
Fault tree reliability analysis via squarefree polynomials

Milan Lopuhaä-Zwakenberg
University of Twente, Enschede, the Netherlands

m.a.lopuhaa@utwente.nl

Keywords: Fault trees, reliability analysis, polynomial algebra

Abstract: Fault tree (FT) analysis is a prominent risk assessment method in industrial systems. Unreliability is one of
the key safety metrics in quantitative FT analysis. Existing algorithms for unreliability analysis are based
on binary decision diagrams, for which it is hard to give time complexity guarantees beyond a worst-case
exponential bound. In this paper, we present a novel method to calculate FT unreliability based on algebras
of squarefree polynomials and prove its validity. We furthermore prove that time complexity is low when the
number of multiparent nodes is limited. Experiments show that our method is competitive with the state-of-
the-art and outperforms it for FTs with few multiparent nodes.

1 Introduction

Fault trees. Fault trees (FTs) form a prominent risk
assessment method to categorize safety risks on in-
dustrial systems. A FT is a hierarchical graphical
model that shows how failures may propagate and
lead to system failure. Because of its flexibility and
rigor, FT analysis is incorporated in many risk assess-
ment methods employed in industry, including Fault-
Tree+ (IsoTree, 2023) and TopEvent FTA (Reliotech,
2023).

A FT is a directed acyclic graph (not necessarily a
tree) whose root represents system failure. The leaves
are called basic events (BEs) and represent atomic
failure events. Intermediate nodes are AND/OR-
gates, whose activation depends on that of their chil-
dren; the system as a whole fails when the root is ac-
tivated. An example is given in Fig. 1.
Quantitative analysis. Besides a qualitative analy-
sis of what sets of events cause overall system fail-
ure, FTs also play an important role in quantitative
risk analysis, which seeks to express the safety of the
system in terms of safety metrics, such as the total
expected downtime, availability, etc. An important
safety metric is (un)reliability, which, given the fail-
ure probability of each BE, calculates the probability
of system failure. As the size of FTs can grow into the
hundreds of nodes (Ruijters et al., 2019), calculating
the unreliability efficiently is crucial for giving safety
and availability guarantees.

There exist two main approaches to calculating
unreliability (Ruijters and Stoelinga, 2015). The first

Left engine fails Right engine fails

Right rotor fails Left rotor failsNo fuel

AND

OR

BE

Aircraft fails

Figure 1: A fault tree for a small aircraft. The aircraft fails
if both its engines fail; each engine fails if either its rotor
fails or it has no fuel (the plane has a single fuel tank).

approach works bottom-up, recursively calculating
the failure probability of each gate. This algorithm is
fast (linear time complexity), but only works as long
as the FT is actually a tree. However, nodes with mul-
tiple parents (DAG-like FTs) are necessary to model
more intricate systems. For such FTs, as we show in
this paper, calculating unreliability is NP-hard. The
main approach for such FTs is based on translating
the FT into a binary decision diagram (BDD) and per-
forming a bottom-up analysis on the BDD. This BDD
is of worst-case exponential size, though heuristics
exist. The BDD corresponding to an FT depends on
a linear ordering of the BEs, with different orderings
yielding BDDs of wildly varying size; although any
single one of them can be used to calculate unrelia-
bility, finding the optimal BE ordering is an NP-hard
problem in itself. As a result, it is hard to give guar-
antees on the runtime of this unreliability calculation
algorithm in terms of properties of the FT.

ar
X

iv
:2

31
2.

05
83

6v
1

 [
cs

.D
S]

 1
0

D
ec

 2
02

3

Contributions. In this paper, we present a radical
new way for calculating unreliability for general FTs.
The bottom-up algorithm does not work for DAG-like
FTs, since it does not recognize multiple copies of the
same node in the calculation, leading to double count-
ing. In our approach we amend this by keeping track
of nodes with multiple parents, as these may occur
twice in the same calculation. Then, instead of propa-
gating failure probabilities as real numbers, we prop-
agate squarefree polynomials whose variables repre-
sent the failure probabilities of nodes with multiple
parents; keeping these formal variables allows us to
detect and account for double counting. Furthermore,
to keep complexity down we replace formal variables
with real numbers whenever we are able. At the root
all formal variables have been substituted away, yield-
ing the unreliability as a real number.

This approach has as advantage over BDD-based
algorithms that we are able to give upper bounds to
computational complexity. Most of the complexity
comes from the fact that we do arithmetic with poly-
nomials rather than real numbers. However, if the
number of multiparent nodes is limited, these poly-
nomials have limited degree, and computation is still
fast. We prove this formally, by showing that the time
complexity is linear when the number of multipar-
ent nodes is bounded, and in experiments, in which
we compare our method to Storm-dft (Basgöze et al.,
2022), a state-of-the-art tool for FT analysis using a
BDD-based approach: here our method is competi-
tive in general and is considerably faster for FTs with
few multiparent nodes.

Summarized our contributions are the following:

1. A new algorithm for fault tree reliability analysis
based on squarefree polynomial algebras;

2. A proof of the algorithm’s validity and bounds on
its time complexity;

3. Experiments comparing our algorithm to the
state-of-the-art.

An artefact of the experiments is available at (Lop-
uhaä-Zwakenberg, 2023).

2 Related work

There exists a considerable amount of work on FT re-
liability analysis. FTs were first introduced in (Wat-
son, 1961). A bottom-up algorithm to calculate their
reliability is presented in (Ruijters and Stoelinga,
2015), which is a formalization of mathematical prin-
ciples that have been used since the beginning of FT
analysis. This algorithm works only for FTs that are
actually trees, i.e., do not contain nodes with multiple

parents. In (Rauzy, 1993), a BDD-based method for
calculating reliability was introduced that also works
for DAG-shaped FTs. This method is still the state
of the art, although some improvements have been
made, notably by tweaking variable ordering to ob-
tain smaller BDDs (Bouissou et al., 1997) and divid-
ing the FT into so-called modules that can be handled
separately (Rauzy and Dutuit, 1997).

FTs are also used to model the system’s reliabil-
ity over time. The failure time of each BE is mod-
eled as a random variable (typically exponentially dis-
tributed), and additional gate types are introduced to
model more elaborate timing behavior. Reliability
analysis of these dynamic FTs is done via stochastic
model checking (Basgöze et al., 2022).

3 Fault trees

In this section, we give the formal definition of fault
trees (FTs) and their reliability used in this paper. For
us FTs are static (only AND/OR gates), and each ba-
sic event v is assigned a failure probability p(v). Thus
we define:

Definition 3.1. A fault tree (FT) is a tuple T =
(V,E,γ,p) where:

• (V,E) is a rooted directed acyclic graph;
• γ is a function γ : V → {OR,AND,BE} such that

γ(v) = BE if and only if v is a leaf;
• p is a function p: BET → [0,1], where BET =
{v ∈V | γ(v) = BE}.
Note that a FT is not necessarily a tree as gates

may share children. The root of T is denoted RT . For
a node v, we let ch(v) be the set of children of v.

The structure function determines, given a gate
and a safety event, whether the event succesfully
propagates to the gate. Here we model a safety event
as the set of BEs happening, which can be encoded as
a binary vector f⃗ ∈ BBET , where fv = 1 denotes that
the BE v occurs in the event. The structure function is
then defined as follows.

Definition 3.2. Let T = (V,E,γ,p) be a FT.

1. A safety event is an element of BBET .
2. The structure function of T is the function

ST : V ×BBET → B defined recursively by

ST (v, f⃗) =


fv, if γ(v) = BE,∨

w∈ch(v) ST (w, f⃗), if γ(v) = OR,∧
w∈ch(v) ST (w, f⃗), if γ(v) = AND.

3. A safety event f⃗ such that ST (RT , f⃗) = 1 is called
a cut set; the set of all cut sets is denoted CST .

2

Quantitative analysis of a FT is typically done via
its unreliability, i.e., the probability of a cut set occur-
ring, where each BE v has probability p(v) of happen-
ing. The BE failure probabilities are considered to be
independent. The reasoning behind this is that when
they are not independent, this is due to some common
cause; this common cause should then be explicitely
modeled in the FT framework, by replacing the two
non-independent BEs with sub-FTs that share com-
mon nodes (Pandey, 2005).

