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ABSTRACT

Exploratory Landscape Analysis is a powerful technique for nu-

merically characterizing landscapes of single-objective continuous

optimization problems. Landscape insights are crucial both for prob-

lem understanding as well as for assessing benchmark set diversity

and composition. Despite the irrefutable usefulness of these fea-

tures, they suffer from their own ailments and downsides. Hence,

in this work we provide a collection of different approaches to char-

acterize optimization landscapes. Similar to conventional landscape

features, we require a small initial sample. However, instead of

computing features based on that sample, we develop alternative

representations of the original sample. These range from point

clouds to 2D images and, therefore, are entirely feature-free. We

demonstrate and validate our devised methods on the BBOB testbed

and predict, with the help of Deep Learning, the high-level, expert-

based landscape properties such as the degree of multimodality and

the existence of funnel structures. The quality of our approaches

is on par with methods relying on the traditional landscape fea-

tures. Thereby, we provide an exciting new perspective on every

research area which utilizes problem information such as problem

understanding and algorithm design as well as automated algorithm

configuration and selection.

CCS CONCEPTS

• Computing methodologies → Neural networks; Supervised

learning; Support vector machines; Classification and regres-

sion trees; Continuous space search.
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1 INTRODUCTION

The merits of a numerical characterization of single-objective con-

tinuous black-box optimization problems have been indubitably

proven in various works. Especially, the use of Exploratory Land-

scape (ELA) features in the areas of algorithm selection improved

the state-of-the-art at that time significantly [11, 29]. However, as

shown in the early days of ELA research, landscape features can

also be used to classify a given problem instance w.r.t. its high-level

properties [21]. Hence, we deem it useful to revisit the work of [21]

from a different angle.

As Deep Learning (DL) has evolved into a highly competitive

class of machine learning algorithms in the last decade, the po-

tential of a feature-free landscape analysis arises. Thus, we will

demonstrate in this work how to use the largely unprocessed fitness

landscape information to accurately characterize fitness landscapes

using DL, and skipping the intermediate step of calculating instance

features as there are several drawbacks related to this process: the

features (1) are designed manually in a tedious process, (2) require

additional and (sometimes) computationally-expensive calculations,

and (3) are tailored to a specific task or problem [32]. A first experi-

mental study in the numerical domain has highlighted the potential

of a so-called ‘fitness map’ in combination with DL for automated

algorithm selection [28]. However, we enhance this approach and

also provide further alternatives to the fitness map, which alleviates

one of their largest drawbacks, i.e., we lift the restriction that the

previously proposed fitness map is only applicable for 2𝑑 problems.

This paper is organized as follows. Section 2 provides a the used

concepts and techniques throughout the paper. We detail various

necessary concepts about the fitness landscape in Sections 2.1 and

2.2, followed by the basic notion of traditional landscape features,

the fitness map, and the fitness cloud (Sections 2.3-2.5). An experi-

mental study1is presented in Section 3 and its results are discussed

in Section 4. Finally, Section 5 concludes our paper.
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Table 1: Characterization of the 24 BBOB functions based on

their high-level properties multimodality, global structure,

and funnel structures. Note that this table combines infor-

mation from tables provided in [22] and [10].

BBOB Function Multim. Global Str. Funnel

1: Sphere none none yes
2: Ellipsoidal separable none none yes
3: Rastrigin separable high strong yes
4: Büche-Rastrigin high strong yes
5: Linear Slope none none yes

6: Attractive Sector none none yes
7: Step Ellipsoidal none none yes
8: Rosenbrock low none yes
9: Rosenbrock rotated low none yes

10: Ellipsoidal high conditioned none none yes
11: Discus none none yes
12: Bent Cigar none none yes
13: Sharp Ridge none none yes
14: Different Powers none none yes

15: Rastrigin multimodal high strong yes
16: Weierstrass high med. none
17: Schaffer F7 high med. yes
18: Schaffer F7 moderately ill-cond. high med. yes
19: Griewank-Rosenbrock high strong yes

20: Schwefel med. deceptive yes
21: Gallagher 101 Peaks med. none none
22: Gallagher 21 Peaks low none none
23: Katsuura high none none
24: Lunacek bi-Rastrigin high weak yes

2 BACKGROUND

2.1 Black-Box Problems and Fitness Landscapes

In single-objective continuous optimization the aim is to find w.l.o.g.

the global minimum of an objective or fitness function 𝑓 , which

maps decision variables ®𝑥 = (𝑥1, . . . , 𝑥𝑑 ) to objective values 𝑓 ( ®𝑥)
subject to constraints 𝑔𝑖 :

min. 𝑓 ( ®𝑥) 𝑠 .𝑡 . 𝑔𝑖 ( ®𝑥) ≤ 𝑏𝑖 (𝑖 = 1, . . . , 𝑘)
𝑓 , 𝑔𝑖 : X ⊆ R

𝑑 → R

Black-box optimization assumes that the exact equation of 𝑓 and

thus the mechanism relating decision variables to objective values is

unknown. Hence, algorithms, e.g., cannot exploit exact information

on gradients and optimization becomes extremely challenging.

