
LocKey: Location-Based Key Extraction
from the WiFi Environment in the User’s

Vicinity

Philipp Jakubeit1(B) , Andreas Peter1,2 , and Maarten van Steen1

1 University of Twente, Drienerlolaan 5, 7522 Enschede, NB, The Netherlands
p.jakubeit@utwente.nl

2 University of Oldenburg, Ammerländer Heerstraße 114-118,

26129 Oldenburg, Germany

Abstract. We investigate extracting persistent information from semi-
volatile signals in the user’s vicinity to extend existing authentication
factors. We use WiFi as a representative of semi-volatile signals, as WiFi
signals and WiFi receiver hardware are ubiquitous. WiFi hardware is
mostly bound to a physical location and WiFi signals are semi-volatile
by nature. By comparing different locations, we confirm our expectation
that location-specific information is present in the received WiFi signals.
In this work, we study whether and how this information can be trans-
formed to satisfy the following properties of a cryptographic key so that
we can use it as an extension of an authentication factor: it must be
uniformly random, contain sufficient entropy, and the information must
be secret. We further discuss two primary use cases in the authentication
domain: using extracted low-entropy information (48 bits) for password
hardening and using extracted high-entropy information (128 bits and
256 bits) as a location-specific key. Using the WiFi-signal composition
as an authentication component increases the usability, introduces the
factor of ‘location’ to the authentication claims, and introduces another
layer of defense against key or password extraction attacks. Next to these
advantages, it has intrinsic limitations, such as the need for the receiver
to be in proximity to the signal and the reliance on WiFi signals, which
are outside the user’s control. Despite these challenges, using signals in
the proximity of a user works in situations with a fallback routine in place
while increasing usability and transparency. LocKey is capable to extract
low-entropy information at all locations measured, and high-entropy from
68% locations for 128-bit keys (48% of the locations respectively for 256-
bit keys). We further show that with an initial measurement time of at
most five minutes, we can reconstruct the key in at least 75% of the cases
in less than 15, 30, and 40 s depending on the desired key strength.

Keywords: Location-based Authentication · Fuzzy Key Extractions ·
WiFi Signals

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Meng et al. (Eds.): ISPEC 2023, LNCS 14341, pp. 399–418, 2023.
https://doi.org/10.1007/978-981-99-7032-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7032-2_24&domain=pdf
http://orcid.org/0000-0001-6216-6100
http://orcid.org/0000-0003-2929-5001
http://orcid.org/0000-0002-5113-2746
https://doi.org/10.1007/978-981-99-7032-2_24

400 P. Jakubeit et al.

1 Introduction

Authentication is a crucial component of ensuring the security of online trans-
actions and information. It describes the ‘provision of assurance that a claimed
characteristic of an entity is correct’ [16]. There are three main types of authen-
tication factors distinguished by the claim made: knowledge factors, possession
factors, and inherence factors. Knowledge factors involve something the user
knows (e.g., password, PIN, or an answer to a security question). These are most
prevalent in practice and are often used as the primary factor in multi-factor
authentication. Possession factors involve something the user has (e.g., a smart
card, a physical token, or a mobile phone). These factors are becoming more
common in modern authentication methods, as users are increasingly relying on
their mobile devices for authentication. Inherence factors involve something the
user is, represented by biometric data (e.g., fingerprints, facial recognition, or
iris scans). These factors are becoming more popular as a means to access a
physical token or a mobile phone. Multi-factor authentication combines two or
more of these factors to provide increased security. For example, a bank might
use a combination of a password (knowledge factor) and an SMS (possession
factor) to authenticate a user.

Location-based authentication is another type of claim that can be used
during the authentication process. It is different from the other authentication
factors as it is not about the user but the environment the user is in. Tradi-
tionally, a location-based authentication factor is used to localize a user (e.g.,
IP address ranges, GPS). However, we do not intend to localize a user but to
recognize the environment the user is in. For the purpose of authentication, to
validate a location claim, it is sufficient to validate that the claimed location is
indeed a location associated with the user. Where the location is located is no
required knowledge to validate the claim.

We propose the recognition of WiFi measurements of a location as an addi-
tional factor. In today’s traditional setup, a user accesses a device either by
knowledge or inherence claims to authenticate from the device towards a service
with a combination of knowledge and possession claims. The user provides their
password and a token or a challenge-response authentication based on a key the
user owns. Our goal is to extend these factors with a claim of location in terms
of WiFi measurements. Such a measurement must contain sufficient information
for the desired use case. As each location differs in the information available, we
choose the amount of information to extract on a per-location basis. With this,
we are capable of either extending the information present in a password/key-
based authentication claim or replacing an entire authentication factor. In the
banking example given above, it might suffice to know that a user logging in
with the correct credentials is at a typical location for this user. E.g., credit card
usage consistency checks rely largely on such behavioral consistencies.

Especially in urban environments, wireless protocols based on the IEEE
802.11 standard (WiFi) and hence WiFi signals, and WiFi hardware are ubiqui-
tous and ever-increasing. WiFi signals are known in the literature to be suited
for various use cases such as indoor positioning [26], area selection [8], distance

LocKey-Key Extraction from WiFi Signals 401

binding [10], behavioral profile construction [21], location fingerprinting [18], and
key extraction [7]. In this paper, we look at the latter: extracting information
from the WiFi signals surrounding us which share properties of a cryptographic
key. What distinguishes our work from previous work is that we only rely on
measurements without changing the existing infrastructure. By this, we intro-
duce an extension that can be applied seamlessly (see Sect. 8 for more details
on the differences with the related work). At first glance this might seem easy
to achieve, however, it turned out to be more intricate. First, as our work is
motivated by the quest for seamless authentication, we do not consider having
control over or changing the behavior of access points (APs). We only consider
the WiFi hardware of the user, the sensor. Second, as we observe electromag-
netic signals, there are fluctuations and disturbances, which result in signals
being inconsistently present. Third, as WiFi signals are emitted into the world
we are required to find a way to make the derived information secret.