Definition 3.3. Let T = (V,E,γ,p) be a FT. Let F⃗ ∈
BBET be the random variable defined by P(Fv = 1) =
p(v) for all v∈BET , and all these events are indepen-
dent. Then the unreliability of T is defined as

U(T) = P(F⃗ ∈ CST)

= ∑
f⃗∈CST

∏
v : fv=1

p(v) ∏
v : fv=0

(1−p(v)).

Example 3.4. Consider the FT T from Fig. 1. Ab-
breviating BE names, assume p(rrf) = p(lrf) = 0.4
and p(nf) = 0.3. Furthermore, write f⃗ ∈ BBET as
frrf fnf flrf . Then CST = {010,011,101,110,111}, so

U(T) = 0.6 ·0.3 ·0.6
+0.6 ·0.3 ·0.4
+0.4 ·0.7 ·0.4
+0.4 ·0.3 ·0.6
+0.4 ·0.3 ·0.4 = 0.412.

The unreliability U(T) represents the probability
of failure of the system modeled by the fault tree and
is crucuial to providing safety and availability guar-
antees. The expression in Definition 3.3 becomes too
large to handle for large FTs very quickly; thus it is
important to find efficient solutions to the following
problem.

Problem 3.5. Given a FT T , calculate U(T).

Unfortunately, we show that this problem is NP-
hard. The reason for this is that with appropriately
chosen probabilities, one can find from U(T) a mini-
mal element of CST , and finding such a so-called min-
imal cut set is known to be NP-hard (Rauzy, 1993).

Theorem 3.6. Problem 3.5 is NP-hard.

3.1 Existing U(T) algorithms

There are two prominent algorithms for calculating
U(T). The first one calculates, for each node v, the
probability gv = P(ST (v, F⃗) = 1) bottom-up (Ruijters
and Stoelinga, 2015). For BEs one has gv = p(v). For
an AND-gate, one has gv = ∏w∈ch(v) gw as long as the
events ST (w, F⃗) = 1 are independent as w ranges over

a
 b

e

c

g

d e

f

h

0.5 0.5 0.5

0.5

Figure 2: An example FT with failure probabilities.

all children of v. This happens when no two children
of v have any shared descendants. For OR-gates one
likewise has gv = 1−∏w∈ch(v) gw. This gives rise to
a linear-time algorithm that calculates gv bottom-up.
Unfortunately, this algorithm only works for FTs that
have a tree structure: as soon as a node has multiple
parents, the independence assumption will be violated
at some point in the calculation.

The second algorithm (Rauzy, 1993) works for
general FTs, and works by translating the Boolean
function ST (RT ,−) into a binary decision diagram,
which is a directed acyclic graph, in which the eval-
uation of the function at a boolean vector is repre-
sented by a path through the graph. After the BDD
is found, U(T) can be calculated using a bottom-up
algorithm on the BDD, whose time complexity is lin-
ear in the size of the BDD. Unfortunately, the size
of the BDD is worst-case exponential, although this
worst case is seldomly attained in practice (Rauzy and
Dutuit, 1997; Bobbio et al., 2013). To construct the
BDD, one first has to linearly order the variables; find-
ing the order that minimizes BDD size is an NP-hard
problem, although heuristics exist (Valiant, 1979; Lê
et al., 2014).

4 An example of our method

Before we dive into the details of our method, we
go through an example to showcase how the method
works and to motivate the technical sections.

Consider the FT of Fig. 2. In a bottom-up method,
we calculate the failure probability gv of each node v:
thus for the BEs we have ga = gb = gc = gg = 0.5.
For d, the bottom-up method dictates that we should
calculate gd = ga + gb − gagb. However, this will
cause problems at f , since d and e share b as child,
and so their failure probabilities will not be indepen-
dent. Thus, at d, we modify gd to ‘remember’ its de-

3

pendence on b. We do so by introducing a formal
variable Lb representing b’s failure probability, yield-
ing gd = ga + Lb− gaLb = 0.5+ 0.5Lb. We also get
ge = 0.5+ 0.5Lb. Note that we only introduce a for-
mal variable for b, and not for a and c, as the latter
only have one parent node and thus have no chance of
appearing twice in the same calculation.

At f , we calculate g f = gdge = 0.25 + 0.5Lb +

0.25L2
b. Here we introduce the rule L2

b = Lb, so that
g f = 0.25 + 0.75Lb. The idea behind this is that
we use multiplication to determine the possibility of
two events occurring simultaneously. Since Lb rep-
resents P(ST (b, F⃗) = 1), the term L2

b actually repre-
sents P(ST (b, F⃗) = 1∧ST (b, F⃗) = 1). This is equal
to P(ST (b, F⃗) = 1), so L2

b = Lb.
At this point, the graph structure tells us that b

cannot appear twice in the same calculation any more.
Thus we can safely substitute gb = 0.5 for Lb in g f =
0.25+ 0.75Lb, yielding g f = 0.625. Finally, we get
gh = g f gg = 0.3125.

In the following sections, we introduce two math-
ematical tools needed to apply this method in greater
generality. In Section 5 we review the graph-theoretic
notion of dominators, which will tell us for which
nodes we need to introduce formal variables and at
what point they can be substituted away. In Section
6 we formalize the polynomial algebra in which our
arithmetic takes place.

5 Preliminaries I: Dominators

In this section we review the concept of dominators
and apply them to FTs. We need this to determine at
what point in the bottom-up calculation, outlined in
the previous section, we can replace a formal variable
Lv with the expression gv. Informally, a dominator of
v is present on all paths from the root to v.

Definition 5.1. (Prosser, 1959) Let T = (V,E,γ,p) be
a FT.

1. Define a partial order ⪯ on V by x⪯ y iff there is
a path y→ x in T .

2. Given two nodes v,w∈V , we say that w dominates
v if v≺ w and every path RT → v in T contains w.

The set of dominators of a node is nonempty and
has a minimum:

Lemma 5.2. (Lengauer and Tarjan, 1979) If v ̸= RT ,
then there is a unique w dominating v such that each
w′ dominating v satisfies w ⪯ w′; this w is called the
immediate dominator of v, denoted w = id(v).

Example 5.3. In Fig. 2, the dominators of a are d, f ,
and h, and id(a) = d. The dominators of b are f and

h, and id(b) = f . Note that d is not a dominator of b,
since the path h→ f → e→ b does not pass through
d.

The immediate dominator is interesting to us
since, as we will see later, at id(v) we can replace Lv
by gv. The following result relates the relative posi-
tion of v and w to that of their immediate dominators.

Lemma 5.4. If v ≺ w, then either id(v) ⪯ w or
id(w)⪯ id(v).

To use these definitions in an algorithmic context,
we will make use of the following result:

Theorem 5.5. (Lengauer and Tarjan, 1979) Given T ,
there exists an algorithm of time complexity O(|E|)
that finds id(v) for each v ∈V .

6 Preliminaries II: Squarefree
polynomial algebras

In this second preliminary section, we formally de-
fine the algebras in which our calculations take place.
These are similar to multivariate polynomial algebras,
except in every monomial every variable can have de-
gree at most 1.

Definition 6.1. Let X be a finite set. We define the
squarefree real polynomial algebra over X to be the
algebra A(X) consisting of formal sums

α = ∑
Y⊆X

αY ∏
x∈Y

Lx,

where the Lx are formal variables and αY ∈ R. Ad-
dition and multiplication are as normal polynomials,
except that they are subject to the law L2

x = Lx for all
x ∈ X; that is,

(α+β)Y = αY +βY ,

(α ·β)Y = ∑
Y ′,Y ′′⊆X :
Y ′∪Y ′′=Y

αY ′βY ′′ .

Example 6.2. Let X = {x,y}. Let α = 2+ Lx + Ly
and β = Lx + 3LxLz. Coefficientwise, α is described
as

αX =


2, if X =∅,

1, if X = {x} or X = {y},
0, if X = {x,y}.