While a very preliminary landscape visualization w.r.t. gene

combinations in evolution can already be found in [39], we for-

mally define a fitness landscape L similar to [24] as a triplet L :=

(X, 𝑑𝐸 , 𝑓 ) with Euclidean distance 𝑑𝐸 between points, assuming a

box-constrained decision space X with lower and upper bounds

[l, u] ⊆ X. The landscape metaphor is herein used to characterize

optima, plateaus and local structures in analogy to topographical

structures in nature such as mountains, valleys, ridges, plateaus,

lowlands, etc.

1https://github.com/Reiyan/highlevel_property_prediction.git

2.2 High-Level Properties of Fitness Landscapes

One of the key objectives when studying (single-objective contin-

uous) optimization problems is to get a better understanding of

their structural characteristics. These insights, in turn, allow us

(1) to find (dis)similarities between test problems, (2) to select and

configure algorithms that have a higher chance of performing well

on the given problem(s), and (3) to design new algorithms that

are particularly good at dealing with challenging obstacles of the

problem(s) under investigation.

As visual investigations of fitness landscapes are in most cases

infeasible ś visualizations are mainly limited to problems with at

most two input parameters ś we tend to help ourselves by describ-

ing (even high-dimensional) problems using rather tangible terms

and concepts that are comparatively easy to understand, such as

modality, plateaus, or funnel shapes (without seeing them). Most

of the notions that we commonly use are not quantifiable by a

single number, but instead describe the landscapes by means of

high-level characteristics. For the 24 problems of the well-known

BBOB test suite [6], an overview of three high-level properties is

given in Table 1. Other than these three, additional five high-level

properties are also commonly used in the Evolutionary Computa-

tion (EC) community. These five properties are separability, variable

scaling, search space homogeneity, basin size homogeneity, and global

to local optima contrast [10, 19, 21, 22]. The three properties used

throughout this paper are explicitly known to severely influence

problem hardness and are summarized in the following:

• The degree of multimodality provides an aggregation of the

problem’s number of local optima.

• The structural relationship of all local and/or global optima

(i.e., ignoring all non-optimal points) is summarized within

the problem’s global structure.

• Considering both the number and the layout of the optima,

the landscape of a problem can also be described in terms of

whether its optima are aligned in a funnel-shaped structure.

A funnel exists, if the problem’s optima pile up to an up-side-

down version of a mountain.

2.3 Landscape Features

As stated above, high-level properties can be very useful for describ-

ing a problem in a human-understandable way. However, charac-

terizing new (i.e., previously unseen) black-box problems by means

of those properties can be very challenging as they cannot be (di-

rectly) computed in an automated manner. Instead, a property’s

attributes are usually assigned by human experts, which presents a

severely limiting factor in automated processes such as automated

algorithm selection. Another obstacle arises from the fuzzy transi-

tions between adjacent attributes. For instance, there is no strict,

separating boundary between a low and a medium, or a medium

and a high degree of multimodality.

With the help of low-level landscape features, the aforemen-

tioned obstacles can be overcome. These features are maximally

informative, i.e., numerical values that can be calculated in an auto-

mated manner based on a small sample of (evaluated) points. Note

that previous works have studied the impact of sample size [10]

and sampling strategy [3]; in fact, even the population of an evolu-

tionary algorithm could be used as input for the feature calculation
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Figure 1: Visualization of function 17 of the BBOB suite [6]

in 2d as a max. problem. The position of the optimum 𝑓𝑜𝑝𝑡 is

highlighted in orange. The output is shown unnormalized

(left), and normalized using Eq. (2) (right).

ShuffleNet v2 Gl. Max

LBR

1024

3

Figure 2: Our used Deep Learning architecture for the image-

based approach. It consists of a ShuffleNet v2 [37] with a

Global Pooling layer + LBR (Linear, Batch-Normalization

[7], and ReLU [25]).

[8]. By using a suitable combination of several of these features, it

is in turn possible to draw conclusions about the high-level prop-

erties of the underlying problem. Moreover, as the features enable

the (exploratory) analysis of the problem’s fitness landscape, the

corresponding line of research is dubbed Exploratory Landscape

Analysis (ELA) [21] or sometimes also Fitness Landscape Analysis

(FLA) [20].

Research in ELA has been on the rise for many years. As a result,

hundreds of landscape features have been proposed over the last

two to three decades. Hence, we herein refer the interested reader to

the respective original references for a detailed description of these

features (due to space limitations), and instead restrict ourselves to

a brief listing of the considered feature sets:

• Classical ELA: While the complete set of ELA features cov-

ers six features sets, each containing multiple features, we

focus on the three feature sets level set, meta model, and 𝑦-

distribution (consisting of 22 features in total). The remaining

feature are excluded because they require additional function

evaluations to compute [21].

• Nearest Better Clustering: A small feature set (5 features),

which summarizes the distances of a point to its nearest

neighbor and its nearest better neighbor (for all points from

the considered sample) [10].

• Dispersion: The 16 features of this set compare the spread

of the distances of the better points to the spread of the

distances of all points from the considered sample [17].

• Information Content: The 5 sequence-based features of this

set rely on an enhanced version of the information content

method from the combinatorial domain [23, 36].

• Fitness Distance Correlation: In total 6 features which capture

the distance of the points in the decision space in relation to

their respective objective values [9].

• Miscellaneous: Nine features which are based on principal

component analysis and very basic meta information of the

problem, such as its dimensionality [12].

