
110

WasmRef-Isabelle: A Verified Monadic Interpreter and

Industrial Fuzzing Oracle for WebAssembly

CONRAD WATT, University of Cambridge, UK

MAJA TRELA, University of Cambridge, UK and Jane Street, UK

PETER LAMMICH, University of Twente, Netherlands

FLORIAN MÄRKL, Technical University of Munich, Germany

We present WasmRef-Isabelle, a monadic interpreter for WebAssembly written in Isabelle/HOL and proven

correct with respect to the WasmCert-Isabelle mechanisation of WebAssembly. WasmRef-Isabelle has been

adopted and deployed as a fuzzing oracle in the continuous integration infrastructure of Wasmtime, a widely

used WebAssembly implementation. Previous efforts to fuzz Wasmtime against WebAssembly’s official OCaml

reference interpreter were abandoned by Wasmtime’s developers after the reference interpreter exhibited

unacceptable performance characteristics, which its maintainers decided not to fix in order to preserve the

interpreter’s close definitional correspondence with the official specification. With WasmRef-Isabelle, we

achieve the best of both worlds — an interpreter fast enough to be useable as a fuzzing oracle that also

maintains a close correspondence with the specification through a mechanised proof of correctness.

We verify the correctness of WasmRef-Isabelle through a two-step refinement proof in Isabelle/HOL. We

demonstrate thatWasmRef-Isabelle significantly outperforms the official reference interpreter, has performance

comparable to a Rust debug build of the industry WebAssembly interpreter Wasmi, and competes with

unverified oracles on fuzzing throughput when deployed in Wasmtime’s fuzzing infrastructure. We also

present several new extensions to WasmCert-Isabelle which enhance WasmRef-Isabelle’s utility as a fuzzing

oracle: we add support for a number of upcoming WebAssembly features, and fully mechanise the numeric

semantics of WebAssembly’s integer operations.

CCS Concepts: • Software and its engineering→ Software verification.

Additional Key Words and Phrases: theorem proving, refinement, virtual machine, WasmCert

ACM Reference Format:

Conrad Watt, Maja Trela, Peter Lammich, and Florian Märkl. 2023. WasmRef-Isabelle: A Verified Monadic

Interpreter and Industrial Fuzzing Oracle for WebAssembly. Proc. ACM Program. Lang. 7, PLDI, Article 110

(June 2023), 24 pages. https://doi.org/10.1145/3591224

1 INTRODUCTION

WebAssembly (Wasm) is a low-level bytecode language first introduced by Haas et al. [2017] in
2017. It is the first programming language since JavaScript to enjoy wide native support in Web
browsers, and is intended to be a natural compilation target for languages such as C, C++, and Rust,
enabling code written in these languages to be compiled to Wasm and embedded in Web pages.
Wasm is exceptional in that its normative specification is stated in terms of a small-step formal
semantics.

Authors’ addresses: Conrad Watt, conrad.watt@cl.cam.ac.uk, University of Cambridge, UK; Maja Trela, University of

Cambridge, UK and Jane Street, UK; Peter Lammich, University of Twente, Netherlands; Florian Märkl, Technical University

of Munich, Germany.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART110

https://doi.org/10.1145/3591224

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3591224
https://doi.org/10.1145/3591224
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591224&domain=pdf&date_stamp=2023-06-06

110:2 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

This semantics has been mechanised by Watt et al. [2021] in both Isabelle/HOL (WasmCert-
Isabelle) and Coq (WasmCert-Coq). Both of these mechanisations included simple verified inter-
preters for Wasm which were modelled after an existing official interpeter for Wasm written in
OCaml, which is maintained by its standards body for testing purposes [WebAssembly Community
Group 2022b]. These interpreters were designed first and foremost to stay as close as possible to
the specification’s formal semantics, making minimal changes only where that semantics was not
directly executable. Because of this approach, they exhibit severe performance issues which limit
their ability to execute non-trivial programs. Attempts have been made in the past by the Bytecode
Alliance [Bytecode Alliance 2022a], a non-profit organisation which maintains the widely-used
Wasmtime implementation ofWasm [Bytecode Alliance 2022b], to use the official OCaml interpreter
as a source of ground truth when performing fuzz testing. However, its handling of control flow
was found to be too inefficient, and when changes to improve its performance were suggested, they
were rejected by maintainers on the grounds that the required changes would compromise the
closeness of the interpreter’s definitions to those of the original formal semantics [Fallin 2021]. The
verified interpreters of WasmCert-Coq and WasmCert-Isabelle use a similar approach to control
flow, and moreover feature a significantly less efficient list-based representation of heap memory,
and are therefore also unlikely to be suitable as fuzzing oracles.
In this paper, we build on WasmCert-Isabelle to present WasmRef-Isabelle, a verified monadic

interpreter for Wasm which has been fully adopted into Wasmtime’s continuous integration
infrastructure as a fuzzing oracle. Our interpreter is proven correct with respect to the semantics of
WasmCert-Isabelle by way of a two-step refinement, the latter stage of which takes advantage of
the Sepref tool’s separation logic verification condition generator [Lammich 2015]. Our interpreter
displays performance comparable to the Wasmi industry Wasm interpreter’s unoptimised debug
build1 [Parity Technologies 2022], and comprehensively outperforms not only the previous verified
interpreter of Watt et al. [2021], but also the official reference interpreter. We show that the fuzzing
configuration deployed by Wasmtime which uses WasmRef-Isabelle as an oracle has comparable
performance to equivalent configurations using unverified oracles.
We also extend WasmCert-Isabelle and our interpreter with several new Wasm features, in

order to make it more valuable as a fuzzing oracle. Moreover we fully mechanise Wasm’s integer
semantics, previously elided by WasmCert-Isabelle.

In summary, our contributions are as follows:

• Extensions to WasmCert-Isabelle (§3):
– A mechanisation of the semantics of Wasm’s integer numeric operations.
– Mechanisation of several Wasm features in the final stage of standardisation, most notably
SIMD (vector) instructions (up to WasmCert-Isabelle’s existing abstraction of floating-point
numbers).

• WasmRef-Isabelle: a new efficient monadic interpeter for Wasm, fully verified, which has
been adopted in industry as a fuzzing oracle (§4).

• Experimentation measuring the performance of WasmRef-Isabelle in comparison to other
implementations (§5).

Our code is available in a public repository [WasmCert 2023] and as supplementarymaterial [Watt
et al. 2023]. At a rough count, our WasmCert-Isabelle extensions total ∼2530 changed or added
lines of code, while our implementation and verification of WasmRef-Isabelle comes to ∼5500 new
lines of code.

1Note that since Wasmi is written in Rust, its debug build is particularly slow. See §5.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:3

2 BACKGROUND

Wasm is a low-level language, supported by all major Web browsers, designed primarily as a
compilation target for non-garbage-collected languages such as C, C++, and Rust. It has a strict type
system and instruction set centered around four value types: i32, i64, f32, f64 (32- and 64-bit integer
and floating point values) The "SIMD" extension [WebAssembly Community Group 2021c], which
is in its final stage of standardisation, introduces a fifth value type: v128 (128-bit vector). Values can
be serialised to and deserialised from a simple linear byte buffer referred to as the memory. They
can also be stored in global and function-local variables. Wasm is a stack-based language, with most
instructions pushing and popping values to and from a value stack rather than referencing variables.
Wasm’s type system ensures that the shape of the stack is statically known at every program
point, and type checking rejects any program with potential underflows or type mismatches when
popping from the stack. The Java Virtual Machine (JVM) bytecode [Gosling 1995] has a similar
type system, with the key distinction that Wasm currently does not support object types. Also,
unlike JVM bytecode, Wasm’s control flow is semi-structured, with type-annotated blocks, loops,
and labelled break and continue; arbitrary gotos are not supported.
The unit of distribution and compilation in Wasm is the module, which encapsulates functions

along with module-wide (global) state. Modules may share their functions and global state with
other modules through a system of explicit imports and exports. Before execution, a module goes
through a validation, linking, and allocation step called instantiation.

2.1 Abstract Syntax

Fig. 1 gives the abstract syntax of Wasm. Some details are elided here for brevity (indicated in
grey), but full definitions can be found in the official specification [W3C 2019]. As detailed in §3.2,
we have extended WasmCert-Isabelle to support the SIMD extension. The corresponding abstract
syntax is highlighted in purple. We now give further description of the definitions in Fig. 1.

(immediates) 8,min,max ::= nat

(numeric types) C= ::= i32 | i64 | f32 | f64

(vector types) Cvec ::= v128

(value types) C ::= C= | Cvec

(func/block types) ft ::= C∗ → C∗

(modules) m ::=
{ types :: ft∗, funcs :: func∗, globs :: glob∗, mems :: mem∗, tabs :: tab∗,
data :: ... , elem :: ... , imports :: ... , exports :: ... , start :: ... }

(functions) func ::= func i C∗ 4∗

(globals) glob ::= glob mutable? t e init

(memories) mem ::=mem min max

(tables) tab ::= tab min max

(instructions) 4 ::= C .const 2 | i32.add | other numeric stackops | vector stackops |
local.{get/set} 8 | global.{get/set} 8 |

C= .load flags? | C= .store flags? | Cvec.load_vec flags
?
vec | Cvec .store_vec flags

?
vec |

memory.size | memory.grow | block ft 4∗ | loop ft 4∗ | if ft 4∗ 4∗ |
br 8 | br_if 8 | br_table 8+ | call 8 | call_indirect 8 | return

Fig. 1. Wasm abstract syntax. Highlighted elements are part of Wasm’s upcoming SIMD extension.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:4 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

2.1.1 Preliminary Definitions. Rather than names, Wasm generally uses static indices (immediates)
to refer to entities like functions or variables. Value types are either numeric types or the vector
type. For lists of types C∗ and C ′∗, a function type C∗ → C ′∗ describes how execution of a function or
block changes the stack: the topmost stack values must be of types C∗, and are replaced by values
of types C ′∗.