Furthermore, α+β = 2+2Lx +Ly +3LxLz, and

α ·β = α ·Lx +α · (3LxLz)

= (2Lx +Lx +LxLy)+(6LxLz +3LxLz +3LxLyLz)

= 3Lx +LxLy +9LxLz +3LxLyLz.

4

Note that if X ⊆ X ′, an α ∈A(X) can also be con-
sidered an element of A(X ′), by taking αY = 0 when-
ever Y ̸⊆ X . For two sets X and Y this also allows us
to add and multiply α ∈ A(X) and β ∈ A(Y), by con-
sidering both to be elements of A(X ∪Y). In the rest
of this paper we will do this without comment.

Besides multiplication and addition, another im-
portant operation that we need is the substitution of a
formal variable by a polynomial. This works the same
as with regular polynomials.
Definition 6.3. Let X ,Y be finite sets and x ∈ X \Y .
Let α ∈ A(X) and β ∈ A(Y). Then the substitution
α[Lx 7→ β] is the element of A(X \ {x}∪Y) obtained
by replacing all instances of Lx by β; more formally,
α[Lx 7→ β] is expressed as

β ·

 ∑
Z⊆X :

x∈Z

αZ ∏
x′∈Z\{x}

Lx′

+ ∑
Z⊆X :

x/∈Z

αZ

(
∏
x′∈Z

Lx′

)
.

In terms of coefficients this is expressed as

α[Lx 7→ β]Z = αZ + ∑
x∈Z′⊆X ,
Z′′⊆Y :

Z′\{x}∪Z′′=Z

αZ′βZ′′

where αZ = 0 if Z ̸⊆ X.

Note that in this definition the multiplication and
addition are of elements of A(X \{x}∪Y).
Example 6.4. Continuing Example 6.2, the substitu-
tion β[Lz 7→ α] is equal to

β[Lz 7→ α] = Lx +3Lx · (2+Lx +Ly)

= 10Lx +3LxLy.

In what follows, we will need three results on cal-
culation in A(X). The first result considerably sim-
plifies the substitution operation.
Lemma 6.5. Let x,α,β be as in Definition 6.3. Then

α[Lx 7→ β] = α[Lx 7→ 1] ·β+α[Lx 7→ 0] · (1−β).

The second result shows how substitution behaves
with respect to addition and multiplication.
Lemma 6.6. Let α1,α2 ∈ A(X), β ∈ A(Y), and x ∈
X \Y . Then:

1. (α1 +α2)[Lx 7→ β] = α1[Lx 7→ β]+α2[Lx 7→ β].
2. If β2 = β, then furthermore (α1α2)[Lx 7→ β] =

α1[Lx 7→ β] ·α2[Lx 7→ β].

The third result states that two substitution oper-
ations can be interchanged, as long as one does not
substitute a variable present in the other:
Lemma 6.7. Let α ∈ A(X), β1 ∈ A(Y1), β2 ∈ A(Y2),
x1,x2 ∈ X \ (Y1 ∪Y2). If x1 /∈ Y2 and x2 /∈ Y1, then
α[Lx1 7→ β1][Lx2 7→ β2] = α[Lx2 7→ β2][Lx1 7→ β1].

When this lemma applies and the order of substi-
tutions does not matter, we will write expressions like
α[Lx1 7→ β1,Lx2 7→ β2], or even α[∀i≤ n : Lxi 7→ βi].

Note that as an R-algebra, one may identify A(X)
with K/I, where K = R[Lx : x ∈ X] is a free polyno-
mial algebra and I is the ideal generated by the set
{L2

x − Lx | x ∈ X}. However, the substitution opera-
tion does not correspond to a ‘natural’ operation on
on K/I.

6.1 Real-valued Boolean functions

We will use the elements of A(X) is to represent func-
tions BX → R. The following result states that this
can be done in a unique way. Since both elements of
A(X) and functions BX → R can be represented by
2|X | real numbers, this should come as no surprise.

Theorem 6.8. Let X be a finite set, and let g : BX →
R be any function. Then there exists a unique ⟨g⟩ ∈
A(X) such that g(c) = ⟨g⟩[∀x ∈ X : Lx 7→ cx] for all
c⃗ ∈ BX .

Example 6.9. Let X = {x,y}, with c⃗ ∈ BX repre-
sented as cxcy. Consider the function g : BX → R
given by

g(00) = 3, g(01) =−2,
g(10) = 7, g(11) = 4.

Suppose ⟨g⟩ = k1 + k2Lx + k3Ly + k4LxLy. Then, for
instance,

g(10) = ⟨g⟩[Lx 7→ 1,Ly 7→ 0] = k1 + k2.

In a similar way we can express all g(⃗c) as sums of ki.
Thus, to find the ki, we have to solve 1 0 0 0

1 1 0 0
1 0 1 0
1 1 1 1


 k1

k2
k3
k4

=

 3
7
−2
4

 .

Since this matrix is lower triangular with nonzero di-
agonal entries, it is invertible, so the ki exist and are
unique. In fact, we find ⟨g⟩= 3+4Lx−5Ly +2LxLy.

7 The algorithm

Using the notation of the previous two sections, we
can now state our algorithm for calculating unreli-
ability. It is presented in Algorithm 1. The algo-
rithm works bottom-up, assigning to each node v a
formal expression gv ∈A({w∈V |w≺ v}) represent-
ing the failure probability of v; the formal variables
Lw present in gv represent nodes with multiple paths

5

input : A FT T = (V,E,γ,p)
output: U(T)

1 ToDo←V ;
2 while ToDo ̸=∅ do
3 Pick v ∈ ToDo minimal w.r.t. ⪯;
4 ToDo← ToDo\{v};
5 if γ(v) = BE then
6 gv← p(v);
7 else
8 if γ(v) = OR then
9 gv← 1−∏w∈ch(v)(1−Lw);

10 else
11 gv←∏w∈ch(v)Lw;
12 end
13 ToDov←{w ∈V | id(w) = v};
14 while ToDov ̸=∅ do
15 Pick w ∈ToDov maximal w.r.t. ⪯;
16 ToDov← ToDov \{w};
17 gv← gv[Lw 7→ gw];
18 end
19 end
20 end
21 return gRT

Algorithm 1: The algorithm SFPA(T).

from the root, which we will also encounter further in
the calculation.

The algorithm works as follows: working bottom-
up (lines 1–4), the algorithm first assigns a gv of the
most basic form to v (lines 5–12): for a BE this is
simply its failure probability p(v), while for OR- and
AND-gates it is the expression for the failure prob-
ability in terms of the formal variables Lw, where w
ranges over ch(v). After obtaining this expression of
gv, the algorithm then substitutes away all formal vari-
ables that we will not encounter later in the compu-
tation (lines 13–18). These are precisely the Lw for
which id(w) = v, as for these w this is the point where
we will not encounter other copies of Lw anymore.
We replace each Lw with the associated expression gw;
we start with the w closest to v, as these gw may con-
tain other Lw′ that also need to be substituted away.
Finally, we return gRT (line 21). At this point all for-
mal variables have been substituted away, so gRT ∈R.
Note that ‘under the hood’ we have determined id(v)
for each v, which can be done in linear time by Theo-
rem 5.5.

The main theoretical result of this paper is the va-
lidity of Alg. 1.

Theorem 7.1. Let T be a FT. Then SFPA(T) =U(T).

We will prove this theorem in Section 9. First, we
introduce a slight extension to the FT formalism.