Our assumed WiFi infrastructure builds on stationary access points (APs),
which constantly emit signals to indicate their presence, the so-called beacon
frame. We use the information in the periodically sent beacon frames to derive
location-specific information from the vicinity of a user. The setting is that we
only observe signals, we need to account for inconsistencies in the volatile signals,
and we need to make at least some information from the publicly available signals
secret. The approach we take is (as done in biometrics e.g., [17]) not to store the
information, but to generate and later reproduce it from a semi-persistent source.
This is appealing as it reduces the attack surface because an adversary cannot
extract this information from the hardware. Due to the potential volatility of the
signals we require a backup procedure or fallback routine to be in place. To make
the observed information secret, we require another source of randomness such
that a vicinity key derived from the environment becomes uniformly random,
and secret, and contains sufficient entropy in the information-theoretic sense.
With LocKey:

• We show how to use a vicinity key to strengthen existing secret information
(key or password).

• We increase the usability of multi-factor authentication.
• We get location as a claimed characteristic while preserving privacy.

To do so, we describe how to construct a WiFi measurement by observing
only available APs by processing the available beacon frame features as an envi-
ronmental entropy source and show how to precisely reconstruct such a WiFi
measurement from a sufficiently similar measurement. Next, we show how to
derive a vicinity key from such a WiFi measurement by introducing a device
component. While doing so, we identify entropy estimates and evaluate the per-
formance of our proposed method by using our real-world dataset and analyze
our method in terms of the system’s security. We observe that a low-entropy
vicinity key of 48-bit can be extracted at all considered locations, while we can
extract high-entropy vicinity keys of 128-bit at 68% of the locations, and 256-bit
vicinity keys at 48% of the locations considered. We further show that with ini-
tial WiFi measurements of up to five minutes, we can reconstruct a key in less

402 P. Jakubeit et al.

than 40 s for all vicinity key strengths. Further, LocKey adds an extra layer of
security on top of knowledge and possession factors. When a password or key gets
compromised in traditional schemes, the adversary broke the system, while with
LocKey in place, an adversary is required to derive a composition of WiFi APs
that is sufficiently similar to the AP composition at the user’s location.

2 Foundations

In this section, we describe the two underlying foundations of LocKey. First,
we focus on WiFi beacon frames, what they entail, and by which circumstances
they are impacted. Second, we focus on fuzzy extractors, what they are, and
why they are a perfect fit for the inconsistent AP compositions we observe.

2.1 WiFi Beacon Frames

The WiFi beacon frame is a management frame defined in the IEEE 802.11 stan-
dard [14]. A periodically sent beacon frame advertises the presence of the base
station. The WiFi beacon frame entails information about the network, like the
physical address and capabilities of the network. Which fields to use is limited
by two aspects; the presence in the beacon frame itself and the receiver’s oper-
ating system (OS). The presence of the information in the beacon frame itself is
not guaranteed, as a frame contains mandatory and optional fields. The OS of
the receiver matters, as different OSs provide different levels of access to beacon
frame fields in general and based on access rights within the system itself. In
the case of the Linux OS, the accessible fields are the network’s name called the
service set identifier (SSID), the media access control address (MAC address), a
general flag, the maximum bandwidth to use, the security and capability flags,
the frequency used, and the mode of the AP [12]. These fields combined have a
theoretical maximum of 63 bits; entropy analyses on real-world data suggest a
minimum of 9 bits [18]. Privileged access on Linux (root space) and Windows
allows access to more beacon-frame fields, while OSX and mobile operating sys-
tems are more restrictive in accessing beacon-frame fields.

2.2 Fuzzy Extractors

The authors of [9] coined the term fuzzy extractor. However, the idea of using
sets to lock a vault goes back to [20]. One way to look at fuzzy extractors is
as error-tolerant and nonuniformity-tolerant key-encapsulation mechanisms for
a secret key. They can generate a uniformly random string R from an input w.
This extraction process is error-tolerant, so a sufficiently similar input w′ ∼ w
reproduces the same uniformly random string R. The inputs’ similarity can be
expressed on the bit level by the inputs’ Hamming distance. Sufficiently similar
means that the Hamming distance is not greater than t, the number of errors
that can be corrected. The generate and reproduce functions are the two building
blocks of a fuzzy extractor and can be constructed from two components: a secure
sketch and a strong extractor, as shown in Fig. 1.

LocKey-Key Extraction from WiFi Signals 403

Secure Sketches. A secure sketch is a function that recreates an input w from
another input w′ with a small Hamming distance to w. A secure sketch consists
of two main components. The secure sketch and the reconstruct function. The
secure sketch receives an input w and produces a sketch s such that a similar
input w′ together with that sketch s can be used by the reconstruct function to
output the original input w.

Strong Extractor. The strong extractor function is not fuzzy in itself. It generates
a defined output based on its defined inputs. A family of hash functions is used
to extract a uniformly random string from an input and an entropy source.
The extraction process uses the input w and an additional entropy source r.
The authors of [9] show that a 2-wise independent hash function produces an
optimal result, as the length of the random input r is less critical in the scenario
of o fuzzy extractor. We will describe what family of hash functions we chose in
our instantiation section.

Building a Fuzzy Extractor from a Secure Sketch and a Strong Extractor. In
Fig. 1, we show a schematic of the components from a fuzzy extractor and how
to construct it from a secure sketch and a strong extractor. The input w is used
as input to the secure sketch to create a sketch s. This sketch, together with
internally generated randomness r, forms the output, helper data P = (s, r).
This randomness r is used together with the input w as input to the strong
extractor to create the uniformly distributed string R. To reproduce this R
created by the generator function, the reproduce function receives the helper

Ext

SS Rec

Ext

Gen Rep

w r

s

R

P w′

s

r

r

w

P

R

Fig. 1. Schematic of a fuzzy extractor constructed of a secure sketch (SS) and a strong
extractor (Ext). The generate function takes w as input. The secure sketch creates a
sketch, while the strong extractor uses the input and internally generated randomness
to generate a uniformly random string R. The generator function outputs the string
R and helper data P , which consists of the sketch s and internal randomness r. The
reproduce function takes an input w′ similar to w and the helper data P as input.
Internally, a reconstruct function takes the input w′ and the s element of the helper
data P and outputs the reconstructed w. The reconstructed w is used together with
the r part of the helper data P as input to the strong extractor, which outputs the
same uniform random string R as outputted by the generator function if the Hamming
distance of w and w′ is sufficiently small (≤ t).