2.1.2 Module. Amodule< consists of a list of the type annotations used by the module’s functions,
a list of declared functions, and three kinds of module-wide state: a list of declared global variables,
a list of declared memories, and a list of declared tables (see §2.1.3). For the sake of brevity, we have
elided some components related to initialisation and import/export.

2.1.3 Module-Level State. We briefly describe the structure of function, global, memory, and
table declarations. Their post-instantiation runtime representations will be discussed in §2.2. A
function declaration contains a type index 8 to the module’s type field indicating the function’s type
annotation, a list of types C∗ declaring the types of the function’s zero-initialised local variables (see
the description of local.get in §2.1.4), and a body of instructions 4∗. A global variable declaration
describes whether the global variable is mutable or immutable, its value type, and an initialiser
instruction which must be executed during instantiation to set the variable’s initial value. A Wasm
memory is a zero-initialised buffer of raw bytes. A memory declaration declares the initial size at
which the memory will be created (min), as well as the max size that the memory can be grown to
(see the description of memory.grow in §2.1.4). A table is like a memory, but its elements store
function closures instead of bytes. Note that across the entire module’s definitions and imports,
Wasm currently mandates that at most one memory and one table may be present. Thus instructions
which interact with a module’s memory or table will implicitly reference this one definition.

2.1.4 Instructions. Note that instructions are also referred to as expressions. We describe their
intuitive semantics here, while the formal semantics is given in §2.3 and §2.4.

The C .const 2 instruction pushes a statically-known value 2 of type C onto the stack. The i32.add
instruction pops two i32 values off the stack, and pushes the result of wrap-around integer addition
back onto the stack. Other stack operations (details elided) work analogously.
The local.get 8 instruction pops a value from the stack and stores it into the 8-th declared

function-scoped local variable. The local.set instruction retrieves such a stored value and pushes it
onto the stack. As noted in §2.1.3, local variables are declared up-front as a function-level list of
value type annotations, and Wasm’s type system ensures that the static indices are in-bounds and
have the correct types. The global.get,set instructions work analogously for global variables.
The type-annotated C= .load instruction pops an index of type i32 off the stack, interprets the

bytes in the module’s memory at this index as a value of type C= , and pushes this value onto the
stack. Similarly, C= .store pops an index and a value, and stores the value at the specified index
in the module’s memory. Both of these instructions are dynamically bounds-checked, and out-of-
bound indices immediately terminate the executing program. Moreover, load and store can be
statically annotated with flags, which allow slight variant behaviours such as sign-extending a
loaded value. These behaviours are fully supported by our formalizations, but we elide the details
here. Separate instructions, load_vec and store_vec, perform similar functions for vector values.
The memory.size instruction checks the current size of the memory, while memory.grow allows
the memory to be extended to the right with new zero-initialised byte cells.

Wasm’s block constructs2 (block, loop, and if) are annotated with function types, which describe
how the block’s execution changes the shape of the stack. If the code within the construct contains
no break instructions (see below) then block and loop function identically — the instructions

2Note that the expressions block, loop, and if are called block constructs in Wasm.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:5

inside are executed until a result is reached, and this result becomes the result of the construct
(loop does not inherently iterate). The if ft 4∗ 4′∗ construct first pops an i32 value from the value
stack, and then behaves as block ft 4∗ if the value is non-zero and block ft 4′∗ otherwise. Where
block and loop differ is in their interaction with the br instruction. A br 8 instruction is said to
target the 8-th enclosing block construct, indexed from the inside out. When a block is targetted,
control jumps to the end of that block. When a loop is targetted, control jumps to the start of
the loop, commencing another iteration. The br_if instruction pops an i32 from the stack, and
behaves as br if the value is non-zero, or a no-op otherwise. The br_table 8+ instruction contains a
non-empty list of static indices, and its execution pops an i32 from the stack to use as an index into
that list, taking the last element if the index is out of bounds, and acting as a br to that element.
The call instruction executes the 8-th declared or imported function of the enclosing module.

The call_indirect 8 instruction pops an i32 from the stack and calls the corresponding function in
the module’s table. The return instruction returns to the caller of the currently executing function.

2.2 Runtime State

Instantiation3 of a Wasm module produces a configuration of the form (; � ; 4∗. Fig. 2 details the
structure of a configuration:

The (component of the configuration is the global store, which keeps track of lists of all of the
function/global/memory/table instances allocated by module instantiations. We only explain the
memory instance here: it consists of the current values stored in memory (as a list of bytes), as well
as the maximum size the memory is allowed to grow to during execution.

The � component is the frame. It keeps track of function-scoped information. Its first component
holds the current values of the in-scope local variables. Its second component holds the current
module instance, which is a record keeping track of which indices of the store are in-scope for the
current function. We will see an example of how the module instance is used in §2.3.
The final component of the configuration, 4∗, is the list of instructions under execution.

(stores) S ::= { funcs :: finst∗, globs :: ginst∗, mems :: minst∗, tabs :: tinst∗ }

(memory instances) minst ::= { data :: byte∗, max :: nat }

(frames) F ::= { locals :: E∗, inst :: inst }

(module instances) inst ::= { types :: ft∗, funcs :: i∗, globs :: i∗, mems :: i∗, tabs :: i∗ }

Fig. 2. Wasm runtime state.
2.3 Basic execution

In §2.1.4 we have explained the intuitive meaning of instructions. We now briefly survey Wasm’s
formal runtime semantics, and highlight efficiency problems that may occur in naïve realisations
of these semantics such as the official OCaml reference interpreter for Wasm and the interpreter
of Watt et al. [2021], and which our work aims to address.

Fig 3 shows some of the small-step reduction rules that define Wasm execution as they appear in
the Wasm specification. To represent unrecoverable errors, the abstract syntax is extended with a
trap expression. It is not directly permitted in the program syntax but may appear as a reduct.

The rule for i32.add illustrates the implicit representation of the value stack as a left-leading list
of const instructions in the redex. It requires two values 21 and 22 on the stack before execution,
and produces one value 2 after execution. There are standard congruence rules to generalise these
“local” reduction rules to larger stacks (cf. §2.4).

3The instantiation process is particularly large and complicated, and thus elided from this presentation. However, it is

supported by our formalization. For more details, we refer the reader to the official Wasm specification [W3C 2019]

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:6 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

(instructions) 4 ::= . . . | trap | . . .

21 + 22 = 2

(; � ; (i32.const 21) (i32.const 22) (i32.add) ↩→ (; � ; (i32.const 2)

� .locals[8] = E

(; � ; (local.get 8) ↩→ (; � ; E

� .inst.mems[0] = 9

(.mems[9] =<

28 + size(C) ≤ length(<)

<′
=< with data[28 ..28 + size(C)] := bytes(2)

(′ = (with mems[9] :=<′

(; � ; (i32.const 28) (C .const 2) (C .store) ↩→ (′; � ; n

� .inst.mems[0] = 9

(.mems[9] =<

28 + size(C) > length(<)

(; � ; (i32.const 28) (C .const 2) (C .store) ↩→ (; � ; trap

Fig. 3. Some individual reduction rules from Wasm’s runtime semantics.

The rule for local.get i looks up the 8-th local in the current frame and pushes it onto the stack.
Note that no runtime bounds check is required on the static index 8 , as this has already been done
during instantiation. Also note that locals are represented as lists within the frame. Both by the
official OCaml reference interpreter and the verified interpreters of Watt et al. [2021] implement
local access with a naïve linear-time walk of this list.

Finally, we show two rules for store. The rules first retrieve the index 9 of the module’s memory
from the module instance in the frame, given by � .8=BCB .<4<[0] as modules have at most one
memory, and then obtains the actual memory< from the global state. If the index is in bounds, the
first rule produces the updated global state in the redex. Otherwise, the second rule traps. Again,
naïve implementation of these rules involves several costly list-walks for indexing and updating, as
exhibited by the verified interpreters of Watt et al. [2021]. The official OCaml reference interpreter
deviates from the specification by representing memory using a mutable array.

2.4 Control Flow

Wasm is unusual as a compilation target in that it does not provide any mechanism for arbitrary
goto, instead providing the structured block, loop, and if constructs, and the br “break” instruction.
We now explain the key rules concerning Wasm’s control flow, which are displayed in Fig 4.

2.4.1 The Label Construct. To give a unifying semantics to Wasm’s control flow constructs, the
specification extends Wasm’s abstract syntax with the labelled continuation construct label (Fig. 4a).
The expression label = 4∗cont 4

∗ consists of the output arity =, which tracks the number of values
that will be pushed onto the stack when the label terminates; the continuation 4∗cont, which executes
if the label is targetted by a br instruction (see below); and the body 4∗, which will be executed
until either a br is executed, or the body terminates normally (with values or a trap).

2.4.2 Label Evaluation Contexts. The rules in Fig. 4b specify how "local" execution rules, such as the
ones from Fig 3, are generalized to a context of nested labels and additional values and instructions.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:7

The first two rules define contexts of the form !: [4∗], which express that 4∗ is embedded inside :
nested labels, along with a value stack suffix E∗ctx and a tail of instructions 4∗ctx, neither of which are
yet participating in reduction. The context is used to define a standard congruence rule which says
that if 4∗ can execute one step, then !: [4∗] can execute one step. The last rule of Fig. 4b specifies
execution of a br : instruction. This instruction breaks past : enclosing labels, and the (: + 1)-th
enclosing label is considered to be targetted by the br. Taking the targetted label’s arity as =, all but
= stack values are dropped, with the remainder serving as the value stack against which the label’s
continuation is executed. If the body of a label evaluates to completion (values or a trap) without
executing a br, the result is propagated outwards without executing the continuation — we elide
the rules for these last cases here but include them in the supplementary material [Watt et al. 2023].

2.4.3 Block and Loop. The semantics of Wasm’s block and loop constructs are defined in terms of
label (Fig. 4c). A block annotated with type C< → C= requires C< stack values to execute its body,
and immediately terminates when targetted by a br instruction, ensuring = values are kept on the
stack with the remainder discarded. Note that Wasm’s type system ensures that the = retained
values have type C= . Therefore block is modelled as a label with arity = and an empty continuation.
A loop annotated with type C< → C= also requires C< stack values to execute its body, but begins
another iteration when targetted by a br instruction, retaining < values on the stack from its
previous iteration. It is modelled by a label with arity< and the loop itself as continuation.