8 Partially controllable fault trees

In this section, we slightly extend the FT formalism
in a manner necessary for the proof of Theorem 7.1.
The resulting objects, partially controllable fault trees
(PCFTs), are just like regular FTs, except that certain
BEs are labelled controllable BEs; these do not have
a fixed failure probability but instead can be set to 0
or 1 at will. We emphasize that the concept of PCFTs
does not correspond to an engineering reality, but is a
mathematical construct needed for the proof of Theo-
rem 7.1.
Definition 8.1. An partially controllable fault tree
(PCFT) is a tuple T = (V,E,γ,p) where:

• (V,E) is a rooted directed acyclic graph;
• γ is a function γ : V → {OR,AND,BE,CBE} such

that γ(v) ∈ {BE,CBE} if and only if v is a leaf;
• p is a function p: BET → [0,1], where BET =
{v ∈V | γ(v) = BE}.
Similar to BET we define CBET = {v∈V | γ(v) =

CBE}. Since the failure of CBEs is not probabilistic,
one can only speak of the failure probability of T once
one has set the states of the CBEs. Therefore, U(T) is
not a fixed probability, but a function BCBET → [0,1].
Definition 8.2. 1. The structure function of T is a

map V ×BBET ×BCBET → B defined by

ST (v, f⃗ , c⃗)=


fv, if γ(v) = BE,
cv, if γ(v) = CBE,∨

w∈ch(v) ST (w, f⃗ , c⃗), if γ(v) = OR,∧
w∈ch(v) ST (w, f⃗ , c⃗), if γ(v) = AND.

2. Let F⃗ ∈ BBET be a random variable so that
Fv is Bernoulli distributed with P(Fv = 1) =
p(v) for each v ∈ BET , and all Fv are indepen-
dent. Then the unreliability of T is the function
U(T) : BCBET → [0,1] given by

U(T)(⃗c) = P(ST (RT , F⃗ , c⃗) = 1).

In light of Theorem 6.8, the function
U(T) : BCBET → B is described by its associated
polynomial

⟨U(T)⟩ ∈ A(CBET).

Example 8.3. Consider the PCFT OR(a,b), where
γ(a) = BE and γ(b) = CBE (see Fig. 3) and p(a) = 0.4.
Then BBET ∼= BCBEt ∼= B, and ST (RT , f ,c) = 1 if and
only if at least one of fa,cb equals 1. Since P(Fa =
1) = p(a) = 0.4, it follows that

U(T)(c) =

{
0.4, if cb = 0,

1, if cb = 1.

As a polynomial this is ⟨U(T)⟩= 0.4+0.6Lb.

6

8.1 Quasimodular composition

Now that we have expressed a PCFT T as a polyno-
mial ⟨U(T)⟩, the next step is to relate substitution op-
erations on such polynomials to graph-theoretic oper-
ations on PCFTs. The key concept on the PCFT side
is quasimodular composition, which is defined as fol-
lows.

Definition 8.4. Let T = (V,E,γ,p) and T ′ =
(V ′,E ′,γ′,p′) where V and V ′ are not necessarily dis-
joint, such that E,γ,p,ch coincide with E ′,γ′,p′,ch
on V ∩ V ′. Let v ∈ CBET \V ′, and assume that
BET ∩BET ′ =∅ (see Fig. 4). Then the quasimodular
composition T [v 7→ T ′] of T and T ′ in v is the PCFT
obtained by replacing v in T by the entire PCFT T ′,
rerouting all edges originally to v to RT ′ instead.

The concept of quasimodular composition of
PCFTs is closely related to modular composition of
FTs (Rauzy and Dutuit, 1997). The difference is that
in modular composition T and T ′ may not share any
nodes, while in quasimodular composition they may
share CBEs, as well as any internal nodes; however,
due to the condition that these internal nodes must
have the same children in T and T ′, any shared in-
ternal nodes may not have any BE descendants.

The following result states that substitution on the
polynomial level precisely corresponds to quasimod-
ular composition on the PCFT level; it is the key in-
gredient to the proof of Theorem 7.1.

Theorem 8.5. Let T,T ′,v be as in Definition 8.4 and
let T ′′ = T [v 7→ T ′] be their quasimodular composi-
tion. Then CBET ′′ = CBET \{v}∪CBET ′ , and as el-
ements of A(CBET ′′) one has

⟨U(T ′′)⟩= ⟨U(T)⟩[Lv 7→ ⟨U(T ′)⟩].

This theorem is best read ‘in reverse’: given a
large PCFT T ′′, one can calculate U(T ′′) by finding
a quasimodule T ′ and its remainder T , and combin-
ing U(T) and U(T ′). In this sense, this theorem is
analogous to modular decomposition of FTs (Rauzy
and Dutuit, 1997), in which a FT’s unreliability is ex-
pressed in terms of that of its modules. Again, the key
difference is that we allow not just modular decompo-
sition, but also quasimodular decomposition.

ba

0.4

Figure 3: The PCFT of Example 8.3.

c d

e

f

v

(a) T

a b

c d

v

e

(b) T ′

a b

c d

v

e

f

(c) T [v 7→ T ′]
Figure 4: An example of quasimodular composition.
Square nodes are CBEs.

ca b

d

e

(a) T

ca b

d

(b) Td

e

d

c

(c) T [{c,d}]
Figure 5: An example of the constructions of Definition 9.1.
A PCFT T is depicted in (a) (square nodes are CBEs). The
sub-FT Td with root d is depicted in (b). The FT T [{c,d}]
obtained by turning c,d into CBEs is depicted in (c); note
that this FT is also equal to T [{b,c,d}], T [{a,c,d}] and
T [{a,b,c,d}].

9 Sketched proof of correctness

In this section, we sketch the proof of Theorem 7.1;
a full proof is presented in the appendix. Before we
outline the proof, we first define two ways to construct
new (PC)FTs from a FT.

Definition 9.1. Let T = (V,E,γ,p) be a FT.

1. Let v ∈V . Then Tv = (Vv,Ev,γv,pv) is the FT con-
sisting of the descendants of v, with v as a root.

2. Let I ⊆ V . Then T [I] is the PCFT obtained from
T via the following procedure:
• For each v ∈ I, set γ(v) = CBE;
• For each v ∈ I, remove all outgoing edges;
• Then T [I] is the PCFT consisting of all nodes

reachable from the root.

These constructions are depicted in Figure 5.
For a node v, let gv,∞ be the value of gv at the end

of the loop in lines 14–18 of Algorithm 1; this is the

7

value gv has when the algorithm ends, and which will
be used to substitute Lv in line 17. Then Theorem 7.1
follows from the following result:

Theorem 9.2. Let v ∈V , and define

Iv = {w ∈V | w≺ v≺ id(w)}.

Then gv,∞ = ⟨U(Tv[Iv])⟩.
Theorem 7.1 is just the special case v = RT , as

TRT = T and IRT = ∅. The proof can be sketched as
follows:

This is proven by induction on T . For BEs this
is immediate. If γ(v) = AND, then gv is initialized as
∏w∈ch(v)Lw. Then, for each w picked in line 15 of
Algorithm 1, a Lw is substituted by its correspond-
ing polynomial gw = gw,∞. By the induction hypoth-
esis, gw,∞ corresponds to the unreliability function of
a certain PCFT, and by Theorem 8.5, this substitution
operation corresponds to the composition of PCFTs.
By keeping track of the form of the resulting PCFT,
one shows that the PCFT one ends up with is exactly
Tv[Iv], showing the result for v. The case γ(v) = OR is,
of course, completely analogous. By induction, this
proves Theorem 9.2, and by consequence Theorem
7.1.

10 Complexity

The complexity of Alg. 1 can be bound in terms of
graph parameters of the DAG T . To do so, we first
note that we can slightly rephrase the algorithm as fol-
lows. If w is a child of v and w has only one parent,
then w is a maximal element of ToDov. As such, in
line 15 these w will be picked first. Therefore, we may
as well do this replacement in lines 9 and 11 directly.
This leads to Alg. 2, which has the same functional-
ity as Alg. 1 and therefore calculates U(T) correctly.
Note that the condition that w has only one parent is
equivalent to id(w) = v, which leads to our definition
of Sv in line 8.

Like the standard algorithm for reliability analysis
for treelike FTs (Ruijters and Stoelinga, 2015), Alg. 2
works bottom-up. However, it is more complicated
due to the fact that our main objects of interest are
squarefree polynomials rather than real numbers, and
operating on these induces a larger complexity. To
describe this complexity, we introduce the following
notation:

X = {v ∈V | v has multiple parents}.

