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Abstract: The validation of newly developed optical tissue-sensing techniques for tumor detection
during cancer surgery requires an accurate correlation with the histological results. Additionally, such
an accurate correlation facilitates precise data labeling for developing high-performance machine
learning tissue-classification models. In this paper, a newly developed Point Projection Mapping
system will be introduced, which allows non-destructive tracking of the measurement locations on
tissue specimens. Additionally, a framework for accurate registration, validation, and labeling with
the histopathology results is proposed and validated on a case study. The proposed framework
provides a more-robust and accurate method for the tracking and validation of optical tissue-sensing
techniques, which saves time and resources compared to the available conventional techniques.

Keywords: optical tissue sensing validation; Projection Mapping; histology correlation

1. Introduction

Surgery combined with (neo)adjuvant therapy is currently the most-common treat-
ment for patients with cancer. Oncological surgery is characterized by a delicate balance
between radical tumor resection and sparing healthy tissue as much as possible. For a
surgeon, recognizing tumor margins can be challenging since the resection of the tumor
is mostly based on visual and tactile feedback. This can result in resections too close to
the tumor (positive resection margins) or resections too far from the tumor, leading to the
increased risk of tumor recurrence, undesired cosmetic outcomes, or potential damage to
vital anatomical structures. Tumor-positive resection margins vary from 4.3% in uterine
cancer to 35% in ovarian cancers, up to 19% in advanced rectal cancer [1], and 21% for
prostate cancer [2]. In this case, additional treatment such as chemotherapy, radiotherapy,
or surgical re-excision may be necessary, which affects the morbidity, as well as the quality
of life of the patients [3]. In contrast, in breast cancer, the excised tissue volume of the
resection specimen often exceeds 2–3-times the volume of the tumor, leading to worse cos-
metic results [4,5]. Therefore, there is a need for more-precise oncological surgery, making
it possible to detect tumor regions intraoperatively and, thereby, lowering the number of
positive resection margins and additional treatments.

Optical technologies have shown great potential for the assessment of resection mar-
gins since they can reflect the biochemical and functional properties of the measured
tissue. These technologies already have been successfully evaluated in multiple oncology
domains for discriminating tumor from healthy tissue with high accuracies [6–9]. This
includes Point-based measurement techniques such as Diffuse Reflectance Spectroscopy
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(DRS) [10,11], Raman Spectroscopy [12], Fluorescence Lifetime Imaging (FLIm) [13], and
infrared Spectroscopy [14], as well as image-based techniques including hyperspectral
imaging [15,16]. Optical tissue-sensing technologies have clinical advantages since they are
non-destructive, and they do not require exogenous contrast with dyes. Besides, they have
the potential to be performed in real-time, providing immediate feedback to the user.

The first steps after the development of an optical tool involve ex vivo tissue specimen
studies, where the technology will be evaluated for clinical purposes. In order to use optical
technologies as a diagnostic tool for the optimization of surgical outcomes eventually, it is
important that the optical tissue measurements are validated with a ground truth first [17].
Ground truth validation of optical tissue-sensing technologies is currently provided by
hematoxylin-and-eosin (H&E)-stained tissue sections from which the measured tissue
structures can be identified microscopically [18]. From this H&E section, a pathologist
annotates all the different tissue structures located in the measured tissue area, which
will then be considered as the ground truth. Accordingly, it is required to track where
exactly on the excised tissue specimen the Point-based optical tissue measurements were
performed in order to correlate those measurement locations in the gross-sectioned tissue
slices and corresponding H&E-section annotations (Figure 1). The accurate correlation
of an optical tissue measurement to histopathology is especially of importance for the
development of (real-time) tissue-classification algorithms since the incorrect labeling of the
data will influence the performance during the training of machine learning models. This
correlation involves, for example, a registration between a microscopic histology image
and a corresponding snapshot image of a tissue specimen.

Correlation of optical tissue measurements with histopathology

Performing optical 

tissue measurement

Track measurement 

in tissue slice 

Microscopic tissue 

validation in 

histology image

Figure 1. Ground truth validation of Point-based optical measurements: after the performed optical
measurement, a tracking method is needed to trace the performed measurement area back in a
gross-sectioned tissue slice. The gross-sectioned tissue slice will be further processed and result in a
histology image (H&E tissue section). From this image, the optically measured tissue area can be
defined microscopically and will be considered as the ground truth.

For the development of accurate tissue classification algorithms and the validation of
optical tissue-sensing techniques, an important first step consists of tracking the Point-based
optical measurements performed on tissue specimens. Moreover, it has been observed
that some studies have not had an adequate tracking method or they rely on visual corre-
spondence only [19–22]. As a result, the correlation with histopathology is based on visual
memory and, therefore, prone to human error. Other studies have shown conventional
approaches to track the position of the optical tissue measurement, which involve the
placement of ink marks or fiducial markers on the tissue specimen’s surface after acquisi-
tion [16,23] and the use of measurement grids and live-tracking of the optical probe [24,25].
However, these methods are limited since the accuracy of tracking can be affected by
human errors and the placement of such markers can damage the tissue, complicating



J. Imaging 2024, 10, 37 3 of 18

histopathology processing and analysis. For these reasons, it would be desirable to have
a more-precise and -generalized method, applicable to the various optical tissue-sensing
techniques available, which tracks optical tissue measurements in any desired location
without damaging or marking the tissue specimens.