2.4.4 Function Calls. Entering a function call introduces a frame construct with similar congruence
rules to label, which tracks the frame � of the newly-executing function. The function terminates
when the body of the frame is executed to completion, or when a return instruction is executed.
Formal details are elided here but are given in full in the supplementary material [Watt et al. 2023].

(instructions) 4 ::= . . . | label nat 4∗ 4∗ | frame nat � 4∗ | . . .

(a) the label construct

!0 = E∗ctx [<hole>] 4
∗
ctx

!0 [4∗] = E∗ctx 4
∗ 4∗ctx

!:+1 = E∗ctx (label = 4∗cont !
:) 4∗ctx

!:+1 [4∗] = E∗ctx (label = 4∗cont (!
: [4∗])) 4∗ctx

(; � ; 4∗ ↩→ (′; � ′; 4′∗

(; � ; !: [4∗] ↩→ (′; � ′; !: [4′∗] (; � ; label = 4∗cont (!
: [E= br :]) ↩→ (; � ; E= 4∗cont

(b) ! evaluation context definitions and selected label evaluation context reduction rules

ft = C< → C=

(; � ; E< block ft 4∗ ↩→ (; � ; label = [] (E< 4∗)

ft = C< → C=

(; � ; E< loop ft 4∗ ↩→ (; � ; label< [(loop ft 4∗)] (E< 4∗)

(c) block and loop reduction rules

Fig. 4. Wasm’s label and frame context reduction rules, used to define the behaviour of Wasm’s control flow.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:8 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

2.4.5 Comment. Wasm’s definitions of label and frame evaluation contexts result in both the
OCaml reference interpreter and the interpreters of Watt et al. [2021] exhibiting particular ineffi-
ciency. These interpreters iteratively apply a one-step function that implements a single reduction
step of the semantics. In each iteration, this function has to recurse through the nested frames and
labels in the configuration in order to determine the redex. This results in extremely poor perfor-
mance for programs with deep recursion or deeply nested block expressions. WasmRef-Isabelle’s
representation of the evaluation context avoids these inefficiencies, as we discuss in §4.

3 MODEL EXTENSIONS

3.1 Integer Numerics

The WebAssembly specification formally defines the semantics of its 32 and 64 bit integer numeric
operations in terms of underlying operations on mathematical integers [W3C 2019]. However,
WasmCert-Isabelle previously did not formalise this part of the specification. Instead the represen-
tations and underlying semantics of Wasm’s integer operations were underspecified in terms of
uninterpreted types and functions. To make these definitions executable in OCaml code extracted
from Isabelle, it was axiomatised that these operations could be implemented in terms of OCaml’s
integer types. This had two negative consequences. First, it was impossible to reason within Isabelle
itself about the semantics of Wasm’s integer operations. Second, the extraction process from Isabelle
to OCaml was burdened with the additional necessity of trusting that WasmCert-Isabelle’s bespoke
code printing setup for integers was correct.
We extend WasmCert-Isabelle with a full mechanisation of the WebAssembly specification’s

formalisation of 32 and 64 bit integers, and moreover prove it equivalent to an existing mature
Isabelle formalisation of 32 and 64 bit integers [Lochbihler 2018] which features a well-tested code
generation setup for OCaml. In this way we improve the completeness and trustworthiness of the
model and the generated OCaml code, without compromising on performance.

3.2 New Features

Since its original standardisation in 2019, the Wasm language has been extended with a number of
features. We now describe extensions to WasmCert-Isabelle which are of lesser theoretical interest,
but still represent necessary engineering work if the model is to keep pace with the evolving
Wasm standard. In all cases, not only was the language model updated, but also all associated type
soundness proofs and verified artifacts such as the type checker. As we report in §4, this work
presents a new verified interpreter, WasmRef-Isabelle, which supports these features. We extend
WasmCert-Isabelle with support for the following:

New Conversion Operators. Wasm 1.0 included instructions for converting from a floating point
number to an integer, but these instructions would trap if the floating point number could not
be represented in the target integer type’s range. The non-trapping float to int conversions pro-
posal [WebAssembly Community Group 2019] added a suite of instructions which perform the
same conversions, except with a saturating semantics in the case that the value is out of range. It
was simple to extend the model with these instructions by reusing WasmCert-Isabelle’s existing
infrastructure for handling float to int conversions.

Multi-Value Functions and Blocks. Recall that in Wasm, all functions and block-level control flow
constructs are annotated with a type which describes how their execution will transform the value
stack. Wasm 1.0 included a restriction that type-annotated blocks and loops were only permitted
to have an empty input type. This restriction meant that blocks and loops could not manipulate
existing values on the value stack directly, but had to use local variables. In addition, blocks, loops,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:9

and functions were only permitted to have an empty or unary output type. This restriction meant
that executing these constructs to completion could only push at most a single new value onto
the stack. Subsequently, the multi-value [WebAssembly Community Group 2020] proposal relaxed
these restrictions, allowing blocks, loops, and functions to have arbitrary effects on the value stack.

Many internal details of WasmCert-Isabelle were already capable of handling multi-value blocks
and functions, such that fully supporting the multi-value proposal was fairly straightforward.

SIMD. There has been a long-standing effort to expose hardware-level vector types and instruc-
tions directly on the Web, first as part of a stalled proposal for JavaScript [TC39 2018], and later
as part of Wasm [WebAssembly Community Group 2021c]. This is a significant extension to the
language which introduces a new type of vector value, v128, along with a suite of instructions
for operating on it. Future proposals may add other vector widths to the language. Extending
WasmCert-Isabelle with the v128 type and propagating this change throughout all definitions and
existing proofs involved changes to around two thousand lines of existing Isabelle code. While
the modifications were fairly mechanical, there was no clear way to automate this tedious process
without embarking on a more fundamental restructuring of the model and proofs, which may be
valuable future work if WasmCert-Isabelle is intended to keep pace with newly specified Wasm
features. We implement the SIMD instructions using the same approach that WasmCert-Isabelle
uses for existing floating-point instructions. Their semantics at the type system and reduction rule
level are fully mechanised. However the value-level semantics are underspecified by way of unin-
terpreted functions, made executable by unverified extraction to the official OCaml implementation
of Wasm. We leave the precise specification of these functions to future work.

4 A FASTER VERIFIED INTERPRETER

We presentWasmRef-Isabelle, a verified interpreter forWasmwhich has been adopted and deployed
as a fuzzing oracle for Wasmtime, a widely used Wasm implementation. This interpreter makes
two key optimisations in comparison to Wasm’s specified operational semantics (and therefore in
comparison also to the minimal verified interpreters previously presented by Watt et al. [Watt 2018;
Watt et al. 2021]): first, it uses a different representation of control flow and evaluation contexts
to avoid the inefficiencies discussed in §2.4.5; second, it uses arrays and monadic state in several
places to replace the Wasm specification’s inefficient list-based state representations (see §2.3).

Our interpreter is defined using Imperative HOL [Bulwahn et al. 2008], a library for defining and
reasoning about imperative programs in Isabelle/HOL, which models their behaviour using a state
monad. We prove the interpreter sound with respect to the mechanised operational semantics of
WasmCert-Isabelle by way of a two step refinement process, and then use Isabelle/HOL’s built-in
extraction mechanism [Haftmann and Bulwahn 2021] to generate executable OCaml code. Note
that we make minor presentational changes here to depicted Isabelle/HOL definitions for ease of
reading. One may find the full definitions in our supplementary material [Watt et al. 2023].

4.1 Top-Level Structure

Fig. 5 depicts the structure of our Isabelle/HOL contributions. We distinguish the proof steps
conducted with the aid of the Verification Condition Generator (VCG) of Sepref [Lammich 2015] to
highlight where we are able to benefit from this previous work. We emphasise that the VCG only
uses Isabelle/HOL’s “raw proof” tactics, and thus is not part of the trusted computing base.

In the course of mechanising the language extensions described in §3.2, we made additions to the
existing language semantics, executable type checker, and executable instantiation definition ofWatt
et al. [2021]. We additionally extend the mechanised language semantics with our mechanised
definition of Wasm’s integer semantics, as discussed in §3.1.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:10 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

integer spec

language
semantics

intermediate
interpreter

monadic
interpreter

executable
type checker

executable
instantiation

monadic
instantiation

fuzz entry

extracted
OCaml interpreter

unverified
parser/decoder

unverified
floating point &
SIMD numeric
definitions

sound wrt. (by raw proof)

sound wrt. (using VCG)

imported/used by

extracts to

Fig. 5. A graphical depiction of the structure and associated proof guarantees of our work. Oval nodes
represent Isabelle/HOL definitions and proofs, while rectangular nodes represent OCaml. Dash-bordered
nodes represent definitions inherited from Wa� et al. [2021] and extended as described in §3, while solid-
bordered nodes represent entirely new contributions.

The core of our extracted OCaml interpreter is the monadic interpreter written in Isabelle/HOL,
which implements both the control flow and state representation optimisations sketched above.
The interpreter is proven sound with respect to the mechanised Wasm semantics of Watt et al.
[2021] (extended as described in §3) by way of a refinement process. First, we define an intermediate
interpreter which implements only control flow optimisations without changing the representation
of Wasm’s runtime state. This is proven sound with respect to the language semantics by direct
application of Isabelle/HOL’s pre-defined proof tactics. Second, we define a monadic interpreter
which maintains the control flow optimisations of the intermediate interpreter, and additionally uses
Imperative HOL [Bulwahn et al. 2008] to replace a number of inefficient lists in the WebAssembly
state with monadic arrays. This is proven sound with respect to the intermediate interpreter with
the aid of Sepref’s VCG [Lammich 2015], a separation logic framework for Isabelle/HOL intended
to “greatly simplify reasoning about programs in Imperative HOL”. By transitivity, we then obtain
the final theorem that the monadic interpreter is sound with respect to the original mechanised
language semantics.
Similarly, we define a monadic version of instantiation which produces and updates the inter-

preter’s monadic state. In this case we skip the intermediate step, and directly prove our monadic
instantiation sound with respect to the original executable definition of instantiation provided

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:11

byWatt et al. [2021]. We then compose these two definitions to obtain an entrypoint forWasmtime’s
fuzz testing setup which instantiates and executes a generated test, returning the result.
We now describe in more detail the definitions and proofs associated with the intermediate

interpreter and monadic interpreter.