404 P. Jakubeit et al.

data P and a similar input w′ as inputs. It inputs the sketch part s included
in P and the input w′ into the reconstruct function. The reconstruct function
reconstructs from both its inputs the original input w. The reconstructed w
is used with the random r component of the helper data P as input to the
strong extractor. This strong extractor performs exactly as its counterpart in
the generation construction and outputs R.

3 Overview on LocKey

In this work, we focus on the IEEE 802.11 standard [14], which we will refer
to as WiFi. However, we assume that the principle we describe will also hold
for other wireless standards and somewhat persistent electromagnetic signals
in general. We consider a sensor, a wireless receiver, capable of observing the
beacon frames sent by WiFi APs. We assume both, the sensor and the APs,
to be spatially static. We assume standard laptop hardware (e.g., [15]) as the
sensor. The sensor gathers measurements of APs over time. We describe each AP
by an AP representation (APR). We call a specific composition (set) of APRs
measured at one location a WiFi measurement.

We want to see how the composition of measured WiFi signals in the vicinity
of a user can be used to derive a vicinity key. The main challenge lies in the fact
that the WiFi composition is fluctuating. Already a small physical area is subject
to heavy fluctuations (an illustration of the fluctuation of WiFi signals in a right
square prism of dimensions 36 cm2 by 18 cm can be seen at [22]). To compensate
for the signal fluctuations, we choose to work with a fuzzy extractor. This works
by conducting initial measurements and deriving a vicinity key and helper data.
With this helper data, it is possible to derive the same vicinity key from suf-
ficiently similar measurements. Sufficiently similar refers to two measurements
differing in at most t elements. We derive t from the initial measurements as it
influences the entropy of our derived key and we need to know before how much
entropy is available at a location.

We focus especially on usability and transparency. An authentication system
using the WiFi environment of a user does not impose a serious burden on the
user. During the first generation of a vicinity key, the user is required to stay
in place for the time required to measure the environment. However, afterward,
the authentication can be conducted from the service and software on the user’s
device alone. This becomes even more prominent in the before-mentioned sce-
nario of a confirmation SMS. Instead of retyping a code, the user is not required
to engage at all. It suffices that the user resides at a known location. This leads
to further applications such as transparent authentication schemes in which the
service authenticates a user continuously.

We split a vicinity key into two components, the measurement component,
and the device component. The helper data P forms the device component
and the input set forms the measurement component. A fuzzy extractor is con-
structed such that P leaks only a predefined amount of information about the
input set. The input set leaks no information about the helper data. Only in

LocKey-Key Extraction from WiFi Signals 405

combination do they produce the desired, uniformly random string, the vicinity
key. Contrary to the default assumption of fuzzy extractors, we propose for our
application to treat both components as confidential.

To derive a key once and again, we distinguish the generation and reproduc-
tion phases. In Fig. 2, we give a visual overview of the extraction process of a
vicinity key in both phases.

User

AP1

AP3 AP4

AP2

Create fuzzy measurement
F from WiFi APs in the

user’s vicinity.

Generate the key K and
the helper data P from

the fuzzy measurement F.

Fuzzy Extractor

F

K P

User

AP1

AP4

AP2

Create fuzzy measurement
F’ from WiFi APs in the

user’s vicinity.

Reproduce the key K from
the helper data P and the
fuzzy measurement F’.

Fuzzy Extractor

F’ P

K

Generating the key K from WiFi measurements in
the user’s vicinity.

Reproducing the same key K from similar WiFi measurements
in the user’s vicinity and the helper data.

Fig. 2. A visualized overview of LocKey.

Generation Phase. During the generation phase, we scan the environment for
a fuzzy measurement F, which we input into the generate function of a fuzzy
extractor. Internally, this results in inputting F into a secure sketch and inputting
F together with freshly generated randomness r into a strong extractor. The
secure sketch produces the sketch s, which we combine with r to the helper data
P=(s,r). The strong extractor produces the vicinity key K. Due to being based
on the fuzzy measurement F, the vicinity key K is location specific. The fuzzy
measurement F forms the measurement component and r, internally created
randomness, forms the device component.

Reproduction Phase. During the reproduction phase, we scan the environment
for a fuzzy measurement F′. We input F′ and P = (s, r) into the reproduce
function of a fuzzy extractor. Internally, this results in inputting F′ and the
sketch part s of the helper data P into a reconstruction function which outputs
F. This F forms, together with the r part of the helper data, the input for
a strong extractor, which produces the vicinity key K. The vicinity key K is
identical to the vicinity key K produced in the generation phase if F and F′

differ in at most t APs.
The challenging aspect of deriving a key from WiFi measurements is the size

of the universe and the fact that we have an unstable amount of APs in each
WiFi measurement. Thus, we require for LocKey a solution that can deal with
varying input sizes and perform well even in large universes of potential input
sizes. However, before we find a fitting solution, we first discuss our goals for
LocKey and how it can be utilized.

406 P. Jakubeit et al.

3.1 Application and Integration Suggestions

We intend to use the vicinity key K derived from the WiFi environment of
the user as a claim in an authentication scheme. We discuss the use of LocKey
in password hardening and challenge-response-based authentication and present
further use cases in Sect. 7. In general a vicinity key can be seen as secure salt
with a location component.

Password Hardening. The user extends the entropy in a password by append-
ing the extracted bits from the derived vicinity key. For password hardening,
we require only a low amount of entropy; for example, 48 bits may suffice. This
application increases the entropy of a password almost for free. The only require-
ment we impose on a user is to reside in a specific location.

Challenge-Response. The party the user is authenticating towards presents a
question (challenge) and the user must provide a valid answer (response). For
a challenge-response scheme, we require a higher amount of entropy; 128-bit or
256-bit are standard key sizes. Which key size to choose depends on the context
of the authentication and the available entropy at a measured location. A vicinity
key K could be used to prove that the environment at a specific location was
measured. The two choices of challenge-response authentication are to either
use a message authentication code-based approach [23] or an approach that uses
asymmetric cryptography and requires the user to sign a message [11].