The second step should deal with the challenge of establishing a robust correla-
tion between the tracked optical tissue measurement locations and the corresponding
histopathological tissue labels. Establishing an accurate correlation between optical tissue
measurements and the ground truth is especially of importance when preparing datasets for
training supervised machine learning techniques for tissue discrimination. Using accurately
labeled data, tissue classification algorithms can be developed to eventually classify tissue
structures in real-time. The labeling of optical data often includes a multistep registration
method, where, for example, a microscopic H&E section, including tissue annotations from
a pathologist (ground truth), is registered to a white light specimen image [26–28]. With this
registration, each tracked measurement can be labeled with the definite measured tissue
type or tissue type percentages. However, due to histopathology processing, such as forma-
lin fixation and paraffin embedding processes, the H&E sections are generally deformed
compared to the optically measured tissue. These deformations include shrinkage, stretch-
ing, and compression of the microscopic tissue slices. Sometimes, tears and even the loss of
tissue can be observed as a result of the slicing and staining process. So, simply overlaying
images or using affine registration methods between the specimen images and microscopic
H&E sections will be imprecise. Previous studies have shown the importance of accounting
for tissue deformations when correlating optical tissue measurements with histological
results [29]. Thus, when taking tissue deformations into account, an improvement in the
correlation of optical tissue measurements could be achieved.

In this work, a new framework for accurate validation of Point-based optical tissue
measurements will be introduced. The first part of this article focuses on the development
of a Point Projection Mapping (PPM) pipeline in which we used a custom-built setup and
also an off-the-shelf device. With each of these systems, it becomes possible to track and
project any number of desirable measurement locations on the tissue specimen without
damaging or marking the tissue and to work both with optical measurements performed
on the surface of tissue specimens, as well gross-sectioned tissue slices. Consequently, a
generalized method for tracking and registering Point-based optical tissue measurements
to histopathology will be proposed. With improved labeling of optical measurements,
more-accurate tissue classification algorithms can be developed and more-precise tissue dis-
crimination during surgical procedures can be achieved. Besides, with an increased number
of accurately labeled measurement locations, time and resource use can be decreased since a
decreased number of specimens will be required to develop these classification algorithms.
This presented approach is applicable to multiple specimen types and Point-based optical
tissue-sensing techniques available.

The novel contributions of this paper can be summarized as follows:

• Developing a Point Projection Mapping (PPM) system, which allows for tracking of
Point-based optical measurements performed on tissue specimens for the validation
of optical tissue-sensing technologies.

• Introducing a newly developed framework for the registration, validation, and label-
ing of optical data with histopathology.

• Validating the proposed framework on a use-case scenario, namely Point-based optical
tissue measurements performed on breast cancer lumpectomy specimens.

The remainder of this paper is organized as follows: Section 2.1 describes the develop-
ment and technical information regarding the PPM setups. The proposed framework for
the validation of optical tissue-sensing technologies will be presented in Section 2.2. The
results of a use-case scenario are presented in Section 3, which is followed by the discussion
and conclusion in Sections 4 and 5, respectively.
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2. Material and Methods

In this section, the developed Point Projection Mapping (PPM) setup is introduced
first. Afterward, the proposed framework for the accurate correlation between optical
tissue measurements with the histopathology results will be described, by using the PPM
setup in a use-case study.

2.1. Point Projection Mapping

For this study, a PPM pipeline was developed, which allows the tracking of Point-based
optical measurement locations for the validation of optical tissue-sensing technologies. With
such a system, it is possible to project any number of desirable measurement locations on
the tissue specimen without damaging or marking the tissue. Optical tissue measurements
can be performed on each Point Projection separately and, later, be traced back in the
histology images.

2.1.1. Hardware

We employed two different setups for the PPM system: (1) a custom-built system and
(2) the all-in-one HP Sprout Pro.

Custom-Built Setup

Figure 2 illustrates our custom-built setup comprising a standard PC, an RGB-D
sensor, and a single projector. The PC was equipped with an Intel(R) Xeon(R) CPU E3-
1245 v5@3.50GHz, 16GB of RAM, and an NVIDIA Quadro K620 graphics card. Our
choice for the RGB-D camera was the Microsoft Kinect v2, with an RGB camera with a
resolution of 1920 × 1080 pixels and an infrared camera (depth camera) with a resolution
of 512 × 424 pixels. To facilitate Projection Mapping, we used a BenQ TH671ST projector
with a resolution of 1920 × 1080 pixels for demonstration purposes. The projector and the
Kinect were fixed to an arm facing downward with a distance of 100 mm from the surface
of the interset.