Since in Alg. 2 line 8, the set Sv consists of all chil-
dren of v with a single parent, the only Lx that are
introduced satisfy x ∈ X . Thus each gv is an element

input : A FT T = (V,E,γ,p)
output: U(T)

1 ToDo←V ;
2 while ToDo ̸=∅ do
3 Pick v ∈ ToDo minimal w.r.t. ⪯;
4 ToDo← ToDo\{v};
5 if γ(v) = BE then
6 gv← p(v);
7 else
8 Sv = {w ∈ ch(v) | id(w) = v};
9 if γ(v) = OR then

10 p1←∏w∈Sv(1−gw);
11 p2←∏w∈ch(v)\Sv(1−Lw);
12 gv← 1− p1 p2;
13 else
14 p1←∏w∈Sv gw;
15 p2←∏w∈ch(v)\Sv Lw;
16 gv← p1 p2;
17 end
18 ToDov←{w ∈V \ch(v) | id(w) = v};
19 while ToDov ̸=∅ do
20 Pick w ∈ToDov maximal w.r.t. ⪯;
21 ToDov← ToDov \{w};
22 gv← gv[Lw 7→ gw];
23 end
24 end
25 end
26 return gRT

Algorithm 2: The algorithm SFPA2(T).

of A(X), and as such has at most 2|X | terms. Multi-
plying two such polynomials has complexity O(4|X |),
and since substitution is just multiplication by Lemma
6.5, substitution has the same complexity. Next, we
count the number of multiplications and substitutions.
The FT T has |X | nodes with more than 1 parent and
1 node with 0 parents, so in total |V |− |X |−1 nodes
have exactly one parent and are used in multiplica-
tions in lines 10 and 14 of Alg. 2; in particular, there
are at most |V | multiplications. Furthermore, for each
v one has |ToDov| ≤ |X |, hence at each v there are at
most |X | substitutions in line 22. We conclude:

Theorem 10.1. Let X be as above. Then Alg. 2 has
time complexity O(|V |(|X |+1)4|X |).

If X =∅, then T is treelike. In this case, Theorem
10.1 tells us that Alg. 2 has time complexity O(|V |).
Indeed, in this case Sv = ch(v) for all v, and each gv is
a real number. Hence Alg. 2 reduces to the standard
bottom-up algorithm for treelike FTs, which is known
to have linear time complexity. In fact, Theorem 10.1
generalizes this result: it shows that for bounded |X |,
time complexity of Alg. 2 is linear. This makes Alg. 2

8

SFPA Storm

Benchmark 1
minimum 0.60 0.89
median 3.51 1.81
maximum 60∗ 7.91

Benchmark 2
minimum 0.30 0.41
median 0.68 1.42
maximum 6.73 47.29

Table 1: Summary of the results: the minimum, median and
maximum of the computation times (in seconds) of the two
algorithms are displayed. ∗Timeout at 60 seconds, attained
3 times.

a useful tool if the non-tree topology of an FT is con-
centrated in only a few nodes.

The complexity bound of Theorem 10.1 can be
sharpened by realizing that a variable Lw only occurs
in the computation of gv if w≺ v⪯ id(w). Using this
as a bound we get the following result:

Theorem 10.2. Define

c = max
v∈V
|{w ∈ X | w≺ v⪯ id(w)}|.

Then Alg. 2 has time complexity O(|V |(c+1)4c).

As far as I am aware, a comparable analysis that
bounds the time complexity of BDD-based methods
in terms of multiparent nodes does not exist in the
literature. Such an analysis can be complicated by
variable ordering heuristics for the BDD construction,
and is beyond the scope of this paper. Thus the exis-
tence of a provable complexity bound in terms of the
number of multiparent nodes is a major advantage of
the SFPA method.

11 Experiments

We perform experiments to test SFPA’s performance,
as implemented in Python. All experiments are per-
formed on a Ubuntu virtual machine with 6 cores and
8GB ram, running on a PC with an Intel Core i7-
10750HQ 2.8GHz processor and 16GB memory. We
compare the performance to that of Storm-dft, a state-
of-the-art model checker that calculates FT unrelia-
bility via a BDD-based approach with modularization
(Basgöze et al., 2022). We compare performance on
two benchmark sets of FTs:

1. A collection of 128 randomly generated FTs used
as a benchmark set in (Basgöze et al., 2022).
These FTs have, on average, 89.3 nodes, of which
10.3 have multiple parents.

2. A new randomly generated collection of 128 FTs,
created using SCRAM (Rakhimov, 2019). These
FTs have, on average, 123.8 nodes, 4.1 of which
have multiple parents.

100 101

100

101

SFPA

St
or

m

(a) Unreliability on benchmark set 1.

100 101

100

101

SFPA

St
or

m

(b) Unreliability on benchmark set 2.
Figure 6: Timing comparison of SFPA and Storm for calcu-
lating unreliability. Times are in seconds, timeout at 60s.

The second benchmark set was created in order to
validate the theoretical results of Section 10, where it
was shown that the complexity of SFPA depends on
the number of nodes with multiple parents. We com-
pute both the unreliability of each FT and measure
the time of both computations (timeout: 60 seconds).
The results are given in Table 1 and Figure 6. As one
can see, Storm largely outperforms SFPA on bench-
mark set 1, with lower computation times on 76% of
the unreliability calculations. On benchmark set 2,
SFPA fares considerably better, outperforming Storm
on 95% of all FTs for unreliability calculation: on av-
erage SFPA takes only 54% of the computation time
of Storm. The fact that SFPA is more efficient on this
benchmark set can be understood from Theorem 10.1,
which shows that computational complexity of SFPA
is low when the number of multiparent nodes is low.
By contrast, for a BDD-based approach the presence
of any multiparent nodes means one cannot use the
bottom-up algorithm and has to rely on creating the
BDD, which is usually slower than the bottom-up ap-
proach. Furthermore, modularization may only be of
limited use depending on the position of the multipar-
ent nodes.

Overall, we can conclude that for calculating un-
reliability SFPA is competitive with the state-of-the-
art, and is significantly faster on an FT benchmark set

9

with fewer multiparent nodes.

12 Conclusion

In this paper, we have introduced SFPA, a novel algo-
rithm for calculating fault tree unreliability based on
squarefree polynomial algebras. We have proven its
validity and given complexity bounds in terms of the
number of multiparent nodes. Experiments show that
it is significantly faster than the state of the art on FTs
with few multiparent nodes.

There are several directions for future work. First,
our proof-of-concept Python implementation of SFPA
can undoubtedly be improved, leading to faster com-
putation. Such improvements can be done on the the-
oretical side as well. For example, one could intro-
duce a new formal variable Uv for 1−Lv; this would
decrease the number of terms in the expression of gv
when v is an OR-gate from 2|ch(v)|− 1 to 2, hopefully
leading to faster computation. In this case, new com-
putation rules such as LvUv = 1 need to be introduced.

Second, our experimental results show that a
BDD-based method works best for FTs with more
multiparent nodes, while SFPA works best for FTs
with fewer multiparent nodes. It would be interesting
to see a more extensive experimental evaluation that
investigates what the break-even point is. Such an ex-
perimental evaluation can be augmented by incorpo-
rating real-world case studies, to test the effectiveness
of SFPA in practice.

On the other hand, it would be interesting to see
to what extent SFPA-like methods can be applied to
other problems in FT analysis, such as the analysis
of dynamic FTs, which also consider time-dependent
gates and behaviour. A good candidate is the analy-
sis of attack trees (ATs), the security counterpart of
FTs. Quantitative analysis of (non-dynamic) ATs is
also done using BDDs (Lopuhaä-Zwakenberg et al.,
2022), which has the same issues as BDD-based FT
analysis. We expect that SFPA-like methods can be
extended to ATs as well.

Acknowledgements

This research has been partially funded by ERC Con-
solidator grant 864075 CAESAR and the European
Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant
agreement No. 101008233.

REFERENCES

Basgöze, D., Volk, M., Katoen, J.-P., Khan, S., and
Stoelinga, M. (2022). Bdds strike back: efficient anal-
ysis of static and dynamic fault trees. In NASA Formal
Methods Symposium, pages 713–732. Springer.

