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Abstract Natural forests are complex ecosystems whose tree species distribution
and their ecosystem functions are still not well understood. Sustainable management
of these forests is of high importance because of their significant role in climate regu-
lation, biodiversity, soil erosion and disaster prevention amongmany other ecosystem
services they provide. In Japan particularly, natural forests aremainly located in steep
mountains, hence the use of aerial imagery in combination with computer vision
are important modern tools that can be applied to forest research. Thus, this study
constitutes a preliminary research in this field, aiming at classifying tree species in
Japanese mixed forests using UAV images and deep learning in two different mixed
forest types: a black pine (Pinus thunbergii)-black locust (Robinia pseudoacacia)
and a larch (Larix kaempferi)-oak (Quercus mongolica) mixed forest. Our results
indicate that it is possible to identify black locust trees with 62.6% True Positives
(TP) and 98.1% True Negatives (TN), while lower precision was reached for larch
trees (37.4% TP and 97.7% TN).
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1 Introduction

Natural mixed forests are known as complex ecosystems with high resilience, high
biodiversity, productivity and their carbon sink capacity. They play a role in the
exchange ofwater carbon and nutrients within the soil-forest-atmosphere continuum.
Under the present climate change conditions, high CO2 emissions and degrading
forest areas, made it essential to quantify the role of natural mixed forests on amelio-
rating the negative impact of anthropogenic emissions on climate change. Further-
more, the preservation of biodiversity, the physiological tolerances of species and
effects of plant stress (due to droughts, pests and invasion) have to be considered.
In particular, forests provide wood and non-wood resources, maintain soil fertility,
regulate climate and preserve water supplies [1, 2]. Several studies proposed that
a sound monitoring, stand inventories, quantification of tree species and ecosystem
services are necessary to ensure their sustainability [3–5].

Forests in Japan occupy nearly 70% of the total territory. Two-thirds of the forests
are located in mountainous areas and half of the total forest area made of timber plan-
tations [6]. Forest plantations have a long history of clear-cuts followed by reforesta-
tion. Those planted forests with their simple structure of trees and lower biodiversity
[7] have replaced natural forest areas, leading to a decrease in tree species diver-
sity. Recent efforts to restore natural forests, as a result of climate change, have
influenced Japan’s point of view [8]. Recreation and protection are now the main
drivers for forest management efforts [6]. However, natural forests have not fallen
into adequatemanagement strategies [8]. Furthermore, naturalmixed forests have not
been adequately studied, while most of the existing relevant case studies were only
carried out for small forest patches [9]. Thus, tree species’ composition and diversity
as well as their distribution and interaction within the forest ecosystem need to be
studied. The first step is to develop a monitoring system that allows a rapid and reli-
able method to survey this type of forest and additionally to be able to identify tree
species. The use of aerial imagery in combination with deep learning approaches
are essential tools and techniques that can build the bases for the improvement of
monitoring methodologies in forestry research [10–13]. We used UAV (Unmanned
Aerial Vehicles) to capture images of the forests and then trained a deep learning
network to identify tree species in two different forest types. Specifically, we used
one dataset to identify invasive black locust trees in coastal black pine forests from
drone images and a second dataset to identify conifer trees. Since this work is the
first attempt of our research team to combine forestry and AI, the main purpose is to
evaluate the results of automatic tree species’ identification.
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2 Related Work

Previous studies used aerial images gathered by satellites, airplanes and UAVs to
identify trees species in forests. The work in [14] classified tree species in a mixed
forest by using high-resolution IKONOS data. Twenty-one species were classified
by using panchromatic and multi-spectral bands. After pre-processing the images,
50 pixels per species were extracted and a Turkey´s multiple comparison test was
applied. Finally, maximum likelihood classifiers were performed for reaching accu-
racies of 62%. According to [14] broadleaf trees are more difficult to classify than
conifers.

In a comparison study of tree identification using IKONOS and WorldView-2
(WV2) images with a resolution of 1–4 m, overall accuracies of 57% were reported
for 7 tree species and 15 selected features [15]. In this study, linear discriminant
analysis (DLA) and decision tree classifier (CART) were used.