HP Sprout

For the PPM system, we also used an HP Sprout Pro G2 multimedia device [30].
This device consists of a built-in PC (Intel Core i7-7700T, 16 GB DDR4 memory, NVIDIA
GeForce GTX 960M), a high-resolution DLP projector (1920 × 1280), an HP high-resolution
downward-facing camera (4416 × 3312), a downward-facing RGB-D camera (Orbbec Astra
S Mini, RGB image resolution: 640 × 480 @30fps; depth image resolution: 640 × 480
@30fps), and an integrated 23.8′′ Touch Display [31].

The software for calibration, 3D image reconstruction, and interactive Projection
Mapping for both setups was developed in-house.

HP Sprout G2

Projector

Kinect v2 

Control monitor

Projection surface

Custom-built system

Projection surface

Control monitor

Built-in projector and 

RGBD camera 

Figure 2. System illustration of custom-built PPM system on the left and the HP Sprout Pro G2
multimedia system on the right.
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2.1.2. PPM Calibration

An interactive PPM system was designed for surface reconstruction and Projection
Mapping. The RGB-D camera in the setups will provide a stream of depth images, as
well as corresponding top-view RGB images. The depth images were used for 3D surface
reconstruction, and the RGB frames were captured and shown to the user on the screen for
the selection of Points of interest (POIs). Furthermore, The projector in the setups was used
to illuminate the target surface with bright spots corresponding to the POIs selected by
the user. However, for such a system, a calibration step is essential for accurate Projection
Mapping. During the calibration process, models will be estimated for the correction and
transformation of depth images and extracted meshes to projector coordinates.

As demonstrated in Figure 3, the pipeline of calibration has two phases: (1) base-plane
calibration and (2) projector calibration. It is worth mentioning that the calibration pipeline
was identical for both setups.

Base plane 

calibration

Projector 

calibration

Correction & 

transformation model
RGBD

frame

Projector

RGBD sensor

HP Sprout G2

Calibration

Figure 3. Point Projection Mapping calibration pipeline.

2.1.3. Base-Plane Calibration

The built-in RGB-D camera in the HP sprout and Kinect sensor faced downward,
and in the case of having a flat surface, the depth camera should return a uniform depth
image. However, the captured target surface beneath the camera was not always completely
horizontally aligned with the camera’s sensor. For an accurate 3D surface reconstruction
and projector calibration, a base-plane calibration step was required to discard the deviation
caused by an inclined surface. For the base-plane calibration, a series of depth frames was
captured and averaged to reduce any noise presence by considering the base-plane model in
depth as ax+ by+ z+ c = 0 with a, b, and c as the base-plane model parameters. Afterward,
a set of sample Points (Pi(xi, yi, zi)) were randomly selected and used to compute the plane
that best fit this set of Points by calculating the least squares of the normal distance to the
plane, as shown in (1).

min
1
n

n

∑
i=1

(axi + byi + zi + c)2 (1)

where a, b, and c are the parameters to minimize the least-squared error by means of partial
derivatives. After obtaining the base-plane model with estimated parameters a, b, and c,
the compensation for the deviation of the inclined surface can be performed by correcting
the depth values for any Point (Pj(xj, yj, zj)) in a newly captured depth frame, as shown
in (2).

znew
j = zj + axj + byj + c (2)
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where znew
j is the corrected depth for Pj at the spatial coordinate of (xj,yj). The 3D represen-

tation of the base plane before and after correction, as well as an example of the captured
depth frame with an object are shown in Figure 4.

(a) (b)

(c) (d)
Figure 4. Base-plane calibration: (a) the 3D representation of the camera field of view flat surface
before calibration where the green plane represents the plane fit to a set of randomly selected Points,
(b) the 3D representation of the same flat surface after calibration, and (c,d) an example of a depth
frame with an object before and after calibration.

2.1.4. Projector Calibration

The PPM system requires a precise transformation model to function properly. To
address this need, a convenient and efficient calibration approach was deployed that was
both fast and easy to execute. To implement this approach, two 3D orthogonal spaces with
the Cartesian coordinate system were defined: camera space and projector space. In the
camera space, an arbitrary Point is denoted by Pc(xc, yc, zc), while in the projector space,
an arbitrary Point is denoted by Pp(xp, yp, zp). The transformation matrix to convert the
Points between these two spaces is crucial to the Projection Mapping process, as shown
in (3).