4.2 Intermediate Interpreter

This interpreter differs from the operational semantics only in its representation and handling of
control flow. By first proving this interpreter sound with respect to the operational semantics, we
isolate the verification burden incurred as a result of these modifications, which is orthogonal to
the verification burden we will incur in §4.3 by introducing monadic state.
Note that Wasm’s operational semantics underspecifies certain operations such as memory

growth, allowing them to fail completely non-deterministically. In contrast to the operational se-
mantics, but like both the official OCaml interpreter and the previous interpreters ofWatt et al. [Watt
2018; Watt et al. 2021], this interpreter implements these operations deterministically.4 Therefore
this interpreter can only be sound with respect to Wasm’s operational semantics, not complete.

As mentioned in §2.4.5, Wasm’s specification of evaluation contexts means that a naïve stepwise
interpreter must essentially re-derive the shape of the evaluation context in linear time with each
step. In our intermediate interpreter, instead of representing labels and function frames as explicit
nesting expressions, we maintain a stack of labels and frames off to the side, with the evaluation of
block, loop, if, and function calls adding to these stacks instead of introducing a label or frame

expression in the reduct, avoiding the need to recurse through these expressions in subsequent
steps of the interpreter. This approach has the added benefit that identifying the jump target for a
br becomes a matter of directly walking the label stack to the targetted index, rather than handling
signalling results within a recursive call, while return can be implemented by simply discarding
the top entry of the frame stack.
Fig. 6 shows the evaluation context representations used by the interpreter, as well as a family

of functions given by ⟦·⟧(4∗), each of which relates an interpreter evaluation context (with inner
hole suitably filled by 4∗) back to the corresponding unoptimised definition in the Wasm semantics.
The Config object contains a global store (, an inner function frame context fc, which corresponds
to the currently executing function, and a stack of outer frame contexts fc∗. It is the interpreter’s
representation of Wasm’s ((; � ; 4∗) runtime configuration as shown in §2, with � corresponding
to the frame context at the base of the frame context stack of Config, and 4∗ derived from the
rest of the frame context stack and the inner frame context. An individual frame context, aside
from the base frame context, corresponds to the presence of a nested frame construct in 4∗. Each
frame context contains a stack of label contexts, lc∗, with each entry in the stack corresponding to
a nested label within the frame, so that the stack as a whole corresponds to the !: context used
by the Wasm semantics as shown in Fig. 4. In addition, the frame context contains the inner redex
rdx, made up of a value stack and an expression list, which corresponds to the code which will
execute within the innermost label inside the frame once all inner frames have fully executed (i.e.
once all functions for which this frame is a parent in the call stack have returned). This motivates
the separation in Config of the inner frame context: at each step in the Wasm semantics, the redex
to be reduced is present in the most deeply nested label of the most deeply nested frame present
in 4∗. While a naïve implementation must recurse through these contexts to identify the redex,
the intermediate interpreter can do so far more efficiently, simply by looking directly at the redex
component of the inner frame context of Config.

4Up to the abstraction provided by Isabelle/HOL’s code extraction mechanism; see §4.4.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:12 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

(redexes) rdx ::= Redex v∗ 4∗

(interpreter label contexts) lc ::= Label_ctx v∗ 4∗ = 4∗

(interpreter frame contexts) fc ::= Frame_ctx rdx lc∗ = �

(interpreter configurations) cfg ::= Config (fc fc∗

⟦Redex v∗ctx 4
∗
ctx ⟧(4

∗) ≜ (rev v∗ctx) 4
∗ 4∗ctx

⟦Label_ctx v∗ctx 4
∗
ctx = 4∗cont⟧(4

∗) ≜ (rev v∗ctx) (label = 4∗cont 4
∗) 4∗ctx

⟦lc · lc∗⟧(4∗) ≜ ⟦lc∗⟧(⟦lc⟧(4∗))
⟦ [] ⟧(4∗) ≜ 4∗

⟦Frame_ctx rdx lc∗ = �⟧(4∗) ≜ frame = � (⟦lc∗⟧(⟦rdx⟧(4∗)))

⟦Config (fc (fc′ · fc′∗)⟧(4∗) ≜ ⟦Config (fc′ fc′∗⟧(⟦fc⟧(4∗))
⟦Config ((Frame_ctx rdx lc∗ = �) ([])⟧(4∗) ≜ ((; � ; (⟦lc∗⟧(⟦rdx⟧(4∗))))

Fig. 6. Intermediate interpreter definitions, alongwith a recursively-defined relation back to the configurations
of the operational semantics.

To define and verify the interpreter, we first define a one-step evaluation function for an individual
expression and prove it sound with respect to Wasm’s runtime semantics. The interpreter takes a
Config, and returns a Config and a result enumeration which is either RS_step, indicating a normal
evaluation step has taken place, RS_trap, which indicates that a runtime error has occurred such as
division by zero, or RS_crash, which indicates that an invariant of the interpreter has been violated
(such as trying to pop from an empty value stack, which should be prevented by the type system).
Fig. 7 shows the relevant soundness lemma, established by direct proof. Note the use of ⟦cfg⟧ to
relate the interpreter’s configuration back to a configuration in the Wasm semantics.

lemma run_step_e_sound:
assumes “run_step_e 4 cfg = (cfg′, resstep)”
shows

“

(
resstep = RS_step ∧
⟦cfg⟧([4]) ↩→ ⟦cfg′⟧([])

)
∨

(
∃str.

resstep = RS_trap str ∧
⟦cfg⟧([4]) ↩→ ⟦cfg′⟧([trap])

)
∨

(∃str. resstep = RS_crash BCA)”

Fig. 7. Soundness of the intermediate interpreter’s auxiliary one-step function.

Then, we define the run_iter function which repeatedly extracts an expression from the current
redex and calls run_step_e. The function’s correctness theorem is shown in Fig. 8, relating its result
to the transitive closure ↩→∗ of the Wasm semantics’ reduction relation ↩→. Because all functions
in Isabelle must terminate, the function takes an integer fuel parameter which bounds the number
of iterations. It can return one of three results: RValue, which carries with it a list of values and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:13

indicates normal termination with a result, RTrap, which indicates that a Wasm trap runtime error
has terminated execution, or RCrash, which indicates that either an invariant of the interpreter has
been violated or the execution has run out of fuel.

computes_to cfg (cfg′, res) ≜

©«
∃(′ � ′ v∗.

res = RValue v∗ ∧
⟦cfg⟧([]) ↩→∗ ⟦cfg′⟧([]) ∧
⟦cfg′⟧([]) = ((′; � ′; (rev(v∗))

ª®¬
∨

©«
∃str (′ � ′ 4′∗.

res = RTrap str ∧
⟦cfg⟧([]) ↩→∗ ((′; � ′; [trap]) ∧
⟦cfg′⟧([trap]) = ((′; � ′; 4′∗)

ª®¬
∨

(∃str. A4B = RCrash BCA)

theorem run_iter_sound:
assumes “run_iter fuel cfg = (cfg′, A4B)”
shows “computes_to cfg (cfg′, res)”

Fig. 8. Soundness of the intermediate interpreter’s top level iteration.

4.3 Monadic Interpreter

This interpreter maintains the control flow optimisations of §4.2, but acts on a monadic heap, and
we replace the Wasm semantics’ list-based representations of state with monadic arrays.

To verify the correctness of this interpreter, we prove that it refines our intermediate interpreter,
and thus is sound with respect to the mechanised operational semantics of WasmCert-Isabelle.
We conduct this proof with the aid of Sepref’s VCG [Lammich 2015]. Because the intermediate
interpreter already implements and verifies our control flow optimisations, this refinement proof
can focus on verifying the correctness of the monadic state representation changes.

4.3.1 State Representation. Imperative HOL [Bulwahn et al. 2008] is a library providing an Is-
abelle/HOL model of references to allocations in a heap. It provides monadic operations which
model the allocation and access of references, and in particular contains a suite of operations which
support arrays. We briefly show the relevant definitions in Fig. 9. The underlying representations of
the heap and array types are essentially treated as opaque, while the monadic array operations act
over the Heap monad, which represents the result of executing an operation, along with the effect
that executing the operation has on the heap (for example, if an array is modified by reference).
Imperative HOL contains a code generation setup to extract such monadic operations to in-place
operations over OCaml’s native Array type, meaning that our extracted interpreter performs
constant-time random access and stateful update in many situations where the official reference
interpreter and the interpreters of Watt et al. [2021] perform linear-time list walks and copies.

heap ::= . . . treated as opaque
'a array ::= . . . treated as opaque
'a Heap ::= Heap (heap ⇒ ('0 × heap) option)

Array.of_list :: 'a list ⇒ ('a array) Heap
Array.nth :: nat ⇒ 'a array ⇒ 'a Heap

Array.upd :: nat ⇒ 'a ⇒ 'a array ⇒ 'a Heap

Array.len :: 'a array ⇒ nat Heap

Fig. 9. Some Imperative HOL definitions

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:14 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

With reference to Fig. 2, many components of Wasm’s runtime state are specified as lists. Most
egregiously, the memory is represented as a list of bytes, making access and update highly inefficient
to execute. We define an alternative representation of WebAssembly’s state that replaces the lists
of Fig. 2 with Imperative HOL’s array type, and give the main definitions in Fig. 10. Our monadic
interpreter operates over this state, and is modelled in Imperative HOL’s Heap monad. This is
significantly more efficient, although Wasm’smemory.grow instruction must be implemented
by re-allocating and copying the memory array. Note that in components of the state where a list
is used in a stack-like fashion, such as the frame list 5 2_<∗ of Frame_ctx_m, we retain the list
representation instead of using an array.