Dalponte et al. [16] used both high-resolution airborne hyperspectral images and
satellite images, each in combination with LIDAR data to understand the classifica-
tion potential by using different datasets. The data was pre-processed for normaliza-
tion and generalization, as well as feature selection for LIDAR data. Support Vector
Machines (SVM) and random forest classifiers (RFC) were used for the classifi-
cations. Different classes were tested, ranging from single tree species to macro-
classes reaching kappa accuracies of 76.5–93.2%, concluding that hyperspectral
data resulted in highest accuracies while SVM outperformed RFC. Torresan et al.
[17] reported that 14% of UAV-related studies focused on tree species classification.
One such study was carried out in [18], classifying tree species by using RGB and
hyperspectral images of a boreal forest. In total, 11 orthomosaics and DSMs (Digital
Surface Models) were used, as well as reference data. Spectral and 3D point cloud
informationwas used to classify trees. RFCandmultilayer perceptrons performed the
classificationwith accuracies of around 95% for four different tree species.Moreover,
the work in [19] focused on the best time-window to gather images by UAVs. Their
primary aim was to effectively classify tree species using a multi-temporal dataset.
The data was gathered in a broadleaf forest, composed by 577 tree species that were
divided into 5 groups. Orthomosaics were used to analyze the spectral response, the
characteristics and differences of tree classes. The pixel intensity was used to run
RFC. Misclassifications of 15.9 and 36% were observed by using one dataset of one
season only. The error was decreased to 8.8% when using multitemporal datasets. A
method to classify tree species in a mixed forest dominated by pine trees using high-
resolution RGB images collected by three-years was proposed in [20]. Orthomosaics
and DSMs were used to delineate tree crowns in a first step by using local maxima
filtering the watershed algorithm. The extracted tree crowns were used to train a
Convolutional Neural Network (CNN). Therefore, two approaches were conducted:
one using one orthomosaic and another using three orthomosaics for training and/or
testing. Classification accuracies between 51–80% were recorded.
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3 Methodology

3.1 Problem Description

The first study site, where the first dataset was created, is located in the Yama-
gata prefecture on the Japanese northwest coast (38°49′14"N, 139°47′47"E). The
coastal forest is a black pine (Pinus thunbergii) plantation (Fig. 2a) with high toler-
ances against acidity, alkalinity and salty soils and drought conditions. This forest
was planted in order to protect the surrounding area from strong winds and sand
movement. Since the early 1990′s, this forest has been invaded by black locust trees
(Robinia pseudoacacia) (Fig. 2b), a fast-growing species establishing in gaps of
the black pine forest. Black locust species is known for its rapid invasion and high
biomass production with a high impact on the structure and function of tree commu-
nities [21]. However, the exact influences on the functions of the coastal forest are
unknown. Generally, invasive tree species have a high impact on the structures, prop-
erties and functions of natural ecosystems [22, 23]. Therefore, it is necessary as a
first step to detect and identify black locust trees in order to provide information
about their distribution and density, as a second step, to understand the structure and
nutritional impact of this invasion on the black pine properties as a windbreak and
growth. Information about these parameters will offer essential insights for a sound
management of this type of forest. Additionally, this information offers the possibility
to quantify the effects of invasive species as it turns the monoculture into a mixed
forest, which is supposed to be less affected by diseases and infections [24]. The
second site, which provides the second dataset, is located in the Yamagata Univer-
sity Research Forest (YURF) on the Japanese main island Honshu. It is located in the
northern part of the Asahi Mountains. The research forest covers an area of 753 ha.

The forest is characterized by steep slopes (30–44 degrees) within a range of
altitudes between 250 and 850m and it is crossed almost in half by theWasada River.
The area is composed of a mixed natural forest, as well as deciduous broadleaf and
coniferous trees [25]. Our study sites are located in a slope, as shown in Fig. 1. The
second site is mainly composed of a mixture of larch (Larix kaempferi) trees and oak
(Quercus mongolica) and in a minor proportion beech (Fagus crenata) (Fig. 2). Such
as the YURF, the large majority of Japanese forests is located in steep mountains
and is characteristic by a complex ecology. Thus, the conduction of field surveys
is very much limited, primarily due to the lack of accessibility and the necessity of
man-power. Therefore, developing an automatic methodology capable of identifying
tree species in mixed forests is crucial for the evaluation of these forest ecosystems.