4 Instantiating LocKey

In this section, we elaborate on the information present in the data and our
choices for the fuzzy extractor and its components, the secure sketch, and the
strong extractor.

4.1 Data Representation

We build an access-point representation (APR) from the features provided by
the AP. To do so, we need to estimate the information conveyed in each feature.
The theoretical maximum amount of MAC address information is 48 bits [14],
constructed from a 24-bit organizationally unique identifier (OUI) and a 24-
bit network interface controller. As MAC addresses are assumed to be unique,
we can interpret them as an index of APs. Assuming at least 10-bit for the
OUI, the maximum of information has a cap of 234 considering the APs min-
entropy. The min-entropy is the negative logarithm of the probability of the
most likely outcome. We choose the min-entropy, as we need to consider the
most conservative entropy estimate for the strong extractor to guarantee the
chosen key strength. The definition of min-entropy is:

Hmin = − log(max
i

pi)

LocKey-Key Extraction from WiFi Signals 407

To represent the entropy of an APR in a real measurement, we considered
the data observed. We measured only a fraction of potential MAC addresses
with a min-entropy of 7.15 bits. We choose one byte as APR length, as we use
the extendable output function SHAKE (Secure Hash Algorithm with KEccak
[5]) to generate the APR by digesting the plain beacon frame features. We use
SHAKE-128 with a security strength of 128 bits when it is sufficient. Also, we
show the results for higher security, in which case we opt for SHAKE-256.

4.2 Fuzzy Extractor

We construct our fuzzy extractor as described in Sect. 2.2 by combining a secure
sketch with a strong extractor. For the secure sketch, we choose PinSketch [9],
and for the strong extractor, we choose the original universal hash function
proposed by Carter and Wegman [6].

Secure Sketch. We choose PinSketch as the secure sketch for our instantiation,
as it fits our requirements perfectly. PinSketch conducts error correction on a
set of elements. It can handle arbitrarily many errors, even though each error it
can correct reduces the entropy. Therefore, we choose t, the number of errors to
correct, tight on a per-location basis. However, PinSketch is optimal with a loss
of t log(n + 1). What distinguishes PinSketch from other set-based sketches is
that it can handle varying set sizes and can deal with large universes due to its
optimized nature.

Assuming a universe U , PinSketch creates a binary vector of n = |U| bits to
represent a set. From there, it becomes equivalent to the error correction of two
vectors in that space. The problematic part is the size of the universe U . If it
becomes too large, other secure sketches become infeasible. PinSketch uses two
tricks to change that. PinSketch stores only the support of a vector and builds
on BCH codes for error correction.

Support of a Vector. The support of a vector v, supp(v), lists only the positions
on which a vector is nonzero. Using only the support of a vector makes the
description of small words very efficient. In the case of fuzzy WiFi measurements,
each APR consists of 8 bits. Therefore, we can describe each APR by a vector of
size |APR| = 28. To list all possible APRs and set only the APRs present in a
specific WiFi measurement to 1 while all other values are 0 requires a vector of
size 2|APR|. Listing only the positions present is obviously much more efficient.

BCH Codes. BCH codes [13] are a class of cyclic error-correcting codes con-
structed using polynomials over a finite field. BCH codes can correct multiple-
bit errors and provide highly efficient decoding using syndrome decoding. To
describe syndrome decoding, we need to dive a bit deeper into the inner work-
ings of linear codes. We assume linear code C and a message x. The length of

408 P. Jakubeit et al.

each code word in C is n, and the dimension of C as a vector subspace is k.
To derive a code word c = Gx of the linear code C corresponding to message
x, we multiply x with a generator matrix G of size k × n whose rows form a
basis for a linear code. G can be written in the standard form with Ik being the
k × k identity matrix and P being a k × (n − k) matrix as G = [Ik|P]. From
G the parity-check matrix H can be constructed as H = [P�|In−k] such that
GH� = 0.

A syndrome s of any vector y of the ambient vector space is defined to be
s = Hy�. Due to the construction of H, the syndrome s is zero if and only if
the vector y is a code word.

Syndrome decoding makes use of the fact that Hz = He, the syndrome of an
error pattern e is equal to the syndrome of an observation z = c + e consisting
of the code word c observed with this error pattern e, as we know from the
definition of a syndrome that Hc = 0.

The equality implies that a table of error patterns can be pre-computed.
In the case of an observation of a value y, we know that y is no code word if
Hy� �= 0. Further, we can look up the error pattern in the generated table to
retrieve the bits to correct. Deducing and correcting an error can be implemented
in logarithmic time complexity.

Both choices make PinSketch quite efficient with time complexity of
poly(|w| log n) [9] and also provide an optimal storage complexity of t log(n+1).
In words, this means that in a setting capable of correcting up to t errors, for
a set w which consists of several l = log(n + 1) bit vectors, a sketch consists of
only t binary vectors of length l. t log(n+ 1) is also the amount of entropy loss,
which makes sense as the sketch makes t × l bits public. The authors of PinS-
ketch focused on the time complexity required. They reduced it to polynomial
time based on the set size of the input set |w| and being only logarithmically
in the size of the universe n. Most other secure sketch solutions working on sets
are time bound by the size of the universe, therefore, being dependent only on
the input-set size is an improvement. In the following, we list the workings of
PinSketch in the generation and reproduction phase.

Strong Extractor. As a strong extractor, we choose the 2-wise independent
family of universal hash function proposed by Carter and Wegman [6], which is
defined by:

ha,b(x) = ((ax + b) mod p) mod m

We construct x from hashing all elements, the APRs, of an observed set w, a
WiFi measurement F, with SHAKE-128 (respectively SHAKE-256) and create
an output of size |x| ∈ {128, 256}, based on approved key sizes by the NIST [4].
The output size determines the desired security level. However, the number of
APs available determines an upper bound for the security level per location.

LocKey-Key Extraction from WiFi Signals 409

PinSketch [9]
Generation phase:

Input: w, Output: s
Compute the syndrome syn(w) of w.
Output the syndrome as sketch s = syn(w).