(monadic stores) S_m ::=
{ funcs :: finst array, globs :: ginst array, mems :: minst_m array, tabs :: tinst_m array }

(monadic memory instances) minst_m ::= { data :: byte array, max :: nat }
(monadic frames) F_m ::= { locals :: E array, inst :: inst_m }

(monadic module instances) inst_m ::=
{ types :: ft array, funcs :: i array, globs :: i array, mems :: i array, tabs :: i array }

(monadic interpreter frame contexts) fc_m ::= Frame_ctx_m rdx lc∗ = �_<

(monadic interpreter configurations) cfg_m ::= Config_m (_< fc_m fc_m∗

run_iter_m :: fuel ⇒ cfg_m ⇒ (cfg_m × res) Heap

Fig. 10. Monadic interpreter definitions and top-level type signature.

4.3.2 Verification. Sepref’s VCG [Lammich 2015] allows us to state and prove Hoare triples of
the form {%} � {_G . & G}. This triple states that for all heaps that satisfy the precondition % ,
and on which the monadic program fragment � returns a result G , the new heap will satisfy the
postcondition & G . % and & are expressed in separation logic [Reynolds 2002], allowing modular
reasoning over the heap.

While the original library provided by Sepref proves total correctness, we modify the library to
prove partial correctness, so that a Hoare triple holds if the program � diverges or raises an error.
This is because our refinement from the intermediate interpreter to the monadic interpreter can be
expressed unconditionally as a partial correctness Hoare triple, while the version requiring total
correctness only holds assuming the input program is well-typed. Partial correctness is sufficient
for our purposes however, since our use of the interpreter as a fuzzing oracle only requires that
non-crash outputs can be trusted (although any observed crashes would represent a bug in our
interpreter which should be fixed). Therefore we avoid the additional complications that would
arise from introducing assumptions about the type system into our proofs.
We show relevant lemmas in Fig 11. First, we show the Hoare triple for Array.nth (see Fig. 9),

which is already provided by the separation logic library. Using a standard “points-to” relation ↦→0 ,
it associates an array reference with a list representing the values in the allocated array in the heap.
The next lemma, run_step_e_m_triple, connects the behaviours of the single-step function

of our monadic interpreter, run_step_e_m, and of our intermediate interpreter, run_step_e. The
cfg_m_assn cfg cfg_m assertion captures that the array references within cfg_m do not alias and
point to arrays equivalent to the lists of cfg. The non-aliasing property, which is naturally expressed
in separation logic, allows us to reason about the update-by-reference of one array within the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:15

interpreter state, without having to explicitly reason that other arrays are not affected. The lemmas
are proved using Sepref’s VCG, which automates Hoare-logic and frame inference.

We then use run_step_m_triple to prove a further triple connecting the behaviour of our monadic
interpreter’s main loop with the behaviour of the same in our intermediate interpreter. Finally, we
can use this and the result of Fig. 8 to prove a theorem expressing the behaviour of our monadic
interpreter directly in terms of WasmCert-Isabelle’s operational semantics. Note that the proof
of correctness for our monadic definition of instantiation proceeds similarly, but we elide further
description here for space reasons.

lemma nth_rule:
shows “{ arr ↦→0 G

∗ } Array.nth n arr {_res. arr ↦→0 G
∗ ∗ res � G∗ [=]}”

lemma run_step_e_m_triple:
shows “{ cfg_m_assn cfg cfg_m }

run_step_e_m e cfg_m

“

{
_(cfg_m′, res). ∃cfg′ .

cfg_m_assn cfg′ cfg_m′ ∗
run_step_e e cfg = (cfg′, res)

}
”

theorem run_iter_m_sound:
shows “{ cfg_m_assn cfg cfg_m }

run_iter_m fuel cfg_m

“

{
_(cfg_m′, res). ∃cfg′ .

cfg_m_assn cfg′ cfg_m′ ∗
computes_to cfg (cfg′, res)

}
”

Fig. 11. Hoare triples involved in the monadic interpreter’s proof of partial correctness.

4.4 Trusted Computing Base

Our work stems from the Isabelle/HOL Wasm model of Watt et al. [2021], which is intended to
have a line-by-line correspondence to the pen-and-paper formal model present in the official Wasm
specification, and we must trust this translation (although we can validate it to some extent through
experimental testing). Our chain of proof from the mechanised semantics to our interpreter relies
only on the correctness and interpretability of our theorems as proven in Isabelle/HOL (see Pollack
[1996] for a discussion of concerns here).
In producing the executable WasmRef-Isabelle interpreter, we must trust Isabelle/HOL’s code

extraction to OCaml, and the OCaml toolchain itself. A particular hazard here is the use of
code_printing equations which force Isabelle/HOL to extract individual types or functions as
unchecked user-provided strings. These are occasionally necessary as a way of directing the ex-
traction to implement certain Isabelle/HOL types such as uint32 directly in terms of their OCaml
counterparts. We only introduce such equations where necessary to connect the Isabelle/HOL defini-
tions to their OCaml counterparts. The only exception is that we define an optional code_printing
setup which allows the Isabelle/HOL-defined byte array type and associated operations to be
extracted to the more efficient OCaml bytes type rather than Isabelle/HOL’s default target, the
less efficient char array type. Since the extracted interpreter with this setup enabled passes all
reference tests and did not report any divergences in behaviour during fuzzing, we believe our
handwritten code_printing setup is correct, although it can be disabled if desired.

Some aspects of our generated interpreter are supplied directly at the OCaml level as unverified
code, namely the top-level command line interface logic, the parser and binary decoder, the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:16 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

implementation of floating point arithmetic, and the implementation of vector (SIMD) numeric
operations. At the Isabelle level, as discussed in §3.1, it is essentially axiomatised that the relevant
OCaml-level types and functions exist and can be used to implement the uninterpreted definitions
of the model. In all of these cases almost all of the supplied OCaml code comes directly from the
official Wasm reference interpreter, with a small amount of handwritten OCaml code to complete
the interface between the reference interpreter’s code and the generated code of WasmRef-Isabelle.

5 EVALUATION

We evaluate WasmRef-Isabelle’s performance both as a stand-alone interpreter, and as a component
of Wasmtime’s fuzzing infrastructure. On the strength of these results, WasmRef-Isabelle has been
adopted and deployed as a fuzzing oracle into Wasmtime’s fuzzing and continuous integration
infrastructure, including its OSS-Fuzz instance [WasmCert 2023].

5.1 Performance

In this section we investigate the performance of our interpreter. All benchmarks are executed on a
Lenovo T590 laptop with a i5-8265U processor and 8GB RAM. All numbers reported below are the
average of 10 repetitions unless otherwise stated.

Watt et al. 2021 (Isabelle)

Reference interpreter

WasmRef-Isabelle

0 200 400 600 800 1,000

101

102

103

104

Input value

R
u
n
ti
m
e
(m

s)

Fig. 12. Graphing execution times for
the function 5 (0) ≜ 0; 5 (= + 1) ≜ 5 (=) + =5

(note the log scale for runtime).

Before we go further, it is worth emphasising that it is
easy to manufacture pathological programs for which
the OCaml reference interpreter and the interpreter
of Watt et al. [2021] have arbitrarily poor performance in
comparison to WasmRef-Isabelle, since our optimisations
improve the time complexity of certain interpreter
steps in comparison to these interpreters. The fuzzing
infrastructure of Wasmtime generated several tests
which run particularly slowly in the OCaml reference
interpreter, including one which executes over 4000 times
faster in WasmRef-Isabelle [Crichton 2021]. To briefly
illustrate this, Fig. 12 graphs the execution time of the
simple recursive function 5 (0) ≜ 0; 5 (= + 1) ≜ 5 (=) + =5

for different values of = (with the exponentiation to the
fifth power implemented via repeated multiplication),
executing in the interpreter of Watt et al. [2021],
in the official OCaml reference interpreter, and in
WasmRef-Isabelle. The execution times of both these
existing interpreters scale super-linearly with = due
to their inefficient handling of function frames, while
WasmRef-Isabelle’s execution time in comparison barely
doubles across the input values considered.
The following benchmarks compare WasmRef-Isabelle to the official OCaml reference inter-

preter [WebAssembly Community Group 2022b], and the previous Isabelle/HOL-extracted inter-
preter of Watt et al. [2021], as well as two efficient industry implementations written in Rust:
Wasmi [Parity Technologies 2022] an industry Wasm interpreter used in several blockchain-related
applications and also deployed as a fuzzing oracle for Wasmtime; andWasmtime [Bytecode Alliance
2022b] itself, the Wasm engine which now uses WasmRef-Isabelle as a fuzzing oracle. We emphasise
that we do not expect the performance of WasmRef-Isabelle to be in any way competitive with the
optimised release builds either of these implementations, although our experiments suggest that
WasmRef-Isabelle does have roughly comparable performance to a debug build of Wasmi.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:17

We also measure the throughput of Wasmtime’s fuzzing infrastructure when using WasmRef-
Isabelle as an oracle, and contrast it with the throughputs measured when using either the OCaml
reference interpreter or Wasmi as an oracle.