3.2 Data Collection

Data acquisition was carried out using a DJI Phantom 4 drone. The drone is equipped
with a 12-megapixel camera which produces high resolution geo-referenced images.
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Fig. 1 The main map showing the location of the study areas in Japan, where data was acquired:
a Coastal forest near Sakata city. bYURF (orange area), located south of Tsuruoka city in the Asahi
mountains. cOrthomosaic of the coastal forest, where images were collected to identify black locust
trees that are invasive in this area. d Orthomosaic of the larch oak site, where the minor tree species
larch should be identified

The flights were performed using the autonomous mode, which standardizes the
acquisition protocol. The coastal forest was photographed in July and October 2019,
but only the analysis of images fromOctober are presented in this study. Images from
July failed to be automatically recognized (i.e. in a previous analysis we performed)
since differences between tree species were too low. During the flight, around 1100
images were collected with an overlap of 90%. The flight altitude was 30 m and
the covered area was 2.7 ha. Since we already faced difficulties in identifying trees
in the first case study, we chose from the beginning autumn images for the second
one. Manual annotations were only available for this season since the forest expert
experienced the same limitations in accurately identifying tree species in the summer
orthomosaics. For the larch-oak site, an additional flight was performed at the end
of October 2019, capturing 202 images with a set overlap of 93% covering an area
of 3.2 ha. The collected images were processed with Agisoft Metashape [26], in
order to generate the orthomosaics. The autumn images of the coastal forest were
not aligned well and the orthomosaics had several blank spots. The resolution of the
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Fig. 2 Examples of tree species in our study areas, as shown from aerial photos. a Pine trees
and b black locust represent trees of the coastal forest. The trees look similar to each other with
small differences in the colour (due to the colour change of black locust trees), which increases the
difficulty to identify them. c Larch, d oak and e beech represent trees of the YURF mixed forest.
As can be seen in the images, autumn images were chosen since the trees show different coloured
leaves which increase the potential to classify them

orthomosaicswas approximately 1.1 cm/pix for the coastal forest sites and 3.5 cm/pix
for the larch-oak sites.

3.3 Data Pre-processing

The two datasets were annotated by forest experts, knowing the study area well. The
annotations were done using the image editing software Gimp. Areas of each tree
species were colored black and stored in different layers. Those layers were used as
ground truth data. Due to the different visual characteristic of larch trees, the accuracy
of that layer was assumed as high. More difficulties appeared during the annotation
process of the coastal forest site due to the comparably small canopy area of the
black locust and its mix with other broadleaved species. Furthermore, since a new
approach for tree classification was used by the experts, a certain misclassification
cannot be ruled out. Nonetheless, a high accuracy of annotations can be assumed for
both sites.

Image segmentation aims to partition an image into semantically related segments
so that each pixel in the image is assigned to a group of coherent pixels. Consequently,
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this enables image analysis focusing on its elements. The specific tree identification
problem differs from general-case image segmentation in the sense that each image
pixel represents a larger physical space (≈ 1m2) and does not necessarily belong to a
single component of a larger entity. Roughly, each pixel in a species map corresponds
to the foliage of a single tree. However, trees are more likely to grow next to trees of
the same species, forming groups that cover significant ground surface represented
by many pixels in an aerial photo of the investigated area.

The input of the model accepts patches of size 64 × 64 so the image of some
forest under examination is partitioned into patches of the specific size. Accordingly,
the accompanying tree species’ map is partitioned to patches of the same size that
correspond to the same forest area. Furthermore, the tree species’ maps are converted
to binarymapswith pixel values of zero or one that indicate whether the specific pixel
corresponds to the target species or not. This approach creates a dataset comprised
from several thousand patches and their corresponding maps. We applied no special
pre-proccessing to the input patches but we excluded patches that contain very few
or no trees at all. More specifically, we detected little or no representation of trees by
examining the total brightness of each patch since ground texture tends to be much
brighter than foliage. An appropriate threshold for deciding which patches to discard
because of reduced trees depiction was determined after visual inspection.

3.4 Deep Learning Modelling

Both image segmentation and tree identification make use of an input image and
an accompanying pixel-wise map that holds the labels of the represented trees. For
image segmentation, labels correspond to image objects and subjects while, for tree
identification, labels correspond to tree species.

