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ABSTRACT - In order to generate consistent 
and comprehensive datasets for the application of 
machine learning algorithms to MEMS thermal 
flow sensors, a measurement set up was created. 
This system allows automatic data collection of 
large datasets involving parameters such as the 
angle of attack, humidity, temperature and flow 
speed. The electrical output signals in both the time 
and frequency domain can be measured for both AC 
and DC actuation. The setup has been able to fully 
characterize an anemometer by exposing it to flows 
of 0 to 5 m/s in steps of 0.02 m/s under angles 
from -45 to 45° in steps of 5° at a constant 
temperature of 25 °C and humidity of 30 %RH and 
complete the measurement in 8 hours. 
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INTRODUCTION 

The measurement of flow through the use of MEMS 
thermal anemometers is a well-established field [1]. 
Thermal anemometers measure the heat transfer rate 
from a heat source to a fluid as a measure of the flow 
rate. Provided the fluid is cooler than the heat source, 
heat flux increases with higher flows. A hot-wire 
anemometer is perhaps the simplest example of this 
type of device. Another family of thermal sensors uses 
at least one sensing element placed downstream from 
the heat source to measure the heat transfer from the 
heater, through the fluid, and back to the sensing 
element. These types of sensors are known as 
calorimetric anemometers [1]. 

Superficially both types of sensors are simple, 
however there are many physical principles that make 
determining the flow velocity from sensor data more 
complicated. Some of these complicating factors 
include thermal inefficiencies such as heat flux into the 
mechanical scaffolding of the heater, temperature 
variations of the fluid, or changes in gas composition 
which leads to different thermal diffusivities and heat 
capacities [2]. There might also be heat leaking into the 
sensing elements through other means or condensation 
on the sensing element surface if there is a condensable 
gas present.  

It is often the case that these practical 
complications are circumvented by measuring the 
device response to changing flow experimentally and 
calculating a calibration curve in very specific 
conditions such as at room temperature, low humidity 
and perpendicular flow conditions [3]. Though this is 
not necessarily a bad practice it does limit the scope of 
the device. On the other hand it is also nigh impossible 
to make a fully comprehensive theoretical model from 

which to develop a set of equations which perfectly 
model the device.  

To relate sensor signals to specific flow speeds in 
varied conditions one could train a machine learning 
(ML) model. This has indeed been done before, and has 
shown to be better at characterizing measurements than 
traditional calibration curves [4].  

To be able to train a ML model well, a common 
approach is to provide a complete and comprehensive 
learning and test set for all the conditions in which the 
device should be able to measure accurately. The larger 
and more complete the learning set, the more accurate 
the models tend to be. In order for it to be a 
comprehensive dataset many combinations of different 
physical conditions should be applied to the sensor.  

This work aims to make the collection of such a 
large dataset in the context of applying ML to thermal 
MEMS anemometers more achievable for research 
labs. Testing time in commercial wind tunnels can be 
expensive and limited, meaning that a smaller lab-
based system should be produced. A small wind tunnel 
has the added benefit of being highly customizable and 
able to apply more physical conditions than a 
commercial one. 

This system has several important requirements. It 
should be highly automated in order to prevent 
excessive time use for the researchers and eliminate 
user error. It  should also be able to provide consistent 
conditions including ambient temperature and humidity 
as well as constant heater temperatures or powers.  

Additionally the system should also be able to 
apply different independent variables, which for these 
types of sensors would be the magnitude (0-2.3 ms-1) 
[5] and angle of attack (AoA) (±45°) of the flow 
velocity. Some of the control variables could also 
become independent variables for multi-parameter 
devices including the ambient temperature and 
humidity as well as the gas composition. 

The system should be able to simultaneously 
measure as many dependent and independent variables 
as possible for each datapoint. It should also be able to 
resolve different sensor signals in the time and 
frequency domains as additional information could be 
stored in either domain. 

 
MACHINE LEARNING BENEFITS 

There are several types of devices that can have ML 
applied to them in order to provide more accurate 
measurement results, as well as testing and 
characterizing multi-parameter chips. 
 

Improved Accuracy 
Machine Learning has shown to improve measurement 
accuracy for MEMS thermal anemometers already. In 
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a paper by J. Amaral et al. K-nearest neighbor 
regression (KNNR) was able to reduce the maximum 
error from 20.4% to 1.7%, while measuring water flow 
with a central heater and thermocouple measuring 
elements [4].  

This approach could also be applied to non-
thermocouple based thermal flow the sensor presented 
in Alveringh et al. where resistors are used as the 
measuring elements has previously been measured in a 
similar set-up [6].  