Table 1. CoreMark 1.0 (Wasm port) results.

implementation raw score

Watt et al. 2021 (Isabelle) 0.046172101

Reference interpreter 1.4857737

WasmRef-Isabelle 9.5817566

Wasmi (dev) 10.886131

Wasmi (release) 205.78702

Wasmtime (JIT) 12704.866

Table 2. Recursive fibonacci (input: 35).

implementation execution time (s) ratio

Watt et al. 2021 (Isabelle) 1090 30

Reference interpreter 750 21

Wasmi (dev) 72.8 2.0

WasmRef-Isabelle 36.1 1

Wasmi (release) 2.76 0.076

Wasmtime (JIT) 0.076 0.0021

5.1.1 CoreMark. CoreMark [Gal-On and Levy 2009] is an industry-standard benchmark written
in C, which performs a suite of low-level data-processing operations such as list sort and matrix
multiplication, outputting a single score upon completion which can be used to comparatively rank
CPUs and compilers. A port of CoreMark 1.0 to Wasm with stripped-down system dependencies has
been widely used to compare the performance of different Wasm implementations [wasm3 2021].
Table 1 shows the observed performance score for the various Wasm implementations we have
considered. Both the reference interpreter and the interpreter of Watt et al. [2021] score extremely
poorly in comparison to WasmRef-Isabelle, which itself has a score slightly below the debug build
of Wasmi. As expected, Wasmi release and Wasmtime exhibit significantly better performance.
The poor performances of the reference interpreter and the interpreter of Watt et al. [2021]

are likely due to a number of inefficiencies which are avoided by WasmRef-Isabelle. First, the
core computations of the benchmark take place inside several nested blocks, exercising the imple-
mentation inefficiencies mentioned in §2.4. Moreover, the list-based representation both of these
implementations use for local variables also degrades performance, as each local variable access
takes linear time in the number of declared local variables. Finally, the list-based representation of
memory used by the interpreter of Watt et al. [2021] is a significant source of inefficiency, and is
likely the primary cause of the gap in score between it and the reference interpreter.

5.1.2 Recursive Fibonacci. Table 2 reports the time taken in seconds for the various Wasm im-
plementations to execute a naïve recursive fibonacci calculation for a fixed input of 35. This
micro-benchmark stresses the ability of the Wasm implementations to efficiently handle deeply-
nested function calls. Each function call introduces an additional frame, and so we use this micro-
benchmark to highlight the previously-mentioned massive control flow inefficiencies in both the
official reference interpreter and the Isabelle/HOL interpreter of Watt et al. [2021], which become
even greater as the depth of the call stack grows (a graph for different input values is included in
the supplementary material [Watt et al. 2023]). This benchmark also represents WasmRef-Isabelle’s
strongest performance against Wasmi, maintaining nearly twice the speed of Wasmi’s debug build,
although it still falls far short of the optimised release build’s performance.

5.1.3 Iterative Fibonacci and Memory Walk. Fig. 13 shows the time taken for the various implemen-
tations to execute two simple iterative algorithms which are based on conformance tests present
in Wasm’s official test suite. The first calculates the 108th fibonacci number through bottom-up
iteration, while the second iterates over 108 newly created memory cells and checks that each is
zero-initialised. Since the iterative fibonacci test only executes a small amount of arithmetic in a
tight loop, it does not exercise any of the previously-discussed design-level inefficiencies present in
either the reference interpreter or the interpreter of Watt et al. [2021]. In effect, it represents the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:18 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

best chance for these interpreters to perform well in comparison to WasmRef-Isabelle. Nevertheless,
WasmRef-Isabelle still outperforms them: its runtime is around 80% that of the reference interpreter
and around 40% that of Watt et al. [2021]. It is worth noting however that the industry implementa-
tions handle such tight loops particularly efficiently in comparison. While WasmRef-Isabelle was
just under 13 times slower than Wasmi’s release build for recursive fibonacci, here it is just under
47 times slower. Similarly, the memory walk test should not expose inherent issues in the reference
interpreter, but should expose the limitations inherent in the list-based memory of the interpreter
of Watt et al. [2021]. As expected, we see that WasmRef-Isabelle outperforms the reference inter-
peter by roughly the same ratio as observed in the iterative fibonacci micro-benchmark, while the
interpreter of Watt et al. [2021] fails to terminate within eight hours.

a b c d e f
0

80

160

240

320

400

3.3 0.12

Implementation

R
u
n
ti
m
e
(s
)

Iterative fibonacci (input: 108)

a b c d e f
0

80

160

240

320

400

4.0 0.07

>8h

Implementation

Memory walk (108 cells)

(a) Watt et al. 2021 (Isabelle)

(b) Reference interpreter

(c) Wasmi (dev)

(d) WasmRef-Isabelle

(e) Wasmi (release)

(f) Wasmtime (JIT)

Fig. 13. Iterative fibonacci and memory walk benchmarks.

5.1.4 LibFuzzer Throughput. Wasmtime’s fuzzing infrastructure makes use of the LibFuzzer [LLVM
Progect 2022] tool using either WasmRef-Isabelle, Wasmi, or Google’s V8 JIT as an oracle. The
configuration used by WasmRef-Isabelle was originally developed by Wasmtime’s maintainers for
fuzzing against the official OCaml reference interpreter, before this was abandoned due to its poor
performance. We first benchmark the WasmRef-Isabelle configuration against a version of the same
configuration that restores the OCaml reference interpreter, and an analogous version using Wasmi.
V8’s configuration uses a different feature-set and is benchmarked separately below. Measuring the
throughput of each of these three configurations requires care: LibFuzzer uses coverage metrics
and the corpus of previously-generated tests to guide the generation of subsequent, more complex
tests. We begin with an empty test corpus and execute LibFuzzer in its default configuration for
eight hours with fixed initial seed 3142680329. Results can be found below:

oracle total tests slowest test (secs)

Reference Interpreter 1900091 48
WasmRef-Isabelle 2740908 <1
Wasmi (release) 2793736 <1

Despite the release build of Wasmi consistently outperforming WasmRef-Isabelle by at least
an order of magnitude in previous tests, their reported fuzzing throughputs are similar, while the
fuzzing output of the official reference interpreter is noticeably lower. These results suggest that
performance of the coverage-based fuzzing used byWasmtime is not dominated by the performance
of the oracle unless the oracle is egregiously slow — note that all generated fuzz tests took less than
a second to execute in both WasmRef-Isabelle and Wasmi, (the minimum granularity that LibFuzzer
reports), while the reference interpreter required 48 seconds to execute its longest-running test.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:19

Note also that the reference interpreter’s poor performance disproportionately affects tests with
deeply-nested blocks, distorting the distribution of executed tests and occasionally causing spurious
timeouts (such as with the “4000x” example mentioned above).

The test configurations above generate tests exercising only the features of Wasm 1.0. As , we can
enable this feature during test generation. Previously, Wasmtime could only perform fuzzing involv-
ing SIMD instructions by using a special configuration with Google’s V8 JavaScript engine as an
oracle; Wasmi has no plans to support this feature. We compare the throughput ofWasmRef-Isabelle,
which supports SIMD vector instructions through scalar emulation, against V8 as an oracle for this
fuzzing configuration. Again, we report the results of an eight hour run with initial seed 3142680329.

oracle total tests slowest test (secs)

WasmRef-Isabelle 2923403 <1
V8 2517064 <1

These numbers contain two surprises. First, the throughput of the WasmRef-Isabelle fuzzing
configuration is somewhat higher with SIMD enabled. We speculate that the test generator may
spend a greater proportion of the eight hour runtime generating trivial (even single-instruction)
tests due to the large number of new instructions introduced by the SIMD proposal. Second, the
V8-based configuration is surprisingly slow in comparison. We believe that Wasmtime’s fuzzing
setup currently interfaces with V8 in a particularly inefficient way: for each generated Wasm test,
a small JavaScript program wrapping the test is dynamically produced for V8 to execute.

5.1.5 Conclusions. These results demonstrate that WasmRef-Isabelle significantly outperforms
both the previous work ofWatt et al. [2021], and the unverified reference interpreter. Its performance
is competitive with the unoptimised developer build of Wasmi, a widely used industry Wasm
interpeter. Note though that Wasmi is written in Rust, which is known to have a larger gap between
the performances of its different optimisation levels than C/C++ – for example the release build of
Wasmi shows significantly better performance than WasmRef-Isabelle: around 20x in CoreMark.
However, we observe that both WasmRef-Isabelle and the release build of Wasmi exhibit similar
throughput as fuzzing oracles for Wasmtime, suggesting that WasmRef-Isabelle’s performance is
sufficient for the fuzzing throughput to be dominated by other factors such as test generation.

5.2 Bug Finding

To execute Wasm’s official test suite, we must discard tests which involve the upcoming Reference
Types [WebAssembly Community Group 2021b] and Bulk Memory [WebAssembly Community
Group 2021a] features, which are not yet supported. We successfully pass all remaining tests.
Since its deployment in March 2022, the fuzzing configuration with WasmRef-Isabelle as an

oracle has identified a single bug in Wasmtime [ClusterFuzz 2022]. This was a crash bug which did
not depend on comparing functional behaviour. It is worth noting that Wasmtime has already been
extensively fuzzed against other industry implementations using the same test generation strategy,
and so it is likely that the main value of fuzzing against WasmRef-Isabelle will be in discovering
bugs in future changes to the codebase, rather than in revealing extant bugs. Moreover, contributors
are encouraged to fuzz their changes locally, reducing the chances that the continuous integration
infrastructure discovers bugs. In the same time period, the publicly-available bug tracker indicates
that no other part of Wasmtime’s fuzzing continuous integration infrastructure, which also includes
differential configurations fuzzing against Wasmi and V8, reported a semantic bug in Wasmtime.
Our fuzzing configuration did also reveal one deficiency in WasmRef-Isabelle by generating

a test containing over 450 repeated applications of the bitwise i64.popcnt instruction, which
WasmRef-Isabelle took abnormally long to execute (over a minute). It was discovered that the way

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:20 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

we were modelling popcnt in Isabelle/HOL caused particularly inefficient code to be generated
for this case in the interpreter. To fix this, we defined a more efficient implementation for popcnt,
and thanks to our new semantic model of Wasm’s integer operations, we were able to prove our
efficient implementation equivalent to the previous one, enabling Isabelle/HOL’s code generator to
use it instead. Once this was accomplished, the test case executed in just under a second. Fuzzing
has not yet revealed any other deficiencies, semantic or otherwise, in WasmRef-Isabelle.
To validate the fuzzing configuration, we locally introduced some simple bugs to Wasmtime

of a sort suggested by its maintainers: permuting the order of operands for individual numeric
instructions, and flipping individual bits in the constant masks used in implementing vector
instructions. Each of our introduced bugs was discovered within a few minutes of fuzzing. We
should emphasise that so long as our interpreter can execute generated tests with reasonable speed,
the question of whether or not an extant bug is discovered is mainly down to the effectiveness of
the fuzzing infrastructure’s coverage-guided test generation. Aside from the test involving popcnt

mentioned above, we have no evidence that WasmRef-Isabelle has been a fuzzing bottleneck for
Wasmtime’s setup in comparison to unverified oracles such as Wasmi or V8.