Model selection: The most popular state-of-the-art models for image segmenta-
tion are the fully convolutional Dense-Net [27], the multi-scale context aggregation
by dilated convolutions [28], the DeepLab model that uses spatial pyramid pooling
[29], the FastNet [30] and the U-Net model [31]. The latter was used in biomedical
image segmentation and yielded precise results in tasks where getting a class label
for each pixel is crucial. Despite its effectiveness, U-Net is very straight-forward to
implement and does not require extreme fine-tuning and task-specific architectural
modifications. Given the fact that we deal with tasks comprising from binary labels
(since we try to distinguish between two tree species at a time), U-Net architecture is
considered sufficient for tackling the problem. The name of the U-Net model comes
from its shape which is formed by its two data flow paths: the contrastive and the
expansive paths as shown in Fig. 3. Input goes through the contrastive path consisting
of subsequent convolutional and down-sampling operations until it is considerably
reduced in size at the center of themodel. After that point, featuremaps are processed
by subsequent convolutional and up-sampling operations until the size of the labeled
maps is reached.
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Fig. 3 The invasive tree
identification model with a
U-Net architecture. Patches
of the orthomosaic were
inputted in the model
reduced in the size while
passing the contrastive path
and outputted after resizing
and labelling as invasive
trees map

Design decisions: The predicted output and the actual output (labeled map)
contribute to the loss function of the model, which is cross-entropy. All model layers
use the ReLU activation function [32] except the final output layer that uses the
sigmoid function, which serves the requirement that every pixel in the output map
has a probability of belonging to a certain label that is independent from any other
pixel output.

Avoiding overfitting: An important architectural characteristic we used to avoid
overfitting, caused by the relatively small dataset and the high capacity of the model
(consisting of 9,075,201 trainable parameters), is the two dropout [33] layers in the
model’s contrastive path. These layers randomly drop some elements of the feature
maps and prevent co-adaptation of the parameters during training, enhancing the
generalization of the model and avoiding overfitting. The model is trained on mini-
batches of image patches as input and their maps of tree species identification as
targets.
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Dataset imbalance: Invasive tree species are much less in number than the domi-
nant species of a forest. In the studied cases, invasive trees occupy less than 10%
of the forests’ surfaces. This dataset imbalance greatly reflects on the model perfor-
mance if no countermeasures are applied: themajority class overwelmes theminority
class (the invasive species) and the identification of the latter is extremely poor. To
this direction, the loss function is weighted appropriately so that the minority class
misclassification is penalized to the extend that the dataset imbalance effect cancels
out. The loss function is weighted analogous to the number of the invasive trees in a
patch: more invasive trees present in a patch translates to a higher misclassification
penalty. The calculation for the loss weighting factor fM of a invasive tree map M
is shown below.

fM =
∑

i, j M[i, j]

a
+ 1, M[i, j] =

{
1 i f M[i, j] represents an invasive tree
0 otherwise

The value of a is determined using the ratio of the total number of invasive trees
in the dataset over the total number of trees not considered invasive. This ratio is
multiplied by the number of pixels in each tree map (64×64 = 4096) to provide the
value of a. Since this ratio is about 10% in the available datasets, we use a = 400.

Data augmentation: Image augmentation is also applied to enhance the perfor-
mance of the model. Since the labels for the invasive tree identification problems are
provided in a 2-D speciesmap, any spatial transformation applied to the input patches
must also be applied to the target map. For example, an image rotation of the input
patch by definition requires an image rotation of the species map in order to maintain
the one-to-one correspondence between the input image pixels and the pixels of the
output map. To avoid practical problems due to interpolation schemes on the species
maps, like distorting their binary values, we only use spatial transformations that do
not require pixel interpolation. Such augmentations are image rotations by angles
that are multiples of 90 degrees and vertical or horizontal image flipping. We also
use four other augmentation schemes based on non-spatial transformations: image
sharpness, brightness and color adjustments and random color channel shifting by a
small amount.

Performance metrics: The model performance is measured by simple statistics
like false and true positive/negative classification ratios. We particularly measure
the percentage of output map pixels that are classified as an invasive species while
actually being one (True positive) and the percentage of output map pixels that are
classified as invasive species but actually are not (False Positive). These metrics are
more appropriate than plain classification success rate because of the class imbalance.
The decision threshold of the output neurons is also shifted upwards in order to obtain
a good compromise among the performance metrics.

Data split for testing: Tuning of the output threshold was performed using a vali-
dation set. This essentially means that the dataset is split into a training set comprised
from 60% of the available data, a validation set comprised from 20% of the data and a
test set containing the remaining data. During the creation of the various sets, special
care was taken to make sure that all sets contain a similar number of samples in
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terms of invasive species surface coverage. Specifically, the invasive tree percentage
coverage of the tree species maps was noted for every patch in the dataset and was
categorized as 0% invasive tree coverage, invasive tree coverage between 1–20%, 21–
50%,51–80%and invasive tree coverage in the range81–100%.During the split of the
patches to the three sets, an equal ratio of the coverage categories was represented in
each set. So, the training set, validation set and test set hold an equal percentage of the
invasive tree coverage categories. We found that following this balancing approach
instead of an n-fold validation approach significantly improvedmodel generalization.
The model is trained with the stochastic gradient descent algorithm with a learning
rate of 1 × 10−3.