(
R T
0 1

)
xc
yc
zc
1

 =


xp
yp
zp
1

 (3)

where R denotes a 3 × 3 rotation matrix and T denotes a 3 × 1 translation matrix. To collect
representative sample Point pairs in both the depth image and screen space for computing
the transformation matrix, a 4 × 5 chessboard pattern (Figure 5a) was utilized and projected
onto planes of different heights above the target surface. To recognize the sample Points in
the screen space, the sequences of the chessboard pattern were used at various heights and
orientations, and images were captured by the RGB-D sensor (Figure 5b,c). The recognized
corner Points on the chessboard were then mapped to the depth image by the registration
of the RGB to the depth images. MATLAB was used to perform the recognition extraction
of 12 Point pairs per checkerboard configuration to estimate the transformation model. The
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transformation model was estimated by solving the estimation of the parameters using a
derivative-free nonlinear solver.

(a) (b) (c)
Figure 5. Projector calibration: (a) checkerboard pattern example, (b) corresponding acquired RGB
image, and (c) depth image after the Projection of the checkerboard pattern.

2.2. Framework for the Validation of Optical Tissue Sensing Technologies

In this section, the developed PPM system will be implemented in a newly introduced
framework for registering, labeling, and validating optical Point-based measurements
with histopathology. The following framework is similar and independent of the device
used since the difference in the RSME for both devices is negligible. This framework was
evaluated based on a use-case study performed. For this, 30 patients who underwent breast-
conserving surgery at the Netherlands Cancer Institute–Antoni van Leeuwenhoek (NKI-
AVL) were included, and optical Point-based tissue measurements were performed on the
excised lumpectomy specimens. In this specific use case, Diffuse Reflectance Spectroscopy
(DRS) measurements were performed using an optical probe. However, this framework
can be applied using any other optical Point-based technique available. This study was
approved by the Institutional Review Board of NKI-AVL and registered under number
IRBm20-006, which did not interfere with the standard histopathology processing and
subsequent diagnostic procedures.

2.2.1. Measurement Pipeline

Figure 6 demonstrates the overview measurement pipeline with three main steps:
(1) specimen collection, (2) selecting, tracking and performing optical measurements, and
(3) histology processing.

2.2.2. Specimen Collection

Immediately after the performed breast-conserving surgery, the excised lumpectomy
specimen was collected in the operating theater from the NKI-AVL hospital and trans-
ported to the Department of Pathology. The specimen was inked and gross-sectioned in
approximately 5 mm-thick tissue slices according to the standard protocol until either the
tumor area or the placed Iodine-125 seed became visible (Figure 6a–c). The unsliced part of
this lumpectomy specimen was then used for optical tissue measurements. Optical tissue
measurements in this study were performed on the inside of the lumpectomy specimens,
since the macroscopic appearance of tumor tissue increases the likelihood of performing
measurements on tumor sites compared to optical tissue measurements that are performed
on the outside of a specimen surface.

2.2.3. Selecting, Tracking, and Performing Optical Tissue Measurements

The half-sliced lumpectomy specimen was positioned in a fixed holder and placed
in the field of view of the PPM system. A macroscopic top-view snapshot image of the
specimen was acquired and displayed on the screen (Figure 6d). From this image, Points of
interest (POIs) were selected manually. The number of Points can be adjusted depending
on the size of the specimen. After selection, the POIs were projected as light dots on the
specimen’s surface. Next, a new macroscopic top-view snapshot image of the specimen,
including projected POIs, was acquired by the PPM system (Figure 6e). The diameter of
the projected POI can be adjusted to the size of the optical probe used. After these series
of steps, the PPM system outputs two different specimen images: a snapshot specimen
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image (SO) and a snapshot specimen image including the projected POIs (SPOI). After
projecting the POIs on the specimen’s surface, optical Point-based tissue measurements
were performed on each predefined location separately (Figure 6f). After positioning the
probe on the POI correctly, the projector from the PPM system can be turned off so that the
projected light is not interfering while performing optical tissue measurements.

Specimen collection

Selecting, tracking and performing optical tissue measurements

Histology processing

Breast conserving surgery Half gross-sectioned 
lumpectomy specimen

Excised lumpectomy 
specimen

Selecting 
measurement locations

Performing optical 
tissue measurements 

Projecting 
measurement locations

Continue gross-sectioning 
and sample tissue slice

Tissue annotations by 
pathologist Microscopic analysis 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Overview of the measurement pipeline: (a) breast-conserving surgery, (b) excised lumpec-
tomy lump, (c) gross-sectioning of lumpectomy lump until tumor area becomes visible, (d) acquiring
snapshot specimen image (SO) with PPM system and selection of measurement locations, (e) pro-
jecting measurement locations and acquiring a snapshot specimen including projected POIs (SPOI),
(f) performing DRS measurements, (g) continued gross-sectioning and sample measured tissue
slice, (h) processing and acquiring histology image (HO), and (i) ground truth tissue annotations by
pathologist and acquiring annotated histology image (HA).
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2.2.4. H&E Processing