Reproduction phase:
Input: w′,s, Output: w
Compute the syndrome syn(w′) of w′.
Compute σ = syn(w) − syn(w′), the difference between both syndromes.
Find a vector v such that syn(v) = σ for which holds that |supp(v)| ≤ t.
As the vector v is equal to the difference of the inputs v = w−w′, output v+w′ = w.

As we intend to extract sufficient entropy, we choose our universe for hashing
Uh depending on the security guarantees desired such that |Uh| = |x|.

It applies to the moduli that p must be a prime and p ≥ |Uh| and that m
specifies the output range of numbers of the strong extractor. As p needs to be
larger or equal to the size of the universe, we decide to go for a prime expressible
by 2z − k for tuples of (z, k) ∈ {(129, 25), (257, 93)} such that p is greater than
Uh, and we have a reasonably tight bound for the coefficients. We randomly
choose the coefficients a and b modulo p except for a �= 0. This choice implies
that we have two z bit numbers as part of the helper data and hence as the
device component of the key. We choose m = |Uh| as we use the strong extractor
to get only a uniformly distributed string based on the entropy we derived from
our input x.

5 Evaluation

Data sets available online provide MAC addresses and other information. How-
ever, they do not include the capability features of WiFi beacon frames, which
we need for measuring the environment. Therefore, we created our own, ethics-
committee approved, data set from 37 locations measured in offices and flats1.
We conducted the measurements with ordinary WiFi hardware from laptops
(e.g., [15]) in the Linux OS. In total, we measured 1167 different APs in these
locations, with the number of APs measured by the sensor varying from 1 to
100 APs in one measurement for the duration of one second. A beacon frame is
received every 5 ms to 1 s. This interval is configurable by the user and device-
specific. Therefore, not all available APs are present in each measurement.

The main questions are whether there is sufficient entropy at a location, and
for how long we need to measure to derive the desired amount of entropy. Both
questions must be asked during the generation phase and during the reproduction
phase. During the generation phase, we determine the locations suitable for a
specific key strength. With the measured duration, we set the stage for the
reproduction phase. We discuss the inherent tradeoff and parameter choices later
1 https://gitlab.com/lockey1/scandata.

https://gitlab.com/lockey1/scandata

410 P. Jakubeit et al.

in this section. During the reproduction phase, we determine the measurements
at a location suitable for reconstruction and the duration required to reconstruct
successfully.

Generation Phase – Location Suitability. First, we determined what sufficient
entropy entails. Recall that we have a set of measurements per location. Each
measurement is represented by a set of APs. We represent each AP by an 8-bit
APR and each AP contains at least 7.15 bits of entropy we can harvest. The
key size as well as the error correction require entropy. The key size determines
the entropy required to derive a key of the desired size. Hence, we require at
least �48/7.15� = 7 APs to derive the low-entropy key and 18 (respective 35)
APs to derive the high-entropy keys of 128 and 256 bits. The error correction
requires additional entropy. We described in Sect. 4.2 that PinSketch has the
optimal amount of entropy loss, t log(n+ 1) for n being the size of the universe
|U| = 2|APR|. As we determined the length of an APR to be 8 bits, the entropy
loss is t ∗ 8 bits. As each AP has a min-entropy of 7.15 bits we require 1.12
additional APs for each AP to correct.

We considered 37 locations with each a total length of one hour divided into
3600 one-second measurements. We chose the first measurement as starting point
for the generation phase. This represents the real-world scenario: a user enters
a location and checks whether it is suited for the use of LocKey by starting
to measure WiFi signals. With this procedure, we determined the number of
locations providing sufficient entropy per desired key strength (see Table 1).

Table 1. The number of locations from our test set of 37 locations from which we can
extract sufficient entropy to guarantee the desired key strength with at least one AP
to correct using the first measurement as starting point.

No. of suitable locations (out of 37) Key strength in bits

37 48

25 128

17 256

Generation Phase – Duration. We analyzed our dataset and chose generation-
phase measurement lengths of 3, 4, and 5 min for the 48, 128, and 256-bit
key extractions. We chose these measurement lengths as they provide sufficient
entropy for a maximum of locations with sufficient entropy for error correction.
However, at the end of this section, we discuss the implications and other choices.

Reproduction Phase. The helper data generated during the generation phase
entails the number of APs and the number of APs we can correct. Therefore,
we aggregated measurements until we have sufficient APs to attempt a recon-
struction of the generation-phase WiFi measurements. This condition is met
as soon as we observe at least the number of APs we are capable to correct

LocKey-Key Extraction from WiFi Signals 411

subtracted from the total number of APs used in the generation phase. Our
choices for measurement times during the generation phase imply that we have
3600 − 180 = 3420 s of measurements for the 48-bit scenario, 3360 s for the
128-bit scenario, and 3300 s for the 256-bit scenario remaining to analyze the
reconstruction capabilities. We chose every measurement of these remaining mea-
surements as starting point and aggregate measurements until the condition is
met to attempt a reconstruction.

Reproduction phase – measurement suitability. In Fig. 3 we show the success
rate of the attempted reconstructions. Note that missing bars indicate that the
specific location has not sufficient entropy for the desired key strengths. We
divided the bar plot into three focus areas. We reconstructed the vast majority
of locations in more than 99%. For the 48-bit scenario, only locations L11 and
L12 had a slightly lower performance than 99% but still more than 98%. For
the 128-bit scenario, less locations provide sufficient entropy at all, but only
locations L11 and L22 had fewer than 99% of starting points from which we can
reconstruct. In the 256-bit scenario, even fewer locations had sufficient entropy,
but also most locations had more than 99% of successful reconstructions. Only
location L30 had about 98% of correct reconstruction. Locations L11 and L32
are outliers and only allowed for about 75% and 85% of the starting points to
reconstruct successfully. These reconstruction performances show that LocKey
performs with more than 99% of successful reconstruction for the vast majority
of locations and starting measurements.

Fig. 3. These bar plots show the reconstruction performance per location for each pos-
sible starting measurement in the remaining set of valid measurements for the repro-
duction phase. Missing bars show that the specific location does not provide sufficient
entropy for the location in question. The broken axis allows us to focus on the relevant
performances.