4 Results

We examined two cases of tree species identification. The first deals with detection
of black locust (site 1 as described in Sect. 3.1); the second with detection of larch
trees (site 2, described in Sect. 3.1). The validation process determined 0.85 to be an
appropriate output threshold value for both cases. Results are shown in Table 1.

Larch identification has a significantly lower success rate because the corre-
sponding dataset is much smaller than the dataset showing black locust trees. The
results are greatly affected by the threshold value of the output layer. Raising the
threshold value reduces the correct classification rate of the target tree species and
improves the correct classification rate of the non-target trees. For a better model
evaluation, we also examine the effect of the invasive trees’ proportion within a
specific image patch on the classification of at least the number of invasive trees
that corresponds to the imbalance ratio between the tree species (≈ 10%). In other
words, we observe the rate at which the model identifies at least 10% of the invasive
trees in a patch, in relation to the percentage of the visible invasive trees in the patch.
The black locust test set patches are divided into five categories according to the
surface covered by the containing invasive trees: zero invasive trees; less than 20%
of the total pixels of the 64 × 64 patch; invasive trees covering 20–49% of the total
surface; 50–79% surface coverage; and 80–100% coverage. For each patch that the
model identifies at least 10% of invasive trees contained in it, we consider it as being
classified correctly. Table 2 shows the results of this experiment.

Table 1 Results of the U-Net model on the black locust and the larch identification problem. True
positive and True negative values represent the quality of the results of the two identification case
studies, black locust and larch trees

Black locust (%) Larch (%)

True positive 62.6 37.4

True negative 98.1 97.7
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Table 2 Identification percentage of at least 10% of the contained invasive trees in the test set
patches in relevance to the percentage of pixels occupied by invasive trees

Invasive trees coverage (%) 0 1–19 20–49 50–79 80–100

Detection of at least 10% of contained invasive trees
(%)

97.04 18.88 27.54 48.8 61.7

As expected, the blacker locust trees in a patch, the better chance for the model
to detect at least the portion of them that corresponds to their statistical frequency
of occurrence. Invasive tree clusters triggered the detection of appropriate features
more often than scattered invasive trees.

5 Discussion

Themethodologywas successfully applied to our datasets, even though there ismuch
space for improvements. We acknowledge the low detection rates, which are mainly
related to the insufficient amount and balance of the training data. The results of the
first dataset indicated that the amount of data for black locusts is not enough to train a
deep learning network.Moreover, the data are imbalanced regarding the classes black
pine and black locust, which can be improved by increasing the dataset. In Japan,
black locust trees appear mixed with other tree species which makes it difficult to
get images from pure black locust stands. Nevertheless, since the invasion of the
tree species is a problem in forests all over Japan (e.g. [34, 35]) images of black
locust in mixed forests can be easily collected. Our second dataset dealt with images
of the mixed forest in YURF. We ran the deep learning model for only one of the
orthomosaics to get a first idea of the precision we could achieve. We assume that
the accuracy of the deep learning application can be increased by using data from
the whole season (spring, summer and autumn).

5.1 Study Implications

Coastal forests in Japan have peculiar stand conditions (sandy soils, high salinities
and strong winds) and both black pine and black locust tree species are adapted to
these conditions. The invasion had changed the monoculture plantation into a mixed
forest, which might lead to an enhancement of forest resilience, since several studies
have pointed out the benefits of mixed forests under climate change. Tinya et al. [36]
suggested the increase of stability in forest stands to stress and disturbances that can
be mitigated by mixed forests. The image analysis performed offers the opportunity
to study the benefits of the forest mixture and helps to characterize the resilience
of this mixed forest. Even though the black locust can have positive effects on the
coastal forest, negative influences are discussed as well. Since black locust trees are
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deciduous, they will provide wind tunnels in the leaf absent season. We assume that
the distribution of the trees has a significant influence on the windbreak potential of
the coastal forests. On the other hand, larch trees, which were studied via our second
dataset, are part of a different kind of mixed forest. The focus of previous studies has
been to evaluate processes in forests in relation to the tree species [37] or the compo-
sition of the forest stands [37, 38]. These studies tried to solve important aspects of
forests and propose solutions for mitigating the effects of climate change, focusing
though only on small forest patches. Thus, a reliable methodology for scaling up to
forest stands can provide insights not only about tree species composition but also
contribute to understand other essential forest characteristics (soil type, soil mois-
ture, fungi, nutrient cycles, etc.). The classification of the mixed forest via computer
vision, such as the work in this study, is important to further achieve these goals.