 
Multiple parameters 

Devices like the one presented in Azadi et al. would 
benefit from using a measurement system capable of 
providing varied conditions as humidity, gas 
composition and temperature can have negative effects 
on the accuracy of results [7]. The gas independent 
sensor presented in the work would be easily 
characterized in the system.  

Sensors that have structures to decrease their 
dependence on external conditions as well as devices 
without these additions could potentially reveal 
information about the external conditions with the aid 
of a properly trained model, which indeed requires a 
larger data set than a single variable model due to the 
increased complexity.   

 

 
Figure 1: The carrier and holder PCBs used to place 
the DUT in the stream of the wind tunnel. 

MEASUREMENT SYSTEM 
The device under test (DUT) is held near the center of 
the wind tunnel using a custom built PCB which allows 
for the DUT to stick out 5 cm from the side wall 
through an elongated carrier PCB shown in Figure 1.  

The DUT can be interfaced through the use of wire 

bonds from the DUT to the carrier PCB. The carrier 
PCB is affixed to the holder PCB using a 3D printed 
mounting system, which uses some screws to press the 
carrier to the holder’s pogo pin connectors. These then 
connect through to MMCX connectors allowing the 
DUT to interface with the electronics outside of the 
climate cabinet.  
 

 
Figure 2: A schematic of the measurement system in the 
case of a calorimetric anemometer with a Wheatstone 
bridge readout.  

The holder is mounted on a DC servo motor 
(Newport M-495 ACC) which using its controller 
(Newport ESP 300) is able to rotate the holder, carrier 
and DUT within a precision of 0.001°. The MMCX 
connections to the holder PCB can be put under strain 
when the DC motor rotates the DUT more than 45°, in 
order to prevent this the cables were affixed to the 
rotating portion of the set-up with ample of leeway. 

The wind tunnel itself is a 1.5 m long PMMA tube 
with an inner diameter of 114.5 mm. The bottom of the 
wind tunnel has a flow conditioner and a dust filter to 
make sure that the incoming velocity profile is flatter 
and free of any debris that could damage the DUT. The 
flow conditioner consists of 292 parallel tubes, 10 cm 
in length with an inner diameter of 5.55 mm and outer 
diameter of 5.95 mm. 

At the other end of the wind tunnel are two pulse-
width modulated (PWM) fans that draw air through the 
wind tunnel. The first fan (Scythe SU1225FD12MR-
RHP) is able to provide a lower range of flow speeds 
between 0.02 and 0.4 m s-1 while the second fan (Delta 
Electronics PFR1212UHE-SP0) can provide higher 
flow speeds of 0.4 to 5 m s-1. Both fans are controlled 
via an Arduino UNO from the LabVIEW program. 

To measure the reference flow velocity at the DUT 
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a reference flow meter is placed symmetrically 
opposite the DUT through a small hole in the wind 
tunnel (Voltcraft PL-135HAN) around 2 cm away from 
the DUT.  

An seal is required at the point of entry of the 
carrier PCB and the reference sensor into the wind 
tunnel to minimize air leakage. The noise in the 
reference flow measurement decreases significantly 
when no flow enters the wind tunnel from the side. 
Additionally the flow velocity range within the tube at 
the measurement height increases when the seal is 
made better, as higher flow speeds can be achieved. 

The entire wind tunnel is placed within a climate 
controlled cabinet (ESP PRC 1200 WL) which is able 
to vary the temperature and humidity effectively in the 
ranges of 10-50 °C and 20-80 %RH. These values are 
measured using a reference sensor (Dracal USB-PTH-
450) placed in the cabinet. 

 Though the DUT can vary the holder has many 
possible MMCX connectors that allow for multiple 
electronic configurations to be tested. As an example 
Figure 2 shows a DUT consisting of 4 measuring 
resistors placed in a Wheatstone bridge and one heating 
resistor.  

The system has two in phase signal generators 
(Agilent 33220A) that allow for any fabrication related 
asymmetries in the bridge to be compensated. In case 
of DC measurement these can also be set as DC voltage 
sources. The bridge is measured using a lock-in 
amplifier (Stanford Research Systems SR830) locked 
into to the phase of the source generators. The X, Y, R 
and θ of the lock-in amplifier are recorded in the 
LabVIEW program.  

The heating resistor is powered by a source 
measurement unit (Keithley 2400) which can be run in 
two modes using the LabView program. Constant 
power, which can sweep a given set of powers, or 
constant temperature, which works to keep the 
temperature of the heating element constant. 

The LabVIEW program is able to automatically 
record and sweep over the flow velocity (𝜈𝜈), AoA (𝜃𝜃), 
heating power supplied (𝑃𝑃), while measuring the lock-
in’s in phase (𝑋𝑋), quadrature (𝑌𝑌), amplitude (𝑅𝑅), and 
phase (𝜑𝜑), the heater’s volage (𝑉𝑉) and current (𝐼𝐼), and 
the climate cabinets temperature (𝑇𝑇 ) and humidity 
(%RH). All of the variables above are recorded as one 
data entry in a CSV file for easy post processing, while 
being shown live during the experiment. 