2.4 Fitness Map

Computer vision is one of the oldest and, at the same time, very

well understood tasks of DL. Convolutional Neural Networks (CNN)

outperform humans in many visual tasks such as object detection

and image segmentation (e.g. [14]). Therefore, it is consequential to

explore the potential of using CNNs for landscape analysis based

on images visualizing a small sample of points, also called Fitness

Map [28]. For every candidate solution, the coordinates ®𝑥 and the

corresponding fitness-value 𝑓 ( ®𝑥) are known. Therefore, 𝑋 ∈ R
𝑛×𝑑

contains the coordinates of a set of 𝑛 candidate solutions with

dimensionality 𝑑 and 𝑓 (𝑋 ) contains the fitness values of every

candidate solution whereby 𝑓 (𝑋 ) ∈ R
𝑛 . We normalize both 𝑋 and

𝑓 (𝑋 ) by

𝑋 =

𝑋 − 𝑙

𝑢 − 𝑙 + 𝜖
(1)

𝑓 (𝑋 ) =
ln

[

1 + 𝑓 (𝑋 ) −min(𝑓 (𝑋 ))
]

ln
[

1 +max(𝑓 (𝑋 )) −min(𝑓 (𝑋 ))
]

+ 𝜖
(2)

where 𝜖 = 10−8 is a very small number to countervail division

by zero and [l, u] ⊆ X because we assume box-constraints for 𝑋

as explained in Section 2.1 (see Fig. 1 for an exemplary normal-

ization). Afterwards, 𝑋 ∈ [𝑙, 𝑢] and 𝑓 (𝑋 ) ∈ [0, 1]. Normalization

is important for the image-based approaches because the image’s

resolution as well as the color range for each pixel are finite. To

generate the image or fitness map for an instance, the fitness values

𝑓 (𝑋 ) are mapped into a Cartesian plane at the locations given by

𝑋 . Afterwards, the plane is converted into a gray scaled image and

the gray values represent the fitness value. Unknown areas without

any sampled solutions are left white as originally proposed in [28].

Every convolutional layer has aweightmatrix, called convolution-

kernel or just kernel. The input image is convoluted by the train-

able kernel into an output image. However, one major constraint

of CNNs is their limitation to two or three dimensional data as

the number of weights in each convolution-kernel grows expo-

nentially with the number of dimensions. Therefore, we extended

the approach of [28] by introducing four different dimensionality

reduction techniques to reduce the fitness map’s dimensionality

to two and, thus, enable 2d-CNNs to compute high-dimensional

landscapes, efficiently.

2.4.1 Principal Component Analysis (PCA) [26]. This is the first

technique that we used for reducing the dimensionality of 𝑋 . To

do so, we applied PCA to 𝑋 without centering the data a priori to

keep the location of the points in the same trajectory. In detail, we

performed the following steps

𝑋̃ = 𝜆𝑇1,2 · 𝑋 ; 𝜆𝑖 = 𝑣𝑎𝑟 (𝑆); 𝑆 = 𝑐𝑜𝑣 (𝑋𝑇 ), (3)
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a) 2d: w.o. reduction b) 3d: reduced MC c) 5d: reduced MC d) 10d: reduced MC

e) 2d: PCA f) 3d: PCA g) 5d: PCA h) 10d: PCA

i) 2d: PCA-Func k) 3d: PCA-Func l) 5d: PCA-Func m) 10d: PCA-Func

Figure 3: Visualization of the fitness map approaches with different reduction techniques of F17. The full decision space can

be found in Figure 1. The optimal value 𝑓𝑜𝑝𝑡 is shown in orange for better reference but left out in the original images. 𝑦 is

normalized by Equation 1 and 2. Note: (1) points have been increased in size for better visualization, in the original fitness map

every point is only 1px in size; (2) for the rMC approach, 𝑓𝑜𝑝𝑡 is shown several times from different perspectives.

where 𝑐𝑜𝑣 is the covariance matrix of𝑋𝑇 and 𝜆𝑖 are all eigenvectors

of 𝑆 . 𝑋̃ ∈ R
𝑛×2 is then normalized as decribed in Eq. (1). Points

that exceed the upper and lower bounds are dropped (which is

rarely the case) to keep the resolution of the fitness map consistent;

varying resolutions of the fitness maps may impact a meaningful

representation of distances between neighboring points. As ex-

plained previously, the fitness values 𝑓 (𝑋 ) are then mapped into a

Cartesian plane at the locations 𝑋̃ .

2.4.2 Principal Component Analysis incl. Fitness Value (PCA-Func).

In contrast to the former approach, this one also considers 𝑓 (𝑋 )
to find more meaningful principal components (PC) w.r.t. 𝑓 (𝑋 ).
Similarly, we performed the following steps

𝑋̃ = 𝜆𝑇1,2 · 𝑋́ ; 𝜆𝑖 = 𝑣𝑎𝑟 (𝑆); 𝑆 = 𝑐𝑜𝑣 (𝑋́𝑇 ); 𝑋́ = 𝑋 | | 𝑓 (𝑋 ) (4)

where | | is the operator for concatenation and 𝑋́ ∈ R
𝑛×(𝑑+1) . All

other steps are identical to the default PCA procedure. Afterwards,

the fitness values 𝑓 (𝑋 ) are mapped in the same way as previously

described into a Cartesian plane.