Basgöze, D., Volk, M., Katoen, J.-P., Khan, S., and
Stoelinga, M. (2022). Artifact for ”BDDs Strike
Back - Efficient Analysis of Static and Dynamic Fault
Trees”.

Bobbio, A., Egidi, L., and Terruggia, R. (2013). A method-
ology for qualitative/quantitative analysis of weighted
attack trees. IFAC Proceedings Volumes, 46(22):133–
138.

Bouissou, M., Bruyere, F., and Rauzy, A. (1997). Bdd based
fault-tree processing: a comparison of variable order-
ing heuristics. In Proceedings of European Safety and
Reliability Association Conference, ESREL’97.

IsoTree (2023). FaultTree+. available online at https:
//www.isograph.com/software/reliability-workbench/
fault-tree-analysis-software/.

Lê, M., Weidendorfer, J., and Walter, M. (2014). A novel
variable ordering heuristic for bdd-based k-terminal
reliability. In 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Net-
works, pages 527–537. IEEE.

Lengauer, T. and Tarjan, R. E. (1979). A fast algorithm for
finding dominators in a flowgraph. ACM Transactions
on Programming Languages and Systems (TOPLAS),
1(1):121–141.

Lopuhaä-Zwakenberg, M., Budde, C. E., and Stoelinga, M.
(2022). Efficient and generic algorithms for quanti-
tative attack tree analysis. IEEE Transactions on De-
pendable and Secure Computing.

Lopuhaä-Zwakenberg, M. (2023). Fault tree reliability
analysis via squarefree polynomials.

Pandey, M. (2005). Fault tree analysis. Lecture notes, Uni-
versity of Waterloo, Waterloo.

Prosser, R. T. (1959). Applications of boolean matrices to
the analysis of flow diagrams. In Papers presented
at the December 1-3, 1959, eastern joint IRE-AIEE-
ACM computer conference, pages 133–138.

Rakhimov, O. (2019). Scram. available online at https:
//github.com/rakhimov/scram.

Rauzy, A. (1993). New algorithms for fault trees analysis.
Reliability Engineering & System Safety, 40(3):203–
211.

Rauzy, A. and Dutuit, Y. (1997). Exact and truncated com-
putations of prime implicants of coherent and non-
coherent fault trees within aralia. Reliability Engi-
neering & System Safety, 58(2):127–144.

Reliotech (2023). TopEvent FTA. available on-
line at https://www.fault-tree-analysis.com/
free-fault-tree-analysis-software.

Ruijters, E., Budde, C. E., Nakhaee, M. C., Stoelinga, M. I.,
Bucur, D., Hiemstra, D., and Schivo, S. (2019). Ffort:
a benchmark suite for fault tree analysis.

10

https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/
https://www.isograph.com/software/reliability-workbench/fault-tree-analysis-software/
https://github.com/rakhimov/scram
https://github.com/rakhimov/scram
https://www.fault-tree-analysis.com/free-fault-tree-analysis-software
https://www.fault-tree-analysis.com/free-fault-tree-analysis-software

Ruijters, E. and Stoelinga, M. (2015). Fault tree analysis:
A survey of the state-of-the-art in modeling, analysis
and tools. Computer science review, 15:29–62.

Valiant, L. G. (1979). The complexity of enumeration and
reliability problems. siam Journal on Computing,
8(3):410–421.

Watson, H. A. (1961). Launch control safety study. Bell
labs.

APPENDIX

Proof of Theorem 3.6

Before we prove the theorem itself, we first introduce
some notation. Consider an unaugmented FT T ′ =
(V,E,γ), i.e., a FT without p specified. This does not
affect the definition of the structure function or cut
sets. For f⃗ , f⃗ ′ ∈ BBET ′ , we write f⃗ ⪯ f⃗ ′ if fv ≤ f ′v for
all v∈BET . A cut set f⃗ is called minimal if there does
not exist another cut set f⃗ ′ with f⃗ ′ ≺ f⃗ . The following
problem is NP-hard (Rauzy, 1993):
Problem 12.1. Given an unaugmented FT T ′, find
one of its minimal cut sets.

Therefore, Theorem 3.6 is a consequence of the
following result:
Theorem 12.2. Problem 12.1 can be reduced to
Problem 3.5.

Proof. Let T ′ = (V,E,γ) be an unaugmented FT, and
take any enumeration BET ′ = {v0, . . . ,vn−1}. De-
fine p: BET ′ → [0,1] by p(vi) = 10−2i

, and let T =
(V,E,γ,p) be the resulting augmented fault tree. Let
M ⊆ CST be the set of minimal cut sets. For f⃗ ∈M,
define κ(f⃗) =− log10

(
∏ fb=1 p(b)

)
; let g⃗∈M be such

that κ(⃗g) is minimal.
Let F⃗ be the random variable in BBET defined in

Definition 3.3; then P(f⃗ ⪯ F⃗)= 10−κ(f⃗) for all f⃗ ∈M.
Since F⃗ ∈CST if and only if there is a f⃗ ∈M such that
f⃗ ⪯ F⃗ , it follows that

10−κ(⃗g) = P(⃗g⪯ F⃗)

≤ P(∃ f⃗ ∈M : f⃗ ⪯ F⃗)

=U(T) (1)

≤ ∑
f⃗∈M

P(f⃗ ⪯ F⃗)

= ∑
f⃗∈M

10−κ(f⃗). (2)

We now give an upper bound on ∑ f⃗∈M 10−κ(f⃗) in
terms of κ(⃗g). If {v ∈ BET | fv = 1} = {vi1 , . . . ,vik},

then κ(f⃗) = ∑
k
j=1 2i j . Thus, each κ(f⃗) is an integer,

whose binary representation is equal to f⃗ (i.e., its digit
for 2i indicates whether fvi = 1). As a result, the set
{κ(f⃗) | f⃗ ∈ M} is a set of distinct integers, the least
of which is κ(⃗g). Hence

∑
f⃗∈M

10−κ(f⃗) ≤
|M|−1

∑
i=0

10−κ(⃗g)−i < 10−κ(⃗g)+1 (3)

From (1), (2), (3) it follows that that
−⌊log10(U(T))⌋ = κ(⃗g). Thus from U(T) we
find κ(⃗g) in polynomial time, and since g⃗ is the
binary representation of the integer κ(⃗g), we also find
the MCS g⃗.

Proof of Lemma 5.4

Suppose id(v) ̸⪯ w. Since v ≺ w, any path RT → w
can be extended to a path RT → v; hence id(v) lies on
the extended path. Since id(v) ̸⪯w, it cannot lie on the
subpath w→ v, so it lies on the path RT → w. Since
this is true for every path RT →w, it follows that id(v)
is a dominator of w; hence id(w)⪯ id(v).

Proof of Lemma 6.5

We have

α[Lx 7→ β]

= ∑
Y⊆X :

x∈Y

αY

(
∏

x′∈Y\{x}
Lx′

)
·β+ ∑

Y⊆X :
x/∈Y

αY

(
∏
x′∈Y

Lx′

)

=

 ∑
Y⊆X :

x∈Y

αY ∏
x′∈Y\{x}

Lx′ + ∑
Y⊆X :

x/∈Y

αY ∏
x′∈Y

Lx′

 ·β
+

 ∑
Y⊆X :

x/∈Y

αY ∏
x′∈Y

Lx′

 · (1−β)

=

(
∑

Y⊆X
αY ∏

x′∈Y\{x}
Lx′

)
·β

+

 ∑
Y⊆X :

x/∈Y

αY ∏
x′∈Y

Lx′

 · (1−β)

= α[Lx 7→ 1] ·β+α[Lx 7→ 0] · (1−β).

Proof of Lemma 6.6

The first statement follows immediately from the co-
efficientwise definitions of addition and substitution.

11

For the second statement, we prove it first for the spe-
cial cases β = 1 and β = 0. In the first case, for each
Y ⊆ X \{x} one has

α[Lx 7→ 1]Y = αY +αY∪{x}.