Next, the remaining half-sliced lumpectomy specimen was further processed by the
Department of Pathology, where sagittal slicing and gross sectioning of the lumpectomy
specimen continued. The measured tissue slice, the surface of which the optical tissue
measurements were performed, was then placed in a megacasette (Figure 6g). According
to the standard protocol, a microscopic H&E section was created and digitalized with
Aperio® ScanScope AT2 (Leica Biosystems, Wetzlar, Germany) (Figure 6h). All histology
images were uploaded to Slide Score (web viewer for high-resolution scans of microscopic
histopathology slides). Here, for each microscopic H&E image, invasive carcinoma, ductal
carcinoma in situ (DCIS), and connective and fat tissue were annotated by a pathologist and
considered as the ground truth (Figure 6i). After finalizing the complete histopathology
processing of the lumpectomy specimen, two different microscopic images were generated:
a histology image of the measured breast specimen (HO) and an annotated histology image
of the measured breast specimen (HA).

2.2.5. Correlation with Histopathology

To summarize, after completing the measurement pipeline, four different images were
obtained: two snapshot specimen images (SO and SPOI) and two histology images (HO
and HA). These images will be used in the following registration pipeline to correlate
the snapshot specimen image (including the POIs) with histopathology. The histology
image (including annotations of the pathologist) was used to label each optical tissue
measurement with the correct pathology label.

2.2.6. Automatic Deformable Image Registration

In a previous study, an unsupervised deep-learning-based deformable multi-modal
image-registration method was developed, which is able to account for deformations be-
tween images from different modalities [32]. The architecture of this automatic deformable
image-registration method is based on the VoxelMorph principle and uses a deep convo-
lutional neural network (gθ(F, M)), similar to UNet [33,34], as displayed in Figure 7. The
model uses two input images, in this case a fixed microscopic histology image (F) and a
moving snapshot specimen image (M), which can be switched based on one’s preferences.
Since this network was trained with two-channel input images, it is required to convert
HO and SO to single grayscale images. To create more-comparable intensity levels between
both images, the macroscopic top-view specimen image was converted to grayscale by
using the saturation values only, as shown in Figure 7. Both input images were resized to
256 by 192 pixels to reduce the computational effort of the network.

The output of the model consists of a dense displacement field (DDF). This DDF has
the same size as the moving image and can be defined as a set of vectors that displays the
displacement of each individual pixel of this moving image. Thus, the DDF (φ) defines the
Mapping from moving image coordinates to the fixed image and was used (in combination
with a spatial transform function) to register both images, which results in the predicted
image (M(φ)). Mutual information was used as a loss function (L), which is a common
objective function for the computation of the similarity between two images acquired in
different modalities.

For all 30 lumpectomy specimens, the Dice score and mutual information were calcu-
lated between the registered and unregistered images to evaluate the performance of the
automatic deformable registration model. The Dice score is a commonly used metric in
image registration that measures the similarity between two binary images based on the
alignment of two images. The Dice score ranges from 0 to 1, where 0 indicates no overlap
and 1 indicates a complete alignment between the reference and registered image. This
metric mostly evaluates the shape of an image. Since a deformable registration is applied,
it is also important to evaluate the overlap of the central regions in the images. This can
be achieved by calculating the mutual information (MI) between two images. The basic
idea of the MI in image registration is to measure the similarity between two images by
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comparing the histograms of these images. The MI between two images is the amount of
information that is shared between their histograms. Specifically, it measures how much the
joint histogram of the two images deviates from the product of their individual histograms,
thereby determining the optimal alignment of two images by finding the transformation
that maximizes the mutual information between them. A high MI value indicates that the
images are similar and easier to align, while a low MI value indicates that the images are
dissimilar and more challenging to align.

The statistical analysis was performed using IBM SPSS statistics v27 (IBM Corp.,
Armonk, NY, USA). A normal distribution was assessed with the Shapiro–Wilk test. The
statistical analysis for normally distributed data was performed with an unpaired t-test and
for non-normally distributed data using a Mann–Whitney test, whereas a p-value ≤ 0.05
was considered statistically significant.

Loss function 

(𝐿)

Dens 

Displacement 

field (𝜑)

Spatial 

transform

Moving 

(𝑀)

Fixed 
(𝐹)

Network 

(𝑔𝜃(𝐹,𝑀))
𝑆𝑂

𝐻𝑂

𝑆𝑂(𝑠𝑎𝑡)

𝐻𝑂(𝑔𝑟𝑒𝑦)

Predicted 

(𝑀(𝜑))

𝑆𝑅

Automatic deformable image registrationAutomatic deformable image registration

Figure 7. Automatic deformable image registration: HO is converted to a single grayscale image
(HO(grey)). For greater similarity of the intensity levels, SO is converted to grayscale by using the
saturation values only (SO(sat)). These images are used as the input for the unsupervised deep
convolutional neural network (gθ(F, M)) with fixed histology image HO(grey) (F) and a moving
snapshot specimen image SO(sat) (M). Mutual information is used as the loss function (L). The
network outputs a dense displacement field (DDF(φ)), which defines the Mapping from the moving
image coordinates to the fixed image and is used to register M with F. This results in predicted image
SR(M(φ)).