2.4.3 Multiple Channel (MC). This approach follows the idea of

Liu et al. [15]. For each possible pairwise combination of decision

variables in 𝑋 an individual fitness map is generated. Note that

the total number of all fitness maps corresponds to 𝑐 =

(𝑑
2

)

, e.g.,

for 𝑑 = 5 there exist 10 fitness maps while for 𝑑 = 10 a total of

45 different fitness maps are created. These fitness maps are then

stacked into an image with 𝑐 channels. Usually, CNNs are designed

to work with RGB images and, thus, expect a three-channel input.

Yet, the number of expected input channels can be easily adjusted to

any finite number. However, one major drawback of this approach

is that 𝑑 is limited by the number of available input channels 𝑐 .

For instance, if 𝑐 = 45, the dimensionality 𝑑 of 𝑋 is limited to 10

(at most), because the number of possible pairwise combinations

would otherwise exceed the number of input channels 𝑐 . However,

if 𝑋 has less dimensions, the missing channels can be filled with

white or empty fitness maps.

2.4.4 reduced Multiple Channel (rMC). Our last proposed image-

based approach aims to overcome the limiting factor of our MC

approach. The 𝑐 fitness maps are generated in the same manner

as in the MC approach. Afterwards, they are reduced to a single

fitness map by simple mean-aggregation excluding empty cells. We

expect that this approach works great for smaller 𝑑 , but may suffer
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for larger 𝑑 , because the model cannot distinguish between the

numerous 2d-projections.

Fig. 3 shows examples for three of the four dimensionality re-

duction methods. The MC approach is missing as it is impossible to

visualize images with more than three color-channels. The image-

based approaches have their benefits and drawbacks. On the one

hand, CNNs are ś in comparison to other, newer fields in DL ś

well understood and, therefore, training is (in-comparison) easy.On

the other hand, images may not be an ideal representation of a set

of candidate solutions as the exact location of each point is lost.

This is due to the fact that an image consists of a finite number of

pixels and each pixel represents a specific cell within the Cartesian

plane. Therefore, the resolution of the coordinate system depends

on (1) the number of available pixels, and (2) the upper and lower

bounds of the fitness map. In addition, all image-based approaches,

except for MC, loose information for 𝑑 > 2 for every point as di-

mensionality reduction methods cause an information loss. Yet the

MC approach has its limitations as well. As the number of channels

grows with 𝑐 =
(𝑑
2

)

, the number of channels and weights within a

CNN grow rapidly for high dimensions.

2.5 Fitness Clouds

To countervail these shortcoming, we explored a second and novel

field in DL, called 3d-point cloud analysis. DL for 3d-point clouds is

most commonly used in the context of Light Detection and Ranging

(LiDAR) data [13]. One of its main challenges is the point order

isomorphism: the order of 3d-points within a set of points has no

semantic meaning. Therefore, all operations within a DL model

must respect the isomorphic nature of the input data: changing the

order of the points must not influence the computed output.

However, the fundamental operation in every DNN is 𝑦 ( ®𝑥) =

®𝑤𝑇 · ®𝑥 +𝑏. If the order of 𝑥𝑖 ∈ ®𝑥 changes, 𝑦 will change accordingly

because the order of𝑤𝑖 ∈ ®𝑤 does not adapt automatically. Therefore,

operations in DNN that respect point order isomorphism let the order

of𝑤𝑖 depend on the order of 𝑥𝑖 in a way that 𝑦 remains the same

if the order of 𝑥𝑖 changes. Yet, these operations are not trivial and

increase complexity of DNNs, substantially.

Several 3d-point cloud approaches have been proposed recently.

Yet, most of these approaches operate on graph-like structures such

as 𝑘𝑝-graphs [35], k-nearest-neighbor (kNN) graphs [38], or some

form of hierarchical pooling [30, 37]. We assume that these meth-

ods may focus too much on a local neighborhood and, thus, may

suffer from finding meaningful global representations. Therefore,

we adapted the idea of Point Cloud Transformers (PCT) [4].

As we want to predict high-level properties such asmultimodality

or global structure, a method focusing solely on a local neighborhood

may fail to identify these properties due to the fact that those

rather depend on a global context than on local neighborhood.

Another advantage of transformer for 3d-point cloud analysis is

the fact that the attention mechanism within each layer operates

in an isomorphic manner (see [4] for more details). However, this

may have its downsides as the attention mechanism might ignore

positional relation between input data. Therefore, [33] introduced

Relational Positional Representation which we adapted for our own

proposed embedding strategy.

PCTwere originally proposedwith a different form of embedding

than we used in the context of this paper. [4] adapted the idea of

Edge-Convolutions [38] for their embedding strategy. These forms of

convolutions operate on the edges within a 𝑘NN-graph. We did not

find this process intuitive for our task of landscape analysis as edges

within an artificially generated graph may not contain any useful

information about the underlying landscape. In addition, there are

significantly more edges in a 𝑘NN-graph (for 𝑘 > 1) as there are

nodes, which increases computational complexity noticeably.

So, we propose our own approach of input embedding which

does not operate on edges but on the nodes of the 𝑘NN-graph. Or, in

other words, every 𝑥𝑖 ∈ 𝑋 is embedded into its local neighborhood.