Reproduction phase – Duration. The crucial follow-up question is how long it
takes to conduct these reconstructions. In Fig. 4, we show box plots to convey
the varying length of measurements required. For clarity, we omit the outliers in
our visualization. In the 48-bit scenario we observed between 0.7% and 7.1% of
outliers at all locations except L7 and L9 with the highest outlier requiring 262 s
at location L4. In the 128-bit scenario we observed between 0.02% and 9.3%
of outliers at all locations, with the highest outlier requiring 253 s at location

412 P. Jakubeit et al.

(a) 48-bit scenario.

(b) 128-bit scenario.

(c) 256-bit scenario.

Fig. 4. The three box plots show the required time for reconstructing the set of APs
in all scenario. We highlighted the average and maximum time required to reconstruct
75% of the measurements of all locations.

L35. In the 256-bit scenario we observed between 0.3% and 6.4% of outliers at
all locations except L27 with the highest outlier requiring 750 s at location L37.
Per figure, we show the largest average and maximum time required to restore
two-thirds of all measurements. We can reconstruct a set of APs on average for
75% of the measurements in less than 15, 30, and 40 s and require a maximum
of 65, 103, and 170 s for the respective key sizes of 48, 128, and 256 bits. We also
observed that we require less than three minutes in the 48 and 128 bits scenarios
and that for most of the locations five minutes are sufficient for the 256 bits
scenario, while two locations require up to 15 min to reconstruct. This is a direct
consequence of the 5 min we used in the generation phase. During these 5 min,
many APs can be aggregated, which we need to measure before attempting the
reconstruction.

LocKey-Key Extraction from WiFi Signals 413

Tradeoff. Having longer generation-phase measurements introduces a tradeoff for
the reproduction phase. More generation-phase measurements lead to a higher
percentage of successful reconstructions, however, require longer measurement
times during the reproduction phase for several locations. Less generation-phase
measurements imply a shorter measuring duration required during the repro-
duction phase. This reduced duration implies that the reconstruct is less often
successful. From our analysis, we observed that as a bare minimum, we required
only generation-phase measurement lengths of 40, 60, and 160 s (for 48, 128,
256-bit key strength scenarios). Choosing these shorter generation-phase mea-
surements, we required less time to gather enough APs during the reconstruction
(the outliers in the 256-bit scenario take at most 200 s), which makes sense as we
considered fewer measurements. Therefore, we are not required to measure for
that long when trying to reconstruct. The disadvantage is that fewer locations
provide sufficient entropy. Additionally, the performance drops significantly for
some locations as the APs not taken into consideration are still present and
could poison our reconstruction attempts.

We determined how long to measure during the generation phase. This
impacts the performance and measurement times of the reconstruction phase.
We suggest deciding on a per-location basis for an optimal strategy. Looking
at the four locations with a mean above 20 s for the 48-bit case in Figure 4a
we observed strong signal fluctuations at the location. Therefore, we must also
decide on a per-location basis how stable the signals are and whether the signal
stability is sufficient for the desired use case.

6 Security Model and Analysis

We consider a user and an adversary. The user conducts WiFi measurements
and executes either the generate or reproduce function to construct the vicinity
key K. We assume that the user is trusted, that the user’s hardware is not
compromised, and that the user does not deliberately provide any information
to the adversary.

We consider two different scenarios, the first in which the attacker is assumed
to have no knowledge of the device component, the helper data P and the second
in which the attacker has knowledge of P . We assume for both scenarios that
the adversary’s goal is to retrieve the vicinity key K.

No access to P Without access to the device component, the adversary is
required to guess the correct key K or the WiFi measurements F the user used
during the generation phase and the random coefficients of the strong extractor.
Due to our choice of key derivation, the key K is either of size 48-bit, 128-bit, or
256-bit and is uniformly distributed. This implies that an attacker has a chance
of 1

|K| for |K| ∈ {248, 2128, 2256} to guess a key correctly.
An adversary could compromise a WiFi capable device near the user, or be

on-site to conduct WiFi measurements. However, without knowing the infor-
mation in the helper data P the adversary has no means to know whether the

414 P. Jakubeit et al.

WiFi measurement conducted is the WiFi measurement used during the genera-
tion phase. Without knowing the random coefficients a and b from the universal
hash function, it is infeasible to extract the correct vicinity key K. Therefore,
we conclude that an adversary is required to brute force at least the number of
bits of the freshly generated vicinity key and that doing so is infeasible.

With access to P This entails that the adversary got access to the user’s
device and circumvented security mechanisms in place. Traditional standalone
solutions (e.g., password or key) would be broken at this point. Therefore, this is
a worst-case analysis, which focuses on the question: if the adversary has access
to the device component, the helper data P , how likely is it for an adversary
to also derive the measurement component? From P the adversary knows a, b,
t and |F|. As PinSketch is capable of correcting up to t APs the task at hand
for an adversary becomes to sample the correct set of APs such that together
with P the vicinity key K can be reconstructed. The minimum set size to have
for a correct reconstruction has size k = |F| − t. The chance for an adversary
to choose the correct k APRs is

(
n
k

)
. The question becomes what the knowledge

of the AP composition of the adversary is. We express the adversary’s domain
knowledge by n. If the adversary has no information, then n = 248, which is the
theoretical upper bound from the specification. An adversary with access to a
service like Wigle, which lists one billion APs, reduces this number already to
n = 230. However, if an adversary is capable of constructing a scan on-site the
size of n could be decreased significantly. If the adversary misses only one AP,
having observed only k − 1 correct APs, the missing AP can be from the whole
domain (at least 230). However, if the adversary happens to measure at least k
correct APs the chance becomes smaller. As soon as the adversary scans at least
one AP not in the measurement component of size k, the adversary has to try
at least k combinations. Therefore, this can be mitigated by asking the service
to allow only a strict number of authentication attempts. The only chance the
adversary has is to scan k correct APs as

(
n
k

)
= 1 for n = k. Considering the

fluctuation of APs, this is highly improbable and works only if the adversary has
access to P and the location’s WiFi composition.