5.2 Policy-Making

The methodology proposed in this paper is a tool for forest management practices
since it can provide fast and reliable information about forests. In particular, the
coastal forests with their functions as wind and tsunami breakers could benefit from
a more automated management system. Further, the Ministry of Environment in
Japan has called for the urgency of management issues of black locust species [35].
Since most of the forests are unmanaged and dense, our study provides a simple
tool for forestry to assess the spread of black locusts and provides the possibility to
detect invasive trees. Furthermore, since mountainous forests are steep and hard to
access, the methodology of this study partially solves the problem of inaccessibility.
Since the technique usesmerely images, this methodology can be applied for forestry
classification/management world-wide, contributing to more focalized field surveys.

5.3 Limitations and Assumptions

Our study shows that we are able to identify tree species, however, we also face some
limitations. In the first case study, the orthomosaic used showed less than 10% of
black locust trees. Fieldwork in this area showed that the amount of black locust
is higher than the 10%, as shown in the orthomosaic, which can be explained by
their smaller height (12–18 m) in comparison to black pine trees (up to 40 m). The
smaller black locusts are often covered by the black pine canopies but they are partly
still visible since black locust trees mainly appear in gaps formed in between the
black pines. The true distribution and number of trees is still unknown, since not all
trees are visible on the images. Therefore, further fieldwork needs to be conducted to
evaluate themaps generated by ourmodel. Even though themethod has its limitations
it provides a fast overview of the study area and facilitates management approaches.
In the second case, we attempted to identify larch trees in a mixed forest, where they
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are one of the dominant tree species. Larch tree structure makes it easier to recognize
them from the images. The general idea of this approach was to see how well the
deep learning network can deal with these images since a further step will be the
classification of all dominant tree species in the mixed forest. Field surveys indicated
that in our study areas there are several trees which are covered by canopies of taller
trees. Thus, we acknowledge that this methodology might not get all the trees in the
forest and may only provide information of the visible and dominant tree species.
Since in situ fieldwork is barely possible in these areas and knowledge gaps about
mixed forests are still large [24], our methodology can be considered as a helpful
tool for forestry research.

5.4 Future Work

For future work, we aim to overcome some of the limitations mentioned by using
satellite data to increase the amount of data used as input to our models. We plan to
locate regions in North America where black locust is a native species and acquire
satellite photos to augment our dataset and reduce the existing imbalance of the data.
We also plan to acquire images of different seasons (spring, summer and autumn),
which will help to increase the accuracy of the model, something already shown as a
basic solution in related work [39]. In this context, the work in [40] demonstrated the
effectiveness of a multi-temporal dataset on image classification issues. Generating
synthetic data is another option worth considering [41, 42].

A comparison of satellite and drone images for tree species’ classification for
deep learning applications is an interesting aspect we also plan to work on, primarily
for the black locust problem. Prior fieldwork results in the larch-oak mixed forest
site showed that our study area includes more than 20 different tree species, although
some of them are in small numbers. Therefore, we will focus on the dominant tree
species of the mixed forest, namely by increasing the training data for larch, oak and
beech trees.

Further approaches, for instance the additional use of spatial information along
with the images are not considered, since natural forest structures, tree species’
compositions and the behavior of the invasive tree species are irregular and not
well-known.

6 Conclusion

Our study aimed to identify two kinds of tree species in Japanese mixed forest
by using UAV-acquired RGB images and deep learning technologies. Our results
indicated that it is possible to classify black locust and larch trees by using these
two technologies. The model was able to identify patches without black locust/larch
with high accuracies but showed lower accuracies for detecting the target species. The
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main reason was the imbalance in our input data. The number of images representing
black locust and larch trees was significantly lower than the other trees. Even though
our data were highly imbalanced, the results are promising for future work in this
field, since our proposedmethodology is suitable for large-scale forestrymanagement
applications. Further data acquisition efforts are planned for increasing our datasets
and improve the performance of our model.
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