So, we define 𝑋 𝑗 as the set of all 𝑥𝑖 together with its 𝑘 − 1 nearest

neighbors

𝑋 𝑗 : R
𝑛×𝑑 𝑘𝑁𝑁−−−−→ R

𝑛×𝑑 ·𝑘 ; 𝑓𝑗 (𝑥) : R
𝑛 𝑘𝑁𝑁−−−−→ R

𝑛×𝑘 (5)

𝑋𝐸𝑚𝑏 = 𝑋 𝑗 | | 𝑓𝑗 (𝑋 ) | | 1; 1 ∈ R
𝑛×𝑑 (6)

where 𝑋𝐸𝑚𝑏 ∈ R
𝑛×𝑘 · (𝑑+1)+𝑑 is the resulting embedded input and

the 𝑘NN-graph applied to 𝑓 (𝑋 ) is identical to 𝑋 . To enable the

embedding process to work with 𝑋 s of different dimensionality, all

𝑋 s with lower dimensionality receive additional coordinates with

zeros to fill the missing dimensions. However, as zeros are valid

coordinates and, thus, the model could not distinguish between the

original and the appended dimensions, an additional indicator 1 is

concatenated to 𝑋 𝑗 (together with 𝑓𝑗 (𝑋 )) to indicate which of the

coordinates are valid or artificially appended.

We investigated the effects of 𝑘 ∈ {1, 3, 5, 10} to find a suitable

value for 𝑘 , as well as the effects of different L𝑝 -norms as dis-

tance function for finding the 𝑘NN-graph. Often, the L2-norm (i.e.,

Euclidean norm) is used to find the 𝑘NN-graph in 2d or 3d data.

However, as the L2-norm is not well-suited for high-dimensional

data, we also considered different 𝑝 ∈ {1, 2,∞} as distance function.
Next, as proposed by [33] we include a third parameter, Δ𝑚𝑎𝑥 that

limits the maximum distance in the 𝑘NN-graph search to preserve

local neighborhood. If the distance between 𝑥𝑖 and 𝑥 𝑗 exceeds Δ𝑚𝑎𝑥 ,

𝑥 𝑗 is replaced by the values of 𝑥 𝑗−1. See Fig. 4 for an example.

In a small ablative study, we trained variousmodels with different

𝑘, 𝑝, and Δ𝑚𝑎𝑥 on the training set and evaluated these models on

the validation set. Based on this results, we found that 𝑘 ∈ {3, 5},
𝑝 = ∞ and Δ𝑚𝑎𝑥 = 1.5 are particularly well-suited for our use

case (see Section 3.3). However, we found that 𝑘 , 𝑝 and Δ𝑚𝑎𝑥 in

comparison to other hyperparameters (such as the number of layers,

number of hidden features, etc.) have a low impact on the overall

performance of the transformer models. We believe, that 𝑝 = ∞
works well on our task because it is unaffected by the number of

dimensions. However, in future work we want to investigate the

effect of 𝑝 more closely and, even, consider 𝑝 < 1 as proposed by

Aggarwal et al. [1].

3 EXPERIMENTS

Within our experiments, we trained several machine learning mod-

els to classify a set of benchmark problems w.r.t. the three high-level

properties multimodality, global structure, and funnel structure (cf.

Tab. 1). We focused on these three properties because their degree

of existence often determines an optimization problem’s difficulty.
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Figure 4: Visualization of the transformer model including the embedding. (a) for every 𝑥𝑖 ∈ 𝑋 the 𝑘 − 1NN are calculated. If

the distance between ®𝑥𝑖 and ®𝑥 𝑗 exceeds a certain limit Δ𝑚𝑎𝑥 (shown in red), the point ®𝑥 𝑗 is replaced by ®𝑥 𝑗−1 to preserve local

neighborhood [33]. The output for this case would be ®𝑥 𝑗 = ®𝑥𝑖 | | ®𝑥 𝑗=1 | | ®𝑥 𝑗=2 | | ®𝑥 𝑗=3 | | ®𝑥 𝑗=3. (b) The adapted architecture as proposed

by Guo et al. [4], but with a different input-embedding using more features in the attention layers (Attn.), and with only two

final linear layers. LBR stands for Linear, Batch-Normalization [7], and ReLU [25], GL Max for Global Max-Pooling.

This aforementioned set of benchmark problem is the well-known

Black-Box Optimization Benchmark (BBOB) [6]. It is part of the

COmparing Continuous Optimisers (COCO) platform which nowa-

days covers a wider range of problem types, including (but not

limited to) single-, multi-objective and noisy problems [5]. The

considered single-objective BBOB test suite is constituted of 24

noiseless functions 𝐹 = {1, 2, ..., 24}. These functions are organized
into five groups, where each function group focuses on certain

problem characteristics. For instance, the fourth and fifth group

(i.e., F15 to F19 and F20 to F24, respectively) both consist of multi-

modal functions, but can be distinguished by their degree of global

structure. Furthermore, each function comprises an infinite number

of instances 𝐼 , which maintain the function’s general high-level

properties, but offer a wider variety of optimization problems by

means of shifts, rotations and scaling. Lastly, all the functions are

of arbitrary dimensionality 𝑑 .