It follows that

(α1α2)[Lx 7→ 1]Y
= (α1α2)Y +(α1α2)Y∪{x}

= ∑
Y1,Y2⊆Y :
Y1∪Y2=Y

α1,Y1α2,Y2 + ∑
Y ′1,Y

′
2⊆Y∪{x} :

Y ′1∪Y ′2=Y∪{x}

α1,Y ′1
α2,Y ′2

.

In the second summation we can distinguish the cases
x ∈ Y ′1 \Y ′2, x ∈ Y ′2 \Y ′1 and x ∈ Y ′1 ∩Y ′2. Substituting
Yi := Y ′i \{x} in the second summation, we get

(α1α2)[Lx 7→ 1]Y

= ∑
Y1,Y2⊆Y :
Y1∪Y2=Y

α1,Y1α2,Y2 + ∑
Y1,Y2⊆Y :
Y1∪Y2=Y

(
α1,Y1∪{x}α2,Y2

+α1,Y1α2,Y2∪{x}+α1,Y1∪{x}α2,Y2∪{x}

)
= ∑

Y1,Y2⊆Y :
Y1∪Y2=Y

(
α1,Y1α2,Y2 +α1,Y1∪{x}α2,Y2

+α1,Y1α2,Y2∪{x}+α1,Y1∪{x}α2,Y2∪{x}

)
= ∑

Y1,Y2⊆Y :
Y1∪Y2=Y

α1[Lx 7→ 1]Y1α2[Lx 7→ 1]Y2

= (α1[Lx 7→ 1] ·α2[Lx 7→ 1])Y .

This proves the statement for β = 1. The proof for
β = 0 is analogous, this time using α[Lx 7→ 0]Y = αY
for Y ⊆ X \{x}.

Now we go to general β, for which we have

α1[Lx 7→ β] ·α2[Lx 7→ β]

= (α1[Lx 7→ 1] ·β+α1[Lx 7→ 0] · (1−β)) (4)
· (α2[Lx 7→ 1] ·β+α2[Lx 7→ 0] · (1−β))

= α1[Lx 7→ 1] ·α2[Lx 7→ 1] ·β2

+α1[Lx 7→ 0] ·α2[Lx 7→ 0] · (1−2β+β
2)

+
(

α1[Lx 7→ 1] ·α2[Lx 7→ 0]

+α1[Lx 7→ 0] ·α2[Lx 7→ 1]
)
· (β−β

2)

= α1[Lx 7→ 1] ·α2[Lx 7→ 1] ·β (5)
+α1[Lx 7→ 0] ·α2[Lx 7→ 0] · (1−β)

= (α1α2)[Lx 7→ 1] ·β (6)
+(α1α2)[Lx 7→ 0] · (1−β)

= (α1α2)[Lx 7→ β]. (7)

Here we used Lemma 6.5 in (4) and (7), the fact that
β2 = β in (5), and our result for β = 0 and β = 1 in
(6).

Proof of Lemma 6.7

As for Lemma 6.6 we first prove this for β1,β2 ∈
{0,1}. First suppose β1 = β2 = 1. Using the rule
α[Lx 7→ 1]Y = αY +αY∪{x} from the proof of Lemma
6.6, we find, for Y ⊆ X \{x1,x2}:

α[Lx1 7→ 1][Lx2 7→ 1]Y
= α[Lx1 7→ 1]Y +α[Lx1 7→ 1]Y∪{x2}

= αY +αY∪{x1}+αY∪{x2}+αY∪{x1,x2}

= α[Lx2 7→ 1][Lx1 7→ 1]Y .

The other cases for β1,β2 ∈ {0,1} are completely
analogous, also using the rule α[Lx 7→ 0]Y =αY . Since
the substitution order does not matter, we write e.g.
α[Lx1 7→ 1,Lx2 7→ 0].

Now consider general β1,β2. Through repeated
use of Lemmas 6.5 and 6.6 we find

α[Lx1 7→ β1][Lx2 7→ β2]

= α[Lx1 7→ β1][Lx2 7→ 1] ·β2

+α[Lx1 7→ β1][Lx2 7→ 0] · (1−β2)

=
(

α[Lx1 7→ 1] ·β1 +α[Lx1 7→ 0] · (1−β1)
)
[Lx2 7→ 1] ·β2

+
(

α[Lx1 7→ 1] ·β1

+α[Lx1 7→ 0] · (1−β1)
)
[Lx2 7→ 0] · (1−β2)

=
(
(α[Lx1 7→ 1] ·β1) [Lx2 7→ 1]

+ (α[Lx1 7→ 0] · (1−β1)) [Lx2 7→ 1]
)
·β2

+
(
(α[Lx1 7→ 1] ·β1) [Lx2 7→ 0]

+ (α[Lx1 7→ 0] · (1−β1)) [Lx2 7→ 0]
)
· (1−β2)

=
(

α[Lx1 7→ 1][Lx2 7→ 1] ·β1[Lx2 7→ 1]

+α[Lx1 7→ 0][Lx2 7→ 1] · (1−β1)[Lx2 7→ 1]
)
·β2

+
(

α[Lx1 7→ 1][Lx2 7→ 0] ·β1[Lx2 7→ 0]

+α[Lx1 7→ 0][Lx2 7→ 0] · (1−β1)[Lx2 7→ 0]
)
· (1−β2)

By assumption, x2 does not appear in β1, so

β1[Lx2 7→ 1] = β1[Lx2 7→ 0] = β1.

So this last expression is equal to(
α[Lx1 7→ 1,Lx2 7→ 1] ·β1

+α[Lx1 7→ 0,Lx2 7→ 1] · (1−β1)
)
·β2

+
(

α[Lx1 7→ 1,Lx2 7→ 0] ·β1

12

+α[Lx1 7→ 0,Lx2 7→ 0] · (1−β1)
)
· (1−β2)

= α[Lx1 7→ 1,Lx2 7→ 1] ·β1β2

+α[Lx1 7→ 0,Lx2 7→ 1] · (1−β1)β2

+α[Lx1 7→ 1,Lx2 7→ 0] ·β1(1−β2)

+α[Lx1 7→ 0,Lx2 7→ 0] · (1−β1)(1−β2).

Expanding α[Lx2 7→ β2][Lx1 7→ β1] in the same way
yields the exact same result, so we conclude that
α[Lx1 7→ β1][Lx2 7→ β2] = α[Lx2 7→ β2][Lx1 7→ β1].

Proof of Theorem 6.8

Let Map(BX ,R) be the set of functions BX→R. Con-
sider the map ρ : A(X)→Map(BX ,R) given by

ρ(g)(c) = g[∀x ∈ X : Lx 7→ cx]

for all g ∈ A(X) and c ∈ BX . We will show that this
map is bijective; this completes the proof of the theo-
rem, as its inverse is then the sought map f 7→ ⟨ f ⟩.

Let ⪯ be the partial order on BX given by c ⪯ c′

if and only if cx ≤ c′x for all x ∈ X . Furthermore, let
BX = {c1, . . . ,cM} be an enumeration of BX (so M =

2|X |) such that ci ⪯ c j implies i ≤ j for all i, j ≤ M.
Then Map(BX ,R) can be identified with RM , sending
f to the vector (f (c1), . . . , f (cM))⊺ ∈ RM . We can
also identify A(X) with RM , by identifying g with
(gX1 , . . . ,gXM); here X i = {x ∈ X | ci

X = 1}. By con-
struction, one has Xi ⊆ X j if and only if ci ⪯ c j.

Under these identifications, we can regard ρ as a
map RM → RM; we now investigate what form this
map takes. Note that

ρ(g)(ci) = ∑
X ′⊆X

gX ′

(
∏

x∈X ′
ci

x

)
.

The latter product equals 1 if X ′⊆Xi, and 0 otherwise;
hence

ρ(g)(ci) = ∑
j : X j⊆Xi

gX j . (8)

Thus ρ is a linear map RM → RM and can be repre-
sented by a matrix E. By (8), one has

Ei, j =

{
1, if ci ⪯ c j,

0, otherwise.

In particular, E is lower triangular and the diagonal
entries are all 1. It follows that E is invertible, hence
ρ is bijective.