7 Discussion

In this section, we discuss our results and its limitation as well as the privacy
considerations that come with it.

Results. We deliberately chose the bare minimum of information per APR and
showed that all locations provide sufficient entropy in the measurable beacon
frames for the scenario of password hardening and that between 46% and 68%
percent of the locations provide sufficient entropy to derive a high-entropy key.
Further, we showed that we are capable to determine whether LocKey can be
applied at a given location and which measurement times we require per specific
location.

LocKey-Key Extraction from WiFi Signals 415

Limitations. The limitations of our approach are twofold. On the one hand,
we observe outliers (Sect. 5), which require long (up to 15 min) reconstruction
times. These locations with specific key strengths might not yet be suited for
the application of LocKey. On the other hand, we consider WiFi measurements,
which are inherently mostly out of the control of the user. Therefore, changes
in the AP composition could deny key reconstruction. However, we observe two
general and one specific mitigation. First, being capable of correcting t errors
gives us some flexibility regarding a changing environment. Second, we assume
application only when a fallback mechanism is present. In the case of the pass-
word and the challenge-response mechanism, a second factor would enable an
alternative confirmation of identity and allow for a re-enrollment with the new
WiFi environment.

Local Attacks. Jamming, flooding or AP pool poisoning describes an adversary
who deliberately changes the AP environment of a user. This can happen during
the generation phase and during the reconstruction phase. Therefore, we assume
a trusted generation phase. The system checks anyways that sufficient APs are
present. During the reconstruction phase manipulating the WiFi environment
could result in a denial of service. As a countermeasure, we have the assumption
that LocKey should only be used in conjunction with a fall-back factor.

Privacy. The privacy considerations are relevant as personally identifiable infor-
mation (PII) is present in the beacon frame. For the features accessible on the
Linux OS, the SSID and the MAC address classify as PII. The EU classifies a
MAC address belonging to a user, even in its hashed form, as PII [24]. However,
it is impossible for an adversary to retrieve the PII because we process the PII
only locally and combine it with high entropy randomness. An adversary on-site
could conduct a WiFi measurement and obtain the PII, such as every entity
conducting WiFi measurements at a specific location. For an adversary, even
holding the correct vicinity key K, there is no stable ground truth to derive
relevant PII.

8 Related Work

In our work, we use WiFi beacon frame features measured for a certain period
to derive a vicinity key by fuzzy extraction. To our knowledge, we are the first to
promote the idea of using the semi-volatile signals of a user as key storage from
a read-only perspective. We do require that a backup mechanism is present, due
to the volatile nature of the signals.

The authors of [1] approach the problem from the perspective of spatial role-
based access control and the authors of [7] discuss position-based cryptography
also in terms of a user’s claimed characteristic. Both are examples of plenty solu-
tions which require control of the sensor and the APs. With these, the authors
prove that in the Bounded Retrieval Model position-based secret communication
and position-based authentication and signatures are possible. In contrast, we

416 P. Jakubeit et al.

offer the user an increase in security and the reduced burden of a second authen-
tication factor only by access to the sensor. However, we most likely require
occasional re-enrollments of the user.

The authors of [3] use error correction to create a shared key separately on two
WiFi nodes, focusing on reducing the computation and communication overhead.
They achieve this by elevating signal interference. Explicitly, the authors use deep
fades, a strong and destructive interference. They measure deep fades occurring
in the signal transmitted to the node for a particular duration and encode their
occurrence in a bit string. If two nodes are sufficiently close to one another,
the bit string is similar enough that both nodes can reconstruct the same key
by communicating verification information. The approach presented differs from
ours, as two nodes are required to compute the same key, and they create the
key from signal interference. Instead, we want to reproduce a key at the same
device and location later from information sent in a beacon frame. However, we
consider the work sufficiently relevant as might offer a path for future work to
look into the information transmitted by the WiFi standard and in interference
or error behavior.

The authors of [25] also use WiFi signals to create a shared key between two
devices. In their case, two devices are in a body area network. What makes their
publication interesting is that it focuses on the RSSI only. They create a fixed-
length binary vector between two WiFi devices based on the signal strength of
the communication between these two devices. The authors of [2] go one step
further and use next to the RSSI, the link quality indicator. Another metric
produced by the sensor not by the AP. They show that the method is suited to
‘verify the location of an IoT node within a small area with high probability of
success’. Using other sensor metrics might help to extend LocKey in the future
or use a similar concept on small IoT devices.

Unrelated to fuzzy extractors is the concept of [18] in which the authors
fingerprint a location only in terms of WiFi signals. They draw a line between
capability and PII aspects of a WiFi beacon frame and recognize a location in
terms of only the previously mentioned six capability features available in the
Linux OSs. Their work shows that the surrounding WiFi signals accurately define
a location. However, they focus on the average entropy by applying the Shannon
entropy as they are not required to harvest the entropy for key generation. Hence,
they could leave out the higher entropy sources of MAC address and SSID to
opt for more privacy, as they intend to share a template of the WiFi location
with a service to allow for authentication which requires a heightened focus on
PII.

9 Conclusion

The signals in a user’s environment provide sufficient reconstructable informa-
tion to derive a key even when having access only to the sensor and focusing only
on particular WiFi features. The density of the electromagnetic signals deter-
mines the amount of information that is extractable at a location. We showed

LocKey-Key Extraction from WiFi Signals 417

that it is possible to extract the information once and also to some certainty
reconstruct the extracted information. However, it is possible that the required
composition is not achievable. Therefore, we focused only on use cases with a
fallback mechanism in place. We further showed that combining the measured
component with the device component in a secure extraction step generates uni-
formly random key material. The extent to which we can successfully extract
a key is dependent on the location. We were able to extract a low-entropy key
of 48-bit for all locations we considered. Extracting a 128-bit key succeeded for
nearly 68% of the locations while extracting a 256-bit key succeeded for nearly
46% of the locations we considered.