In our study, we considered all 24 BBOB functions, with the

instances 𝐼 = {1, . . . , 150}, and dimensionality 𝐷 = {2, 3, 5, 10}.
This amounts to 24 · 4 · 150 = 14 400 distinct problems in total. Since

the considered features and feature-free approaches are based on

a randomly generated sample, we repeat the sample generation

ten times per problem. This should help to a certain extent to

account for the fitness map’s, fitness cloud’s, and ELA feature’s

variability (caused by the sample generation). In the following,

the term problem instance p is used as short form of the tuple

p := (𝑓 , 𝑑, 𝑖, 𝑟 ), where 𝑓 ∈ 𝐹 and 𝑖 ∈ 𝐼 are the function and instance

ID of the BBOB test suite, 𝑑 ∈ 𝐷 is the problem dimensionality, and

𝑟 is the current repetition.

We divide the set of 144 000 problem instances (including the

10 repetitions per p) into three subsets: training, validation and

test set. To give a realistic impression of our models’ performance,

we restrict the training, hyperparameter tuning and feature selec-

tion (in case of models based on ELA features) to the training and

validation set and only afterwards assess the quality of a model

on the test set. Thereby, we ensure that hyperparameter tuning

and feature selection does not bias the model towards the test set.

The training set consists of all BBOB problems of all dimensions

but with instance ids only in the range of {1, . . . , 100}. Following
this scheme, the validation set consists of problem instances with

instance ids in the range {101, . . . , 125}, and the test set with in-

stances in the interval {126, . . . , 150}. We leave instances instead

of entire functions out because some high-level properties are very

underrepresented and by removing an entire BBOB function from

the training data set, we essentially set our models up for failure.

The extreme case for this example is BBOB Function 20 which is

the sole member of the class deceptive of the high-level property

global structure.

3.1 Conventional ELA Feature Approach

Formally, we can define the training data set as Z𝐸𝑙𝑎 = (𝑋𝐸𝑙𝑎, 𝑌 ),
where 𝑋𝐸𝑙𝑎 ∈ R

𝑛×𝑚 is a collection of input data, 𝑌 ∈ R
𝑛×3 is the

set of class labels for the three considered high-level properties ®𝑦,
𝑛 is the number of samples, and𝑚 is the number of features which

are used to classify an observation. In the scope of this work, 𝑋𝐸𝑙𝑎

is the set of considered landscape features and ®𝑦 the high-level

property in question. In our experiments, we considered𝑚 = 62

landscape features for a total of 𝑛 = 14 400 observations. We create

our training data 𝑋𝐸𝑙𝑎 by first generating a sample (using Latin

Hypercube Sampling) on a problem instance p, and subsequently

calculating the features using the latest version of Python pack-

age pflacco2. 14 features frequently suffered from missing values.

These predominately belong to the feature classes ela_level and

dispersion. As there is no simple mechanism to deal with these

values without introducing significant drawbacks, we eliminated

these features from further consideration.

The three-dimensional class label 𝑌 leads to a multilabel classifi-

cation task, i.e., we can associate three class labels to each observa-

tion. A concept known to be able to deal with such tasks is called

Binary Relevance (BR) [40]. Within BR, each label receives its own

independent base classifier. For this, we considered Random Forest

(RF), Gradient Boosting Trees (GBT), and Support Vector Machines

(SVM) which are all realized with the Python Package sklearn [27].

2https://github.com/Reiyan/pflacco_experiment
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To improve each base classifier, we performed hyperparameter

tuning and feature selection on the validation set. For this very basic

hyperparameter tuning, we employed a randomized search over the

parameter space with five samples for each model. While this num-

ber can be perceived as low, the amount of data, the considered mod-

els as well as feature selection required an already extraordinary

amount of computational resources which forced us to limit the

number of sampled hyperparameter combinations. Dependent on

the model, the considered parameters were (GBT) n_estimators,

learning_rate, max_features, (RF) n_estimators, criterion,

max_features, (SVM) C, and gamma.

After obtaining the𝑋𝐸𝑙𝑎 data set, we performed feature selection

to eliminate features that either do not have any inherent predictive

power (for the considered high-level properties), or do not provide

additional information, which has not been previously captured by

any of the features already included in the model. The purpose is

to reduce the amount of non-discriminating and highly correlating

features as a model’s performance is susceptible in a negative way

to such. For this purpose, we used the Python package mlxtend to

perform a greedy forward-backward selection [31].

Our final BRmodel consists of two GBTmodels for the high-level

properties multimodality and global structure, whereas funnel struc-

ture is captured by an RF model. For both GBT models, the best per-

formance is achieved with n_estimators = 222, learning_rate =

0.1389, and max_features =

√
𝑚. The hyperparameters of the

RF model are n_estimators = 87, criterion = ‘entropy’, and

max_features =

√
𝑚. On the other hand, the process of feature

selection eliminated six features across all feature sets.

3.2 Fitness Map Approach

For the image-based approaches, we used a ShuffleNet V2 [18] be-

cause of its efficient design with a 1.5× width-multiplicator, identi-

cal to the model used by [28] (see Fig. 2). In comparison to other ar-

chitectures, the ShuffleNet V2 was designed to optimize FLOPS and

memory usage. Thereby, it reduces the training time significantly,

and still offers enough parameters to learn complex visual tasks.