2.2.7. Label Extraction for Tissue Classification

In order to extract tissue labels for each measurement location, it is necessary to track
the measurement locations in the annotated histology image (ground truth). Therefore, the
first step was to extract all measurement locations from SPOI . X- and Y-coordinates of the
centers of these objects were determined and a new binary image with center Points was
created. Next, the measurement areas were imitated by creating circles corresponding to
the size of the used optical probe (which can be adjusted based on the probed volume).
Since SPOI has the same orientation as the input image SO, the output DDF can be used
to apply the obtained deformable registration to the snapshot specimen image including
the POIs. In this case, the DDF was applied to the binary image, with the same size
as SPOI , to transform the extracted measurement areas to the correct orientation. By
overlaying the annotated histology image HA with the registered binary image (with
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extracted measurement locations), the optically measured tissue types are visualized for
each measurement location microscopically and can be considered as the ground truth. The
last step involves the process of creating labels by calculating tissue type percentages for
every tracked and registered measurement location. In this study, we choose a microscopic
histology image as the fixed image (F) since it is easier to apply a DDF on measurement
locations compared to a microscopic structure when extracting tissue labels. However, this
order can be change to one’s preferences.

3. Results
3.1. Evaluation of PPM System

The accuracy of the PPM system is calculated after the calibration procedure. The root-
mean-squared error (RMSE) of the transformation model was estimated by the difference
between the sampling Points and the Mapping results using a checkerboard. The overall
system error of the custom-built Kinect-projector setup was 0.59 mm. For the HP Sprout
system, this resulted in an RMSE of 0.15 mm. The difference in the error can be due to
differences in both the depth camera resolution and device stability. In the case of the
HP Sprout, the projector and RGB-D camera are integrated and fixed in place, providing
greater stability. However, in the custom-built system, while the projector and sensor are
also fixed, they are still vulnerable to slight movements, which may impact the calibration,
which could result in lower accuracy.

3.2. Acquired Images and Input Images

Optical tissue measurements were obtained from 30 lumpectomy specimens, for
which we completed the whole pipeline, as described in Section 2.2.1. This resulted in four
different images for each specimen: SO, SPOI , HO, and HA. Before using the automatic
deformable image registration, the input images SO and the microscopic histology image
HO were converted to grayscale. By using only saturation values, SO obtained similar
intensity levels as SO (Figure 8).

Acquired images

Input images 

𝑆𝑂 𝑆𝑃𝑂𝐼 𝐻𝑜 𝐻𝐴

𝑆𝑂(𝑔𝑟𝑒𝑦) 𝑆𝑂(𝑠𝑎𝑡) 𝑆𝑂(𝑔𝑟𝑒𝑦)

Figure 8. Example of the acquired images: the macroscopic top-view snapshot image of the lumpec-
tomy specimen with and without projected POIs (SO and SPOI) and the microscopic histology image
with and without annotations (HO and HA). Both input images HO and SO were converted to single
grayscale images (HO(grey) and SO(grey)). For the greater similarity of the intensity levels, SO(grey) is
converted to saturation values only (SO(sat)).
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3.3. Automatic Deformable Image Registration

Figure 9 shows an example for the overlap between the input images, before and after
the automatic deformable image registration was applied. The results for both the Dice
score and MI are visualized in Figure 10.

Automatic deformable registration

Fixed image Overlay

Registered image Fixed image Overlay

Moving image 

Prior to registration 

After registration

𝑆𝑂(𝑆𝑎𝑡) 𝐻𝑅(𝑔𝑟𝑒𝑦)

𝑆𝑅 𝐻𝑅(𝑔𝑟𝑒𝑦)

Figure 9. Performance of automatic deformable registration. Prior to registration: moving image
SO(sat) (purple) laid overthe fixed image HO(grey) (green). After registration: predicted image SR

(purple) laid overfixed image HO(grey) (green).
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Figure 10. Evaluation of automatic deformable image-registration method (a) Dice score and (b)
mutual information. Green and blue visualize the distribution of the unregistered and registered
dataset, respectively. The middle line represents the median, whereas the thinner dotted lines
represent the interquartile range (IQR).
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The violin plots show the distribution for all 30 lumpectomy specimens, before and
after the registration was applied. The width of these plots shows the relative frequency in
which each value occurs and becomes wider when the value occurs more frequently and
with a higher probability. The distribution for the unregistered Dice score images ranges
from 0.77–0.95 (median 0.86 ± 0.05) and 0.94–0.99 (median 0.97 ± 0.02) after registration
was applied, whereas the distribution for the mutual information images ranges from
0.17–0.52 (median 0.33 ± 0.08) and 0.34–0.63 (median 0.52 ± 0.08) for the unregistered and
registered images, respectively.