Proof of Lemma 8.5

Fix a c⃗′′ ∈ BCBET ′′ , and let ṽ be the node in T ′′ that
replaced v (i.e., that has the function of RT ′). To prove
the theorem, we need to show that
⟨U(T)⟩[Lv 7→ ⟨U(T ′)⟩][∀x ∈ CBET ′′ : Lx 7→ c′′x]

=U(T ′′)(⃗c′′). (9)

To prove this, note that we have

⟨UT ⟩[Lv 7→ ⟨U(T ′)⟩][∀x ∈ CBET ′′ : Lx 7→ c′′x]

=
(
⟨UT ⟩[Lv 7→ 1] · ⟨UT ′⟩

+ ⟨UT ⟩[Lv 7→ 0] · (1−⟨UT ′⟩)
)
[∀x ∈ CBET ′′ : Lx 7→ c′′x]

= ⟨UT ⟩[Lv 7→ 1,∀x ∈ CBET ′′ : Lx 7→ c′′x]

· ⟨UT ′⟩[∀x ∈ CBET ′′ : Lx 7→ c′′x]

+ ⟨UT ⟩[Lv 7→ 0,∀x ∈ CBET ′′ : Lx 7→ c′′x]

· (1−⟨UT ′⟩[∀x ∈ CBET ′′ : Lx 7→ c′′x]).

Here we used Lemmas 6.5 and 6.6, as well as the fact
that (c′′x)

2 = c′′x for all x. Now define c⃗0, c⃗1 ∈ BCBET

and c⃗′ ∈ BCBET ′ by

c0
x =

{
c′′x , if x ̸= v,
0, if x = v,

c1
x =

{
c′′x , if x ̸= v,
1, if x = v,

,

c′x = c′′x .

Note that this is well-defined since CBET ′ ⊆ CBET ′′

and CBET ⊆ CBET ′′ ∪{v}. In this formulation we
find that

⟨U(T)⟩[Lv 7→ ⟨U(T ′)⟩][∀x ∈ CBET ′′ : Fx 7→ c′′x]

= ⟨UT ⟩[∀x ∈ CBET : Lx 7→ c1
x]

· ⟨UT ′⟩[∀x ∈ CBET ′ : Lx 7→ c′x]

+ ⟨UT ⟩[∀x ∈ CBET : Lx 7→ c0
x]

· (1−⟨UT ′⟩[∀x ∈ CBET ′ : Lx 7→ c′x])

=UT (⃗c1)UT ′ (⃗c
′)+UT (⃗c0)(1−UT (⃗c′)). (10)

Let F⃗ ′′ ∈ BBET ′′ be the random variable of Defini-
tion 8.2.2. By our assumption that V ∩BET ′ = ∅,
we know that BET ′′ is the disjoint union of BET and
BET ′ . Thus we can write F ′′ = (F⃗ , F⃗ ′), with F and
F ′ independent random variables in BBET and BBET ′ ,
respectively. Furthermore, all paths from RT to ele-
ments of BET pass through ṽ, and so the random vari-
ables F⃗ and ST ′′(ṽ, F⃗ ′′, c⃗′′) are independent. It follows
that

U(T ′′)(⃗c′′)

= P(ST (RT ′′ , F⃗
′′, c⃗′′) = 1)

= P(ST ′′(RT ′′ , F⃗
′′, c⃗′′) = 1 | ST ′′(ṽ, F⃗

′′, c⃗′′) = 1)

·P(ST ′′(ṽ, F⃗
′′, c⃗′′) = 1)

+P(ST ′′(RT ′′ , F⃗
′′, c⃗′′) = 1 | ST ′′(ṽ, F⃗

′′, c⃗′′) = 0)

·P(ST ′′(ṽ, F⃗
′′, c⃗′′) = 0)

13

= P(ST (RT ,F, c⃗1) = 1) ·P(ST ′(RT ′ , F⃗
′, c⃗′) = 1)

+P(ST (RT , F⃗ , c⃗0) = 1) ·P(ST ′(RT ′ , F⃗
′, c⃗′) = 0)

=UT (⃗c1)UT ′ (⃗c
′)+UT (⃗c0)(1−UT (⃗c′)). (11)

Combining (10) and (11), we have shown (9) and the
proof is complete.

Proof of Theorem 9.2

To prove this result, we prove an extension that is eas-
ier to handle via induction. For a node v, we write gv,0
for the value of gv at it initialization in Algorithm 1,
i.e., at line 6,9 or 11. Furthermore, if γ(v) ̸= BE, let
w1, . . . ,wn be the elements of Sv = {w ∈ V | id(w) =
v}, in the order in which they are picked in line 15;
then gv,i is the value of gv after i iterations of the loop
14–18. Thus gv,∞ = gv,0 if γ(v) = BE, and gv,∞ = gv,n
otherwise, in the notation above.
Theorem 12.3. For v ∈ V , define Iv = {w ∈ V | w ≺
v≺ id(w)}.
1. One has gv,∞ = ⟨U(Tv[Iv])⟩.
2. Suppose γ(v) ̸= BE and let w1, . . . ,wn be the

elements of Sv, in the order in which they
are picked in line 15. Then gv,i = ⟨U(Tv[Iv ∪
{wi+1, . . . ,wn}])⟩.

Proof. We prove this by induction on v, and within a
given v by induction on i. If γ(v) = BE, then Tv con-
sists of a single BAS with failure probability p(v); as
such U(Tv) = p(v) = gv. This proves the first state-
ment for BEs.

Now suppose γ(v) = OR; the case that γ(v) = AND
is completely analogous. We will prove statement
2, as statement 1 is just the special case i = n. We
start with the case i = 0. Since Sv ∪ Iv = {w ∈ V |
w ≺ v ⪯ id(w)} and v ⪯ id(w) for every child w of
v, we have ch(v) ⊆ Iv ∪{w1, . . . ,wn}. It follows that
T ′ := Tv[Iv ∪{wi+1, . . . ,wn}] is a PCFT consisting of
v, and all its children labeled CBE. Hence U(T ′)(⃗c) =
maxw∈ch(v) cw for c⃗ ∈ Bch(v), which is represented by
the polynomial 1−∏w∈ch(v)(1−Lw). This proves the
statement for i = 0.

Now suppose the statement is true for a given
i − 1, and let T1 = Tv[I ∪ {wi, . . . ,wn}] and T2 =
Tv[I ∪ {wi+1, . . . ,wn}]. Then T2 is obtained by re-
placing the CBE wi in T1 by the PCFT T3 = Twi [(Iv∪
{wi+1, . . . ,wn})∩ desc(wi)], where desc(wi) denotes
the set of descendants of wi. Note that since we pick
the w j in a reverse topological order, all w j that are
descendants of wi satisfy j > i; hence

(Iv∪{wi+1, . . . ,wn})∩desc(wi)= (Iv∪Sv)∩desc(wi).

We now prove that this set is equal to Iwi . If w ∈
(Iv∪Sv)∩desc(wi), then w≺ wi and wi ≺ v⪯ id(wi);

hence w ∈ Iwi , proving one inclusion. Conversely,
if w ∈ Iwi , then wi ≺ id(w); hence id(wi) ⪯ id(w)
by Lemma 5.4. Hence v ⪯ id(wi) ⪯ id(w) and w ∈
(Iv∪Sv)∩desc(wi), proving the other conclusion. We
conclude that T3 = Twi [Iwi].

Now suppose that T3 and T1 share a BE w. If this
were the case, then there is a path v→ w not through
wi, namely any such path in T2. Since w ⪯ wi we
conclude that wi ≺ id(w). But then w ∈ Iwi ; since
T3 = Twi [Iwi] this means that γ(w) = CBE rather than
BE, which is a contradiction. We conclude that no
such w exist. Hence we can invoke Lemma 8.5 and
conclude that

gv,i = gv,i−1[Lwi 7→ gw,∞]

= ⟨U(T1)⟩[Lwi 7→ ⟨U(T3)⟩]
= ⟨U(T2)⟩,

as was to be shown.

14