Future work includes applying LocKey in practice, to increase the entropy
available and to decrease the measurement time. More WiFi data could be cap-
tured to increase the entropy available and decrease the measurement time. This
can either be achieved by including more features like the RSSI or by deriving dif-
ferent stable features from the beacon frame. Additionally, different data sources
can be used to extract the required entropy. Different aspects of WiFi could be
gathered, e.g., interference or error behavior as done by [3] or WiFi could be used
to read other signals in the user’s vicinity as done by [19]. Next to WiFi, different
wireless data sources like Bluetooth, Lora, or alike can be aggregated. Finally,
we expect a ‘natural’ increase in electromagnetic signals available over time due
to the adaptation of more wireless devices, which increases the applicability of
authentication-factor extensions like LocKey.

References

1. Agudo, I., Rios, R., Lopez, J.: A privacy-aware continuous authentication scheme
for proximity-based access control. Comput. Secur. 39, 117–126 (2013)

2. Aman, M.N., Basheer, M.H., Sikdar, B.: Two-factor authentication for IoT with
location information. IEEE Internet Things J. 6(2), 3335–3351 (2018)

3. Azimi-Sadjadi, B., Kiayias, A., Mercado, A., Yener, B.: Robust key generation from
signal envelopes in wireless networks. In: Proceedings of the 14th ACM Conference
on Computer and Communications Security, pp. 401–410 (2007)

4. Barker, E., Dang, Q.: Nist special publication 800–57 part 1, revision 5: Recommen-
dation for key management: Part 1-general, May 2020. Cited on, page 58 (2020)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak sponge
function family: Specifications summary (2011). http://keccak.noekeon.org/specs
summary.html

6. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, pp. 106–112 (1977)

7. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 23

8. Cho, Y., Bao, L., Goodrich, M.T.: LAAC: a location-aware access control protocol.
In: 2006 3rd Annual International Conference on Mobile and Ubiquitous Systems-
Workshops, pp. 1–7 (2006)

9. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)

http://keccak.noekeon.org/specs_summary.html
http://keccak.noekeon.org/specs_summary.html
https://doi.org/10.1007/978-3-642-03356-8_23

418 P. Jakubeit et al.

EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 31

10. Fakhreddine, A., Tippenhauer, N.O., Giustiniano, D.: Design and large-scale eval-
uation of WiFi proximity metrics. In: European Wireless 2018; 24th European
Wireless Conference, pp. 1–6. VDE (2018)

11. Foti, J.: Entity authentication using public key cryptography (1997)
12. GNOME. org.freedesktop.networkmanager.accesspoint (2021). https://developer.

gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.
AccessPoint.html

13. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffers 2, 147–156 (1959)
14. IEEE Standard. Wireless lan medium access control (mac)and physical layer (phy)

specifications (2007). https://www.iith.ac.in/∼tbr/teaching/docs/802.11-2007.pdf
15. Intel. Dual band wireless-ac 8265 (2021). https://ark.intel.com/content/www/us/

en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
16. ISO 27000. Information technology, security techniques, information security man-

agement systems, overview andvocabulary (2018)
17. Jagadeesan, A., Thillaikkarasi, T., Duraiswamy, K.: Cryptographic key generation

from multiple biometric modalities: fusing minutiae with iris feature. Int. J. Com-
put. Appl. 2(6), 16–26 (2010)

18. Jakubeit, P., Peter, A., van Steen, M.: The measurable environment as nonintrusive
authentication factor on the example of WiFi beacon frames. In: Saracino, A.,
Mori, P. (eds.) ETAA 2022. LNCS, vol. 13782, pp. 48–69. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-25467-3 4

19. Jeong, W., et al.: SDR receiver using commodity wifi via physical-layer signal
reconstruction. In: Proceedings of the 26th Annual International Conference on
Mobile Computing and Networking, pp. 1–14 (2020)

20. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257
(2006)

21. Li, G., Bours, P.: Studying WiFi and accelerometer data based authentication
method on mobile phones. In: Proceedings of the 2018 2nd international Conference
on Biometric Engineering and Applications, pp. 18–23 (2018)

22. Lohr, C.: A WebGL-based raytraced voxel engine with transparency of WiFi
signal over a 360mm x 360mm x 180mm area (2016). https://cnlohr.github.io/
voxeltastic/

23. Turner, J.M.: The keyed-hash message authentication code (HMAC). Federal Inf.
Process. Standards Publ. 198(1), 1–13 (2008)

24. WP29. Opinion 01/2017 on the proposed regulation for the eprivacy regu-
lation (2002/58/ec). (2017). http://ec.europa.eu/newsroom/document.cfm?doc
id=44103

25. Yang, W., Sun, Y., Zhan, L., Ji, Y.: Low mismatch key agreement based on wavelet-
transform trend and fuzzy vault in body area network. Int. J. Distrib. Sens. Netw.
9(6), 912873 (2013)

26. Yang, C., Shao, H.-R.: WiFi-based indoor positioning. IEEE Commun. Mag. 53(3),
150–157 (2015)

https://doi.org/10.1007/978-3-540-24676-3_31
https://developer.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://developer.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://developer.gnome.org/NetworkManager/1.2/gdbus-org.freedesktop.NetworkManager.AccessPoint.html
https://www.iith.ac.in/~tbr/teaching/docs/802.11-2007.pdf
https://ark.intel.com/content/www/us/en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
https://ark.intel.com/content/www/us/en/ark/products/94150/intel-dual-band-wireless-ac-8265.html
https://doi.org/10.1007/978-3-031-25467-3_4
https://cnlohr.github.io/voxeltastic/
https://cnlohr.github.io/voxeltastic/
http://ec.europa.eu/newsroom/document.cfm?doc_id=44103
http://ec.europa.eu/newsroom/document.cfm?doc_id=44103

	LocKey: Location-Based Key Extraction from the WiFi Environment in the User's Vicinity
	1 Introduction
	2 Foundations
	2.1 WiFi Beacon Frames
	2.2 Fuzzy Extractors

	3 Overview on LocKey
	3.1 Application and Integration Suggestions

	4 Instantiating LocKey
	4.1 Data Representation
	4.2 Fuzzy Extractor

	5 Evaluation
	6 Security Model and Analysis
	7 Discussion
	8 Related Work
	9 Conclusion
	References