In contrast to the conventional approach (see Section 3.1), a single

model is used to predict all three considered high-level properties

at once which we call multi property-prediction. We performed an

ablative study to measure the effect of the multi property-prediction

(in-comparison to a single property-prediction) on the overall per-

formance and found that this has no measurable impact. Hence,

we assume that the ShuffelNet V2 has enough parameters to learn

a well-suited internal representation to cover all three high-level

properties, simultaneously.

Similar to the previous section, we used Z𝑀𝑎𝑝 = (𝑋𝑀𝑎𝑝 , 𝑌 ) as
our training set. We considered all four proposed dimensionality

reduction methods and trained one model each across all dimen-

sions 𝐷 . For the methods PCA, PCA-Func and rMC only a single

input channel with a fitness map resolution of 224 × 224 pixel is

used, or 𝑋𝑀𝑎𝑝 ∈ R
𝑛×224×224×1. Yet, as the number of input chan-

nels varies depending on the dimension 𝑑 produced by the MC

approach, we changed the default ShuffleNet V2 to 45 input chan-

nels due to the fact that the MC method produces a fitness map

with 45 channels for 𝑑 = 10. For lower dimensions, we filled the

missing channels with additional channels that contain only zeros.

In this case, the input data is of shape: 𝑋𝑀𝑎𝑝 ∈ R
𝑛×224×224×45.

Next, we used ADAptive Moment estimation (Adam) with Weight

Decay [16] as optimizer, 𝜆 = 5 · 10−5 as learning rate and a batch-

size of 32 for training and validation as these are commonly used

hyperparameters. All models were trained for 100 epochs on a single

Nvidia Quadro RTX 6000. During training, we used the validation

set to measure overfitting and saved the best model based on the

validation set. Afterwards, we evaluated the trained models on the

test set as defined above.

3.3 Fitness Cloud Approach

For the transformer-based approach on 3d-point clouds, we trained

four transformer models in total. The models are identical to one

another except for the input embedding and the number of sampled

points. We doubled the number of hidden features in each attention

layer, and used only a single Linear, Batch-Normalization [7], and

ReLU [25] (LBR) after the Global Pooling layer as compared to

the original proposed method [4]. After some initial testing, we

found that this setup worked better for our case. However, we

used our proposed input embedding strategy with two different

configurations: 𝑘 ∈ {3, 5}, 𝑝 = ∞, and Δ𝑚𝑎𝑥 = 1.5. Due to some

framework limitations, we were not able to train the model with a

variable size of sampled candidate solutions as we have used for

the other two approaches. Instead, we had to use a fixed number of

sampled points. In order to find a comparable setup, we trained both

setups with 100 and 500 sampled points for every training instance,

providing us with an upper and lower boundary of a model that

could have been trained with a variable number of points.

The training data is of two different shapes: 𝑋𝐶𝑙𝑜𝑢𝑑 ∈ R
𝑛×100×10

and 𝑋𝐶𝑙𝑜𝑢𝑑 ∈ R
𝑛×500×10, depending on the number of sampled

points. As explained in Section 2.5, for lower dimensional problems,

themissing coordinates are filled with zeros. An additional indicator

is provided to indicate which of the dimensions are valid. Therefore,

the training set is Z𝐶𝑙𝑜𝑢𝑑 = (𝑋𝐶𝑙𝑜𝑢𝑑 , 𝑓 (𝑋 ), 1, 𝑌 ). Other from that,

we used an identical setup for training as described in Section 3.2.

4 DISCUSSION

We considered the 𝐹1-Score as our main performance measure as

the classes within each high-level property are highly imbalanced.

In contrast to funnel structures, multimodality and global structure

contain multiple classes which requires some form of aggregation.

We decided on macro-averaging within the 𝐹1-score as it treats all

classes equally by unweighted averaging of precision and recall

for all classes and, thereby, counteracting the class-imbalance [34].

The final results can be found in Tab. 2. It becomes evident that

the conventional approach marginally outperforms our proposed

techniques in most settings. However, the image-based approaches

suffer a noticeable drop in performance for 𝑑 ≥ 3. The drop in

performance is the most severe for the two high-level properties

multimodality and global structure (see Figure 5).

It comes with no surprise to us that the PCA-based approaches

perform the worst on high dimensional data. As explained we

use LHS for sampling the set of candidate solutions 𝑋 . LHS is

optimized to sample a uniformly distributed set of solutions and

as the variance in every dimension is similar to one-another, the
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Table 2: Performance results of each used approach divided

by high-level property and dimension. The listed value shows

the 𝐹1 Macro metric. Cells which are highlighted in grey,

represent the best performing approach for that given row.

High-Level
Dim.

Binary
PCA

PCA-
MC rMC

Transf. (k3) Transf. (k5)