 
Simulation 

The flow velocity profile in the wind tunnel must be as 
flat as possible to allow for reproducible measurements. 
This is because small variations in the flow velocity 
profile could result in incongruent results due to small 
misalignments within the wind tunnel. This can be 
simulated for by using COMSOL Multiphysics®.  

The expected flow speeds induced by the dual fans 
is around 0.04 to 4 m s-1 and with the inner diameter of 
the wind tunnel being 114.5 mm the Reynolds number 
is given by the equation below [8]:  

Re =
𝑢𝑢𝑢𝑢
𝜈𝜈

 
 
Where 𝑢𝑢 is the flow velocity, 𝑢𝑢 is the tube diameter 

and 𝜈𝜈  is the kinematic viscosity. The resulting 
Reynolds number is between 310 and 31,000 assuming 
a kinematic viscosity of 1.83E-5 m s-2 at room 
temperature, meaning that the flow regime spans from 
laminar to turbulent [9].  

 

 
Figure 3: Simulated velocity profiles within the laminar 
and turbulent flow physics modules. 

Turbulent flow velocity profiles tend to be quite 
flat, while laminar flow profiles are parabolic [10]. This 
is confirmed by the simulation results shown in Figure 
3. The COMSOL Multiphysics® laminar flow module 
was used for flows with 𝑅𝑅𝑅𝑅 < 1000 while the turbulent 
flow module was used for flows with 𝑅𝑅𝑅𝑅 > 1000.   

The inlet of the wind tunnel is given a flat flow 
profile boundary condition due to the flow conditioner. 
Figure 3 shows the flow velocity profiles at 50 cm from 
the flow conditioners given by the laminar flow physics 
module in COMSOL Multiphysics®.   

The central 6 centimeters of the flow velocity 
profile vary by about 1% for flows of 0.4 m s-1. This 
allows for some tolerance with regards to the placement 
of the DUT in the wind tunnel without loss of accuracy. 

Measurement Protocol 
The most efficient order of measurement is to first vary 
the flow speed, followed by the angle, temperature, and 
finally humidity, since the latter variables require a 
longer time to adjust compared to the flow rate.  

Due to the length of the wind tunnel it takes time 
for the flow velocity of a PWM set point to be achieved. 
This takes longest (60 s) when doing a zero flow 
measurement as it can take up to a minute before the 
flow is fully stopped. Therefore it is good to include a 
stability control script, which can start a measurement 
while the reference flow is consistently within a range 
of ±0.01 m/s from the last 20 measurement values. 

A further stability control script can be used for any 
heating elements in the sensor. This is because the 
element must also compensate for heat flow away from 
the chip into the PCB. Furthermore using a proportional 
integral control for the heater set point is recommended 
in order to maintain consistent heating conditions.  
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Figure 4:The system as placed within the climate 
cabinet, with a the DUT placed within the wind tunnel. 

Integrating these stability arrays and PI controllers 
into the same program used for data collection allows 
for more control over the experiment including the step 
sizes for each variable as well as the amount of 
measurements per specific condition.  

 
RESULTS 

The measurement system was built and run in the 
climate cabinet as shown in Figure 4. The system is able 
to produce very large datasets without supervision. A 
continuous measurement of 24 hours can be run 
without issue. A typical measurement takes around 12 
hours and will yield a large enough dataset for ML 
purposes. 
 

 
Figure 5: Data from a test run taking 8 hours. 

As shown in Figure 5, a measurement at one 
temperature and humidity set point with 13 individual 
angles and 5% changes in PWM with 100 
measurements per condition would yield 54,600 
datapoints. If this was also done for 5 humidities and 5 
temperatures this number reaches above the 1.3 
million. The chips presented in Azadi et al. [7] and 
chips similar to the one presented in Alveringh et al [6] 
were successfully measured in the wind tunnel, 
providing a dataset over 10 million datapoints for future 
ML research and publication.  
 

CONCLUSION 
The system provides reliable and automated datasets 
with high controllability of physical conditions. An 
anemometer was automatically measured over a range 
of flows (0 – 5 ms-1) over 90° of AoAs and in several 
humidities (30-80 %RH) at a controlled temperature 
(20 °C). Different types of hot wire and calorimetric 
sensors have been tested in it automatically each with 
large datasets containing more than 1 million 
datapoints. These large datasets allow for the next step 
in the development of these devices as there is plenty 
of data for both learning and testing sets for all devices. 
Both single and multiple parameter chips can also be 
characterized for non ML purposes as an added benefit.  
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