6 RELATED WORK

Refinement is a natural approach to reduce the complexity of both implementations and correctness
proofs, by separating different aspects. Early formal treatments are by Hoare [1972] and Back
and von Wright [1998], and early tools include the VDM [Alagar and Periyasamy 1998] and B-
Method [Abrial 1996]. Refinement is also used in more recent verification projects like the SeL4
kernel [Klein et al. 2014] or the verified CompCert compiler [Blazy and Leroy 2009]. Closest to our
approach are the verified UNSAT checkers by Heule et al. [2017] and Lammich [2020], that use
multiple refinement steps, ultimately introducing imperative arrays.
Refinement techniques also differ on the level of automation: in our approach, we use plain

Isabelle/HOL and a standard verification condition generator [Lammich and Meis 2012]. This
requires some programming and proving discipline to not accidentally break the abstraction
barriers and get overly complicated proofs. A similar approach is used by Heule et al. [2017]. On
the other hand, there are frameworks like Fiat [Pit-Claudel et al. 2020], CoqEAL [Cohen et al.
2013], Autoref [Lammich 2013], and Sepref [Lammich 2015] that assist with data refinement, and
synthesize the refined program and proof (semi-)automatically. The memoization framework of
Wimmer et al. [2018] is also highly automated but restricted to dynamic programming.

In our work, we could not take advantage of the more automated approaches, as they are not
(yet) general enough to handle certain subtleties with aliasing in our monadic state. We believe
that our work provides a valuable target against which to develop more general automation.
While the possibility of using a verified programming language implementation as a fuzzing

oracle to test industry language implementations features prominently in the “folklore” of the field,
we have found a comparative paucity of published examples. The most prominent work in this vein
is undoubtedly that of Yang et al. [2011], in which their Csmith fuzz test generation tool for C is used
to pit the verified CompCert C compiler [Leroy 2009] against a suite of industry C implementations.
Chapman et al. [2019] briefly describe testing their verified interpreter for the smart contract
language Plutus Core against a production implementation. Watt [2018] briefly describes testing an
early version of the Wasm interpreter of Watt et al. [2021] against industry implementations, using
Csmith-generated programs compiled to Wasm. Schumi and Sun [2021] use K-Java [Bogdanas and
Roşu 2015] as an oracle in fuzzing against the Java compiler, and KSolidity [Jiao et al. 2020] as an
oracle in fuzzing against the Solidity compiler. While it is impossible to make an apples-to-apples
comparison, the authors describe running ∼30,000 Java tests over ∼3 weeks, and ∼50,000 Solidity
tests over ∼2 weeks, suggesting a fuzzing throughput that is several orders of magnitude below

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

WasmRef-Isabelle 110:21

that of our setup (see §5.1.4) — this is not necessarily surprising since the oracles are naïvely
derived directly from the relevant K framework semantic definitions [Ros,u and S, erbănută 2010].
The authors also suggest generating tests to achieve coverage of the oracle rather than of the target
implementation, which may be interesting future work in our context.

More broadly, there are many examples of formal techniques being used to test an implementa-
tion against the specification it is intended to follow. Barr et al. [2015] and Hierons et al. [2009]
both survey a variety of approaches for specifying and obtaining oracles for software testing.
SibylFS [Ridge et al. 2015] is an oracular formal model and test suite for file system APIs. He and
Turner [1999] describe the generation of tests for digital circuits from a formal model. Siegl et al.
[2011] describe the use of formal models to generate tests for safety systems in automobiles.
Formalizing semantics of programming languages in theorem provers has a long tradition –

examples include Java [Klein and Nipkow 2006], JavaScript [Bodin et al. 2014; Guha et al. 2010],
Standard ML [Kumar et al. 2014; Lee et al. 2007], C [Krebbers 2015; Leroy 2009; Norrish 1998], and
Rust [Jung et al. 2017]. Other formalizations [Bogdanas and Roşu 2015; Ellison and Rosu 2012; Park
et al. 2015] use specialized semantic frameworks like K [Ros,u and S, erbănută 2010].

7 CONCLUSION AND FUTURE WORK

We have presented WasmRef-Isabelle, a monadic Wasm interpreter with a mechanised proof of
correctness in Isabelle/HOL, which has been deployed as a fuzzing oracle in a major industrial Wasm
implementation’s continuous integration infrastructure. We have demonstrated that in this capacity
WasmRef-Isabelle’s throughput is sufficient to be competitive with unverified implementations.
It is exceptionally rare for a mechanised and verified programming language implementation to
achieve this level of industry adoption, and we believe WasmRef-Isabelle’s success here is thanks
to the maturity of verification libraries such as Imperative HOL and Sepref.

There are three main axes along which WasmRef-Isabelle can be directly improved. First, there
is still significant room to increase its performance by investigating further optimisations, efficient
data structure representations, and so on. While we have demonstrated that WasmRef-Isabelle’s
performance is sufficient for use as a fuzzing oracle, it is still significantly slower than optimised
Wasm interpreters, and as such it is likely not yet suitable for use in more general contexts (see Titzer
[2022] for a broader discussion of the state-of-the-art in industrial Wasm interpreters). Second, we
believe there are opportunities to improve the automation of its proof of correctness by developing
the capabilities of proof assistance tools. Third, we can expand WasmCert-Isabelle and WasmRef-
Isabelle to support further upcoming Wasm features. The second edition of the Wasm standard
(Wasm 2.0) is currently being drafted, and thanks to our extensions WasmCert-Isabelle supports all
of its planned features except for reference types [WebAssembly Community Group 2021b] and
bulk memory operations [WebAssembly Community Group 2021a]. We consider it a high priority
to extend the model and interpreter with these remaining features in order to keep pace with the
Wasm standard and maintain WasmRef-Isabelle’s usefulness as a fuzzing oracle. Planned extensions
beyond Wasm 2.0 such as threads [WebAssembly Community Group 2021d] and garbage-collected
types [WebAssembly Community Group 2022a] would be much more challenging to faithfully
mechanise. Still, some Wasm implementations not associated with Web browsers have signalled
that they have no plans to support these more ambitious extensions [Parity Technologies 2022],
and so the feature-set supported by WasmRef-Isabelle will likely remain relevant for some time.

ACKNOWLEDGMENTS

We thank the members of the Bytecode Alliance for their advice and help during this work; in
particular Andrew Brown, Alex Crichton, Chris Fallin, and Nick Fitzgerald. We also thank Tobias
Nipkow, Simon Roßkopf, and Simon Wimmer for their advice and support.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

110:22 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

REFERENCES

Jean-Raymond Abrial. 1996. The B-Book: Assigning Programs to Meanings. Cambridge University Press.

V. S. Alagar and K. Periyasamy. 1998. Vienna Development Method. Springer New York, New York, NY, 219–279. https:

//doi.org/10.1007/978-1-4757-2920-7_9

Ralph-Johan Back and Joakim von Wright. 1998. Refinement Calculus — A Systematic Introduction.

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The Oracle Problem in Software Testing:

A Survey. IEEE Transactions on Software Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight subset of the C language. Journal of Automated

Reasoning 43, 3 (2009), 263–288. http://xavierleroy.org/publi/Clight.pdf

Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt,

and Gareth Smith. 2014. A Trusted Mechanised JavaScript Specification. In Proceedings of the 41st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). Association for Computing

Machinery, New York, NY, USA, 87–100. https://doi.org/10.1145/2535838.2535876

Denis Bogdanas and Grigore Roşu. 2015. K-Java: A Complete Semantics of Java. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for

Computing Machinery, New York, NY, USA, 12 pages. https://doi.org/10.1145/2676726.2676982

Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and John Matthews. 2008. Imperative Functional

Programming with Isabelle/HOL. In TPHOLs 2008 (LNCS, Vol. 5170), Otmane Aït Mohamed, César A. Muñoz, and Sofiène

Tahar (Eds.). Springer, 134–149.

Bytecode Alliance. 2022a. Bytecode Alliance. https://bytecodealliance.org/.

Bytecode Alliance. 2022b. wasmtime. https://github.com/bytecodealliance/wasmtime.

James Chapman, Roman Kireev, Chad Nester, and Philip Wadler. 2019. System F in Agda, for Fun and Profit. In Mathematics

of Program Construction: 13th International Conference, MPC 2019, Porto, Portugal, 2019, Proceedings (Porto, Portugal).

Springer-Verlag, Berlin, Heidelberg, 43 pages.

ClusterFuzz. 2022. wasmtime:differential_spec: ASSERT: assertion failed. https://bugs.chromium.org/p/oss-

fuzz/issues/detail?id=47918.

Cyril Cohen, Maxime Dénès, and Anders Mörtberg. 2013. Refinements for Free!. In CPP 2013 (LNCS, Vol. 8307), Georges

Gonthier and Michael Norrish (Eds.). Springer, 147–162.

Alex Crichton. 2021. Timeouts in spec interpreter fuzzing. https://github.com/bytecodealliance/wasmtime/issues/3186.

Chucky Ellison and Grigore Rosu. 2012. An Executable Formal Semantics of C with Applications. In Proceedings of the 39th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12).

Association for Computing Machinery, New York, NY, USA, 533–544. https://doi.org/10.1145/2103656.2103719

Chris Fallin. 2021. [interpreter] Fix quadratic behavior when stepping in deeply-nested scopes.

https://github.com/WebAssembly/spec/pull/1354.

Shay Gal-On and Markus Levy. 2009. CoreMark. https://www.eembc.org/techlit/articles/coremark-whitepaper.pdf.

James Gosling. 1995. Java Intermediate Bytecodes: ACM SIGPLAN Workshop on Intermediate Representations (IR’95). In

Papers from the 1995 ACM SIGPLAN Workshop on Intermediate Representations (San Francisco, California, USA) (IR ’95).