Property Relevance Func p100 p500 p100 p500

Multi-

2 0.9973 0.9939 0.9933 0.9738 0.9714 0.9908 0.9971 0.9803 0.9942

modality

3 0.9973 0.9603 0.9574 0.9583 0.9540 0.9876 0.9939 0.9709 0.9919

5 0.9989 0.8970 0.8979 0.9602 0.9472 0.9908 0.9991 0.9883 0.9984

10 0.9996 0.8386 0.8378 0.9529 0.9522 0.9741 0.9909 0.9694 0.9880

all 0.9983 0.9211 0.9203 0.9613 0.9562 0.9858 0.9953 0.9771 0.9931

Global

2 0.9969 0.9925 0.9921 0.9579 0.9649 0.9913 0.9979 0.9811 0.9931

Structure

3 0.9963 0.9515 0.9564 0.9126 0.8985 0.9857 0.9936 0.9660 0.9892

5 0.9976 0.8067 0.8067 0.8898 0.8586 0.9784 0.9951 0.9736 0.9944

10 0.9990 0.7737 0.7672 0.9081 0.9112 0.9632 0.9845 0.9534 0.9842

all 0.9975 0.8713 0.8700 0.9162 0.9067 0.9795 0.9928 0.9684 0.9901

Funnel

2 0.9985 0.9991 0.9997 0.9961 0.9955 0.9991 1.0000 0.9973 1.0000

Structure

3 0.9997 0.9964 0.9961 0.9982 0.9923 1.0000 1.0000 1.0000 1.0000

5 1.0000 0.9902 0.9885 0.9967 0.9893 1.0000 1.0000 0.9991 1.0000

10 1.0000 0.9774 0.9737 0.9955 0.9911 0.9991 1.0000 0.9994 1.0000

all 0.9995 0.9907 0.9894 0.9966 0.9921 0.9996 1.0000 0.9990 1.0000

Multimodality Global Structure Funnel Structure
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Figure 5: Visualization of the performance result divided by

the properties and dimension. The used metric is 𝐹1 Macro.

resulting PCs have also similar variance. Hence, PCA causes in our

setting a severe loss of information. Our proposed method PCA-

Func compensates this effect, slightly. Yet, PCA and PCA-Func both

performed better than MC and rMC for 𝑑 = [2, 3].
To our surprise, however, the rMC approach performed rather

well for 𝑑 = [5, 10] (contrary to what we expected). Therefore, we

conclude that reducing the fitness maps into a single channel by

mean-aggregation still preserves enough information to identify the

considered high-level properties for 𝑑 ≤ 10. Interestingly, both PCA

approaches perform better than the MC and rMC approaches for

low dimensions. An explanation may be that the MC approach only

receives a single meaningful channel for 𝑑 = 2 out of 45 available

channels as the other 44 channels are empty. This growing sparsity

in information may cause the MC approach to underperform for

small dimensions. The same reason may apply to the rMC approach.

As explained, the various different 2d-projections are aggregated

into a single one. Due to this process, the information density within

the input image grows for larger dimensionality.

Contrary, the transformer-based methods perform well over

all dimensions. The loss in information for larger dimensions or

growing sparsity for smaller ones does not apply here. Instead, they

can identify more complex structures (such as global structure) in

small and large dimensional spaces, equally well. However, one

limitation of the implementation is that the transformer cannot

be trained on a dataset with a varying number of sampled points.

Yet, the differences in performance between the 𝑛𝑝 = 100 and

𝑛𝑝 = 500 models are rather small. So, we do not see any constraint

in comparing the transformer model to the other approaches.

Our findings show that our proposed feature-free approaches for

high-level property prediction provide competitive performance to

the feature-based approaches. The main advantages of both, fitness

map and fitness cloud, over the classical approach is (1) their lower

computational complexity as no features must be computed, and

(2) the absence of domain knowledge about the individual features

as well as their selection process. This means, that applying our

proposed methods to other optimization tasks is straightforward

because the input representation is not tailored to a specific task

or problem domain. Next, the fitness cloud clearly outperforms the

fitness map approaches. On the one hand, the number of weights

for the transformers’ input embedding grows only linear with the

number of dimensions in contrast to the MC approach where the

number of weights grow with
(𝑑
2

)

. On the other hand, transformers

(and also MC) can only handle data with a limited dimensionality.

Similar, the main advantage of the classical approach is its in-

dependence of (1) the problem-dimensionality, and (2) the used

model. In addition, in some cases the interpretation of features is

easier than the one of images or especially point clouds. For in-

stance, some of the ELA meta level features, such as the adjusted

coefficient of variation are quite easy to understand and interpret ś

even for high-dimensional problems.

5 CONCLUSION

In this paper, we proposed several extensions for the fitness map

approach which was originally proposed by Prager et al. [28]. With

these extensions, the fitness map can be applied to high-dimensional

data. We could demonstrate that these extensions provide a similar

but slightly weaker overall performance than the conventional ap-

proach. A major drawback of our proposed image-based techniques

is the trade-off between information loss for larger dimensions or

growing sparsity for smaller ones. Therefore, we proposed another,

3d-point cloud-based approach. This approach can be considered

as highly competitive to the conventional approach.

In future work, we want to use these proposed techniques to

extend and improve on recent work on feature-free AAS, e.g., [2, 28,

32]. As the discussed high-level properties are well-known to de-

termine problem hardness, and AAS studies revealed that different

types of algorithms are suitable candidates for respective problem

classes, sequential algorithm selection models could also be promis-

ing alternatives. By this means, the candidate solver portfolio could

be flexibly restricted to a promising subset, which is well-suited

for the type of the underlying problems, based on the high-level

properties as determined by the ELA features or feature-free alter-

natives presented here. Next, we want to explore the potential of

dynamic AAS in the context of continuous optimization problems

and test our proposed approach on real-world problems. Further,

we want to explore the potential of a learn-able version of our rMC

approach. Instead of simple mean aggregation, we plan to use a

1 × 1 conv-layer to project the 𝑛 feature maps into a single one.
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