3.4. Label Extraction for Tissue Classification

The specimen image with the projected POIs (SPOI) has the same orientation as
the input image SO(sat). Thus, the output DDF can be applied to a binary image with
extracted measurement locations to register all locations with histopathology. Therefore,
the registered binary image with extracted measurement areas was laid over the annotated
histology image (HA) in order to determine the tissue labels’ percentages used as the
ground truth. All steps of the framework for label extraction are visualized in Figure 11.

Label extraction 

𝑆𝑃𝑂𝐼 (a) (b) 

(c) 

DDF

𝐻𝐴

Figure 11. Pipeline label extraction. (a) Binary image of extracted measurement locations. SPOI

has the same orientation as input image SO(sat), so the DDF can be applied on the binary image,
which results in a registered binary image with extracted measurement areas (b). The annotated
histology image (HEA) (where yellow, green, and red represent fat, connective tissue, and invasive
carcinoma, respectively) has the same orientation as the input image HO. Therefore, HA can be laid
overthe registered binary image with the extracted measurement areas, resulting in the tissue label
percentages used as the ground truth (c).

4. Discussion

The validation of optical tissue-sensing techniques is necessary before these technolo-
gies can be implemented in diagnostic tools and provide real-time tissue classification
during surgical procedures. To make the performance of classification algorithms as ac-
curate as possible, a precise method for tracking the performed optical measurements
on tissue specimens is crucial. Such a method should enable measurement areas to be
traced back in microscopic tissue sections and may serve as the ground truth tissue labels.
However, due to histopathology processing, accurate correlation between optical tissue
measurements with microscopic tissue sections is often hampered by tissue deformation.
In this study, a newly developed framework was introduced for improved tracking, reg-
istering, and labeling of optical tissue measurements, which provides further validation
for their clinical applicability. With the use of a Point Projection Mapping (PPM) system,
the Projection of measurement locations on the tissue specimen becomes possible. The
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acquired top-view specimen images (SO, SPOI) were used for the following correlation
with histopathology. Using an unsupervised automatic deformable multi-modal image-
registration method, measurement locations can be traced back in the annotated histology
images (HA). Labels were created by calculating the percentages of the involved tissue
types for each tracked and registered measurement location.

A registration between the tracked optical tissue measurement locations and histopathol-
ogy is needed to create ground truth tissue labels. Therefore, in this case study, an automatic
deformable registration was applied on a newly acquired dataset of optical tissue measure-
ments of 30 lumpectomy specimens to assess the registration performance. The distributions
of the obtained Dice score and MI for the registered images were significantly higher com-
pared to the ones obtained from the unregistered images (Figure 10). For the Dice score, the
majority of the images after the registration were distributed with a median of 0.96 ± 0.01,
as visualized in Figure 10a, meaning that, based on the general shape of the images, an
accurate overlap was achieved. The MI was used to quantify the similarity between the
different image modalities and was calculated using the histograms of the images and the
joint probability distribution of their intensity values. The majority of the unregistered
images were distributed around the median of 0.33 ± 0.07, whereas the majority of the
cases were located above the median of 0.52 ± 0.08 after registration, meaning an improved
alignment of the inside structures was achieved, as visualized in Figure 10b. The MI was
originally used for comparing single modality images. However, in this study, we were
dealing with registration between different image modalities with different gray intensity
distributions. Although the MI gives the impression of an improvement in overlaying struc-
tures (registration), it is not the most-optimal metric to access the registration performance
between multi-modal images.

The first step in the validation of technologies for optical tissue sensing involves
the tracking of measurement locations. The developed PPM system showed a very high
precision when projecting measurement locations on the lumpectomy specimens (RMSE
of 0.15 mm using HP Sprout device) and, thereby, demonstrates added value for imple-
mentation in the proposed validation framework. It is important to note that we also
utilized a custom-built device in our experiments, which yielded slightly lower, but similar
performance (RMSE of 0.59). This custom-built device can be readily reproduced using
any RGB-D camera and projector, addressing the concerns about the limited availability
of the HP Sprout Pro G2 multimedia device. The differences in accuracy between these
two systems emphasize the importance of factoring in both depth camera resolution and
the sturdiness of the integration of RGB-D camera and projector when building such a
PPM system.

To the best of our knowledge, this is the first automated tracking system using Projec-
tion Mapping, which minimizes tracking errors compared to other methods, for example
the use of ink to mark the measurement locations. The accuracy of the ink placement
can involve human error since the locations will be marked after the measurements are
performed [15,16,23,35,36]. Placing ink marks prior to the measurements is not feasible,
since the ink can be observed in the spectral data. Besides, the placed ink marks can
diffuse to the surrounding region, resulting in the mark not exactly representing the exact
measurement location. This issue also limits the number of measurements at possible
Points of interest, since ink marks with the same color are not distinguishable. When
measurements are performed too close together, the ink marks will overlap, which makes
it even impossible to track the separate measurement locations back in the corresponding
histology image. Besides, this approach is not applicable for optical measurements per-
formed on gross-sectioned tissue slices, since the placed ink will fade during the following
histopathology processes. In this case, the use of permanent fiducial markers (for example,
small burn marks on the tissue slice) could be another solution to track optical tissue
measurements [26,37]. However, burn marks or other permanent markers can destroy the
measured tissue, and this can interfere with the following histopathology analysis, making
this technique restricted to single Points of interest as well.