Association for Computing Machinery, New York, NY, USA, 111–118. https://doi.org/10.1145/202529.202541

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The Essence of Javascript. In Proceedings of the 24th European

Conference on Object-Oriented Programming (Maribor, Slovenia) (ECOOP’10). Springer-Verlag, Berlin, Heidelberg, 126–150.

Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai,

and JF Bastien. 2017. Bringing theWeb up to SpeedwithWebAssembly. In Proceedings of the 38th ACM SIGPLANConference

on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for Computing

Machinery, New York, NY, USA, 16 pages. https://doi.org/10.1145/3062341.3062363

Florian Haftmann and Lukas Bulwahn. 2021. Code generation from Isabelle/HOL theories.

https://isabelle.in.tum.de/doc/codegen.pdf.

Ji He and Kenneth J. Turner. 1999. Protocol-Inspired Hardware Testing. In IWTCS.

Marijn Heule, Warren Hunt, Matt Kaufmann, and Nathan Wetzler. 2017. Efficient, verified checking of propositional proofs.

In International Conference on Interactive Theorem Proving. Springer, 269–284.

Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe,

Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward,

and Hussein Zedan. 2009. Using Formal Specifications to Support Testing. ACM Comput. Surv. 41, 2, Article 9 (feb 2009),

76 pages. https://doi.org/10.1145/1459352.1459354

C. A. R. Hoare. 1972. Proof of correctness of data representations. Acta Informatica 1 (1972), 271–281. Issue 4.

Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu, and Jun Sun. 2020. Semantic Understanding of Smart

Contracts: Executable Operational Semantics of Solidity. In 2020 IEEE Symposium on Security and Privacy (SP). 1695–1712.

https://doi.org/10.1109/SP40000.2020.00066

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

https://doi.org/10.1007/978-1-4757-2920-7_9
https://doi.org/10.1007/978-1-4757-2920-7_9
https://doi.org/10.1109/TSE.2014.2372785
http://xavierleroy.org/publi/Clight.pdf
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/202529.202541
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/1459352.1459354
https://doi.org/10.1109/SP40000.2020.00066

WasmRef-Isabelle 110:23

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of the

Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (dec 2017), 34 pages. https://doi.org/10.

1145/3158154

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby C. Murray, Thomas Sewell, Rafal Kolanski, and Gernot Heiser.

2014. Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst. 32, 1 (2014), 2:1–2:70.

https://doi.org/10.1145/2560537

Gerwin Klein and Tobias Nipkow. 2006. A Machine-Checked Model for a Java-like Language, Virtual Machine, and Compiler.

ACM Trans. Program. Lang. Syst. 28, 4 (jul 2006), 619–695. https://doi.org/10.1145/1146809.1146811

Robbert Krebbers. 2015. The C standard formalized in Coq. Ph. D. Dissertation. Radboud University Nijmegen.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: A Verified Implementation

of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San

Diego, California, USA) (POPL ’14). Association for Computing Machinery, New York, NY, USA, 179–191. https:

//doi.org/10.1145/2535838.2535841

Peter Lammich. 2013. Automatic Data Refinement. In ITP. LNCS, Vol. 7998. Springer, 84–99.

Peter Lammich. 2015. Refinement to Imperative/HOL. In ITP. LNCS, Vol. 9236. Springer, 253–269.

Peter Lammich. 2020. Efficient Verified (UN)SAT Certificate Checking. J. Autom. Reason. 64, 3 (2020), 513–532. https:

//doi.org/10.1007/s10817-019-09525-z

Peter Lammich and Rene Meis. 2012. A Separation Logic Framework for Imperative HOL. Archive of Formal Proofs (November

2012). https://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html, Formal proof development.

Daniel K. Lee, Karl Crary, and Robert Harper. 2007. Towards a Mechanized Metatheory of Standard ML. In Proceedings of

the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France) (POPL ’07).

Association for Computing Machinery, New York, NY, USA, 173–184. https://doi.org/10.1145/1190216.1190245

Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (jul 2009), 9 pages. https://doi.org/10.

1145/1538788.1538814

LLVM Progect. 2022. LibFuzzer. https://llvm.org/docs/LibFuzzer.html.

Andreas Lochbihler. 2018. Fast Machine Words in Isabelle/HOL. In Interactive Theorem Proving, Jeremy Avigad and Assia

Mahboubi (Eds.). Springer International Publishing, Cham, 388–410.

Michael Norrish. 1998. C formalised in HOL. Technical Report.

Parity Technologies. 2022. wasmi. https://github.com/paritytech/wasmi.

Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: A Complete Formal Semantics of JavaScript. In Proceedings of

the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR, USA) (PLDI ’15).

Association for Computing Machinery, New York, NY, USA, 346–356. https://doi.org/10.1145/2737924.2737991

Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross, and Adam Chlipala. 2020. Extensible Extraction of

Efficient Imperative Programs with Foreign Functions, Manually Managed Memory, and Proofs. In Automated Reasoning,

Nicolas Peltier and Viorica Sofronie-Stokkermans (Eds.). Springer International Publishing, Cham, 119–137.

Robert H. Pollack. 1996. How to Believe a Machine-Checked Proof 1.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc of. Logic in Computer Science

(LICS). IEEE, 55–74.

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Madhavapeddy, and Peter Sewell. 2015. SibylFS: Formal

Specification and Oracle-Based Testing for POSIX and Real-World File Systems. In Proceedings of the 25th Symposium on

Operating Systems Principles (Monterey, California) (SOSP ’15). Association for Computing Machinery, New York, NY,

USA, 38–53. https://doi.org/10.1145/2815400.2815411

Grigore Ros,u and Traian Florin S, erbănută. 2010. An overview of the K semantic framework. The Journal of Logic and

Algebraic Programming 79, 6 (2010). https://doi.org/10.1016/j.jlap.2010.03.012 Membrane computing and programming.

Richard Schumi and Jun Sun. 2021. SpecTest: Specification-Based Compiler Testing. Fundamental Approaches to Software

Engineering 12649 (2021).

Sebastian Siegl, Kai-Steffen Hielscher, Reinhard German, and Christian Berger. 2011. Formal specification and systematic

model-driven testing of embedded automotive systems. In 2011 Design, Automation & Test in Europe. 1–6. https:

//doi.org/10.1109/DATE.2011.5763028

TC39. 2018. SIMD.js. https://github.com/tc39/ecmascript_simd.

Ben L. Titzer. 2022. A Fast In-Place Interpreter for WebAssembly. Proc. ACM Program. Lang. 6, OOPSLA2, Article 148 (oct

2022), 27 pages. https://doi.org/10.1145/3563311

W3C. 2019. WebAssembly Core Specification. https://www.w3.org/TR/wasm-core-1/.

wasm3. 2021. was-coremark. https://github.com/wasm3/wasm-coremark.

WasmCert. 2023. WasmRef-Isabelle. https://github.com/WasmCert/WasmCert-Isabelle.

Conrad Watt. 2018. Mechanising and Verifying the WebAssembly Specification. In Proceedings of the 7th ACM SIGPLAN

International Conference on Certified Programs and Proofs (Los Angeles, CA, USA) (CPP 2018). Association for Computing

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-019-09525-z
https://doi.org/10.1007/s10817-019-09525-z
https://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2815400.2815411
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1109/DATE.2011.5763028
https://doi.org/10.1109/DATE.2011.5763028
https://doi.org/10.1145/3563311

110:24 Conrad Wa�, Maja Trela, Peter Lammich, and Florian Märkl

Machinery, New York, NY, USA, 13 pages. https://doi.org/10.1145/3167082

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. 2021. Two Mechanisations of

WebAssembly 1.0. In Formal Methods, Marieke Huisman, Corina Păsăreanu, and Naijun Zhan (Eds.). Springer International

Publishing, Cham, 61–79.

Conrad Watt, Maja Trela, Peter Lammich, and Florian Märkl. 2023. Supplementary material for WasmRef-Isabelle. https:

//doi.org/10.5281/zenodo.7815663

WebAssembly Community Group. 2019. nontrapping-float-to-int-conversions. https://github.com/WebAssembly/nontrapping-

float-to-int-conversions.

WebAssembly Community Group. 2020. multi-value. https://github.com/WebAssembly/multi-value.

WebAssembly Community Group. 2021a. bulk memory. https://github.com/WebAssembly/bulk-memory-operations.

WebAssembly Community Group. 2021b. reference types. https://github.com/WebAssembly/reference-types.

WebAssembly Community Group. 2021c. simd. https://github.com/WebAssembly/simd.

WebAssembly Community Group. 2021d. threads. https://github.com/WebAssembly/threads.

WebAssembly Community Group. 2022a. gc. https://github.com/WebAssembly/gc.

WebAssembly Community Group. 2022b. WebAssembly/spec/interpreter .

https://github.com/WebAssembly/spec/tree/main/interpreter.

Simon Wimmer, Shuwei Hu, and Tobias Nipkow. 2018. Verified Memoization and Dynamic Programming. In Interactive

Theorem Proving - 9th International Conference, ITP 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,

UK, July 9-12, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10895), Jeremy Avigad and Assia Mahboubi (Eds.).

Springer, 579–596. https://doi.org/10.1007/978-3-319-94821-8_34

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings

of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)

(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 12 pages. https://doi.org/10.1145/1993498.1993532

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 110. Publication date: June 2023.

https://doi.org/10.1145/3167082
https://doi.org/10.5281/zenodo.7815663
https://doi.org/10.5281/zenodo.7815663
https://doi.org/10.1007/978-3-319-94821-8_34
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Background
	2.1 Abstract Syntax
	2.2 Runtime State
	2.3 Basic execution
	2.4 Control Flow

	3 Model extensions
	3.1 Integer Numerics
	3.2 New Features

	4 A faster verified interpreter
	4.1 Top-Level Structure
	4.2 Intermediate Interpreter
	4.3 Monadic Interpreter
	4.4 Trusted Computing Base

	5 Evaluation
	5.1 Performance
	5.2 Bug Finding

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

