over the screen size of their instances (e.g.,

5G Phone).3

The same constraint does not apply to resultant properties

in the case of Cardelli powertypes; as long as these are derived

in terms of properties of the base type, they can in principle

be defined for all subtypes of the base type.

Since Cardelli powertypes have a “formal” (rather then

domain-specific) nature, the direct properties in Cardelli pow-

ertypes are restricted to general properties of types such as

name, date of creation, etc.

C. Implications to the Dynamics of Properties

The typology of types also has consequences to their

dynamics in time. Regularity properties are immutable in

principle because, by definition, changing their value alters

the identity of the type [6]. Any alleged change of the value

of a regularity property is actually the creation of another type.

In turn, the value of a resultant property may change as long as

the extension of the type changes, or the property of instances

in the extension changes. In the special case that the extension

of a type is constant and the resultant property is defined

in terms of immutable properties of a lower-level type, then

we have an immutable resultant property. Direct properties,

in turn, may be mutable (e.g., is currently in production
for Mobile Phone Model) or not (e.g., launch date), in a way

that does not depend on the instances of lower-level types.

D. Implications to Potency-based Approaches

Here we discuss some consequences to potency-based ap-

proaches. More specially, we select Melanie [2], [13] as a

prototypical exemplar of potency-based approach given its his-

torical role. Melanie addresses deep characterization through a

combination of the notions of “clabject” and “potency” along

with attribute “durability” and “mutability”.

The notion of “clabject” is founded on the observation that

every instantiable entity has both a type (or class) facet and an

instance (or object) facet which are equally valid. For example,

Golden Eagle can be considered a clabject since it has an

instance facet (it is an instance of Species) and a type facet

(it classifies Joe as an instance of Golden Eagle).

Each clabject has a potency assigned to it. The potency of a

clabject is an integer that defines the depth to which a model

element can be instantiated. When a clabject is instantiated

from another clabject the potency of the created clabject is

3Regularity properties would only be admissible in Cardelli powertypes in
the very special case that the regularity property may take on a value from
the space of all possible constraints applicable to the base type—a sort of
trivial or catch-all regulation.

given by the original clabject potency decremented by one.

Clabjects have potency equal to zero indicating they cannot

be instantiated, which is the case of individual objects.

The attributes that characterize a clabject have both a “dura-

bility” and a “mutability” assigned to them. The durability

defines the endurance of the attribute over the instantiation

chain. It is a non-negative integer that is decremented by one

when the clabject characterized by the attribute is instantiated.

When durability reaches zero the instantiated clabject no

longer is characterized by that attribute. The mutability of

an attribute defines how often its value can be changed over

the instantiation chain. Like durability, mutability is a non-

negative integer that is decremented by one when the clabject

is instantiated. When mutability reaches zero, the value of the

attribute can no longer be changed and must be the same as

in the level above. The default value for both durability and

mutability is the potency value of the owning clabject.

The simplest case is that of durability and mutability equals

to one. This corresponds to a shallow characterization, and can

be used to represent direct or resultant properties.

More complex scenarios can be captured combining dif-

ferent values of durability and mutability. Consider, for ex-

ample, a type Mobile Phone Model with potency 2. An

attribute screen size with durability 2 and mutability 1

will be given a value at the first instantiation (e.g., stating

that the iPhone X has screen size equal to 5.85 inches),

and that value will determine the value of screen size
for the instances of instances of Mobile Phone Model (thus,

all instances of iPhone X have a screen size of 5.85

inches). In our view, this representation captures concisely

the constraint relating: a property defined for the first-

order type Mobile Phone (screen size), and; a regularity

property of Mobile Phone Model (instances screen size).

This constraint is captured as a single attribute with dura-

bility 2 and mutability 1 in a clabject with potency 2

(Mobile Phone Model).

The combination between durability and mutability greater

than one may also be used to capture scenarios in which

homonymous direct attributes characterize both a type and its

instances. For example, consider a type Bird Species with

potency 2. An attribute name with durability and mutability 2

may be defined in Bird Species to represent that instances

of Bird Species have a name (e.g. “Aquila chrysaetos”) and

that instances of instances of Bird Species (i.e., instances of

Bird) also have a name (e.g. “Pat”). Therefore, the attribute

name with durability and mutability 2, conflates the direct

property name of the second-order type Bird Species and

the property name of the first-order type Bird. It is important

to notice that there is no relation or constraint linking the

values of the attribute at type level with the possible values

of attributes at object level, i.e., the name of the species does

not constrain the possible names of the specific birds.

A feature of potency-based approaches in general (and of

Melanie specifically) is that they allow the modeler to omit the

representation of base types as a way of reducing complexity.

In these scenarios, the direct attributes of the base types are
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represented as attributes of high-order types with durability

and mutability greater than one. For example, in order to

capture that a specific bird has a birth date, without the

need of representing the type Bird, the attribute birth date
may be defined as an attribute of Bird Species having both

mutability and durability 2, so that instances of instances of

Bird Species may define values for the attribute birth date.

An undesirable effect of this approach is that it is possible to

set a value to the attribute birth date at the species level,

which is meaningless (a species does not have a birth date).

Note that we have a case of construct overload here: the

language does not provide means to distinguish between (i)

the cases in which attributes with durability and mutability

greater than 1 are used to conflate direct properties of types

in different levels (with possibly different values at various

levels), and (ii) the cases in which those attributes are used

to represent, in the higher-order type, properties of omitted

lower-level types.

IV. CONCLUSIONS

Not all properties of high-order types behave the same. We

have shown that attention to the role of properties in estab-

lishing the relation between the various levels in a multi-level

model can provide us with some guidelines for their usage.

We have leveraged here the typology of properties defined

originally in [10], which distinguishes them into regularity
properties, resultant properties and direct properties.

We have argued that regularity properties impose constraints

for their instances’ instances that are preserved throughout

specialization hierarchies. More specifically, when a value is

attributed to a regularity property for a supertype, this value is

the same for all its subtypes. Further, they are immutable and

not applicable to Cardelli powertypes. We have discussed that

a specific type of regularity property can be captured using

durability greater than one in a potency-based approach; but

the same specification strategy is also used for other modeling

scenarios not involving regularity (e.g., to omit base types at

lower levels), which may hinder the interpretation of models

using this specification strategy.

In their turn, resultant properties may be “inherited”

throughout subordination hierarchies, are in general mutable

and may be applied to Cardelli and Odell powertypes alike.

Finally, direct properties are not “inherited” in any sense;

they correspond simply to properties in shallow classification

schemes (or to attributes with durability and mutability equal

to one in a potency-based approach; these attributes, once

given a value in an instance of a clabject, no longer belong to

the type facet of the clabject as discussed in [13]).

Given that identifying the type of property gives us some

guidelines for their usage in a high-order type, future work

could try to establish the applicability of these distinctions

as constructs in multi-level modeling languages, regardless of

whether they are powertype-based or potency-based. Ideally,

the modeler should be able to express the type of property

they indent to represent (e.g., through specialized syntactic

constructs) and reap benefits of some automated support. To

the best of our knowledge, the distinctions discussed here are

not yet incorporated fully in the various approaches.
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