J. Imaging 2024, 10, 37 15 of 18

Using probe-fitting grids or molds is another way to track the optical tissue measure-
ments locations without damaging the tissue [29]. But, the predefined grid locations can be
insufficient since they will not always overlap with the measurement location that is aimed
at. Another method to localize measurement locations is the video tracking of an optical
probe [24,25]. Gorpas et al. proposed a live tracking technique for FLIm measurements
by the incorporation of an aiming beam, which allows localization during acquisition. A
camera acquires the locations in a white light image, from which further optical analysis is
feasible [38,39]. The wavelength range used of this aiming beam does not affect the FLIm
acquisition. This technique is hard to incorporate for optical techniques where the probe
needs to be in contact with the tissue. Also, since this tracking method works with the
use of an emitted blue light, broad-band Spectroscopy such as DRS at certain wavelengths
can be affected. Blocking the field of view of a camera can also result in failed tracking,
which complicates in vivo applications. In this paper, an improved method for tracking,
registering, labeling, and validating optical tissue measurements with histopathology was
demonstrated. With the developed PPM system, it becomes possible to project any de-
sirable number of measurement locations in a more-controlled and -automated manner
without damaging or marking the specimen. This way, human error is reduced, making
this method more applicable compared to other tracking techniques available.

For this case study, lumpectomy specimens were processed in megacassettes to cre-
ate microscopic histology images of the complete tissue slices. It would be desirable to
apply this framework not only on lumpectomy specimens, but also within other oncology
domains in which optical tissue-sensing technologies are investigated frequently and preci-
sion in correlation with histopathology is of great importance. However, when applying
this framework to different types of tissue specimens, for example colon or prostate, most
often, the tissue slices must be subdivided into multiple cases since the tissue specimens
are too big to process in a single case or hospitals have restrictions in adjusting standard
histopathology processing protocols. In that case, microscopic histology images need to be
reattached before using this framework, which can be complicated by tissue deformations.
Before using this framework under those conditions, small adjustments to the method-
ology need to be taken into consideration to process the tissue specimens and apply this
framework in the most-suitable way. The Projection of POIs by the PPM system, due to
base-plane and projector calibration, achieved high precision. However, the extraction of
accurate tissue labels is dependent on the performance of the complete framework and
relies also on the amount of tissue deformation that occurs during the histopathology
processing of the tissue slices. The developed automatic deformable registration is able
to accurately register borders and inside structures when registering snapshot specimen
images to histology images. However, when the tissue is deformed to a certain degree,
the registration and following extraction of the tissue labels will be affected. Tears, the
loss of tissue, and holes make it difficult for the model to identify identical features to
precisely overlay the images. This drawback is based on processes that are not related to
this proposed framework, but do have an effect on the performance and need to be taken
into consideration when using the obtained tissue labels for the further development of
tissue classification algorithms.

The performance of the automatic deformable registration was evaluated with the
use of the MI and Dice score, which determine differences in the intensity level and the
overlap between the input images. We concluded that these matrices were the most-
suitable to determine the registration accuracy between images in which it is difficult to
find corresponding landmarks. However, other metrics such as target registration error can
be explored to draw a more-definite conclusion about the performance of the model.

We would like to address that, for the validation of optical tissue-sensing techniques
and their further applicability in diagnostic tools, it is of great importance to correctly label
the optically measured tissue with a ground truth. By using the proposed framework,
manual and time-consuming tasks will be eliminated, which results in the faster develop-
ment of more-robust and -accurate classification algorithms. Once tissue classifications are
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developed, there is no necessity for the use of this framework, and optical techniques can
be performed in real-time without utilizing the PPM system.

5. Conclusions

This research emphasized the critical necessity of the accurate validation of recently
developed optical tissue-sensing techniques used for tissue discrimination during onco-
logical surgery. A precise correlation of optical measurements with histological results
is identified as crucial, not only for accurate validation, but also for precise labeling of
optical data necessary in the development of high-performance machine learning tissue-
classification algorithms.

The introduction of the Point Projection Mapping system marks a notable advance-
ment, enabling the non-destructive tracking of measurement locations on tissue specimens.
Furthermore, our proposed framework for accurate registration, validation, and labeling of
optical data with histopathology results was successfully validated through a case study.
The demonstrated effectiveness of the PPM system in combination with the proposed frame-
work implies a significant step forward compared to conventional tracking techniques
available. Importantly, this advancement leads to substantial time and resource savings,
establishing its practicality and efficiency in validating optical tissue-sensing technologies.
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