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Abstract—Urban waste impacts human and environmental
health. Waste management has become one of the major chal-
lenges faced by local governing authorities. Illegal dumping has
become an important problem in many cities around the world.
Effective and fast detection of illegal dumping sites could be a
useful tool for the local authorities to manage urban waste and
keep their administrative zones clean. Remote sensing based on
satellite imagery or aerial photography is a key technology for
dumping management, aiming at locating illegal waste sites and
monitoring the required actions after the detection.

This study focuses on developing a method for detection and
reporting illegal dumping sites from high-resolution airborne
images based on deep learning (DL). Due to data unavailability
for training a DL model, we use synthetic images. The trained
model is evaluated based on a real-world dataset containing
images from the city of Houston, USA. The results show that
the proposed method solves the problem with high precision and
constitutes a useful tool as part of a complete solution targeting
dumping management by authorities.

Index Terms—Aerial photography, Deep learning, Dump Site,
Waste Detection

I. INTRODUCTION

Today, the majority of human population tends to migrate
to urban areas. This trend results in the formation of massive
cities of increased needs for physical resources (e.g. food,
water, energy, materials). As a result, large quantities of
waste are being released in the urban environment. According
to Eurostat [1], waste produced by municipalities in EU-27
countries increased by 7.5% between 1995 and 2019. By 2050,
daily per capita waste generation in high-income countries is
predicted to rise by 19%, whereas it is expected to be increased
by 40% or more in low- and middle-income countries [2].
It is evident that an increase in the overall waste generation
is directly correlated with an increase in illegal dumping [3].
Illegal dumping increase may result in serious health problems.
According to a study [4], illegal open waste dumping causes
significantly more respiratory and eye illnesses. Moreover,
trash disposal sites serve as a breeding ground for insects
such as mosquitoes and flies, as well as for disease-carrying
animals such as rats, skunks, and opossums which can spread
life-threatening illnesses to nearby residents [5], [6].

Waste management, from consumption to disposal, is a
significant challenge faced by governmental authorities around
the world. Various smart waste management systems, such
as community-based ones [7], [8], IoT-based [9], [10] and
volunteer-mobile-app-based reporting systems [11] have en-
abled governmental and local authorities to improve the man-
agement and the treatment of the growing volume of waste
generated, especially in big cities. However, less attention
has been paid on unstructured waste (illegal dumping), which
seems to be an open problem around the world to date [3].
There is a need for automatically detecting these sources
of waste as fast as possible, for reasons of hygiene and
environmental protection.

The current availability of high-resolution imagery from
satellites/airborne (i.e. unmanned aerial vehicles - UAV, aero-
planes), together with the advancements in computer vision
(CV), especially the successful use of Deep learning (DL)
in CV applications, provides new opportunities for better
monitoring of illegal dumping. Dumping site detection is gen-
erally a challenging problem in CV/DL, because the datasets
openly available for training DL models to classify landscapes
do not contain sufficient images of dumping sites, being
heavily biased towards other non-dumping site classes (e.g.
urban infrastructures, buildings and houses, forests, wetlands,
pasture land, agricultural parcels, water bodies, etc.). This
fact has motivated the authors to employ synthetic data to
enrich existing datasets of remote sensing-based imagery.
The proposed method applies an iterative process to generate
synthetic data. In each iteration, new synthetic images were
generated to cover diverse data distribution. The results show
that the proposed method is effective and suitable for dealing
with problems having highly imbalanced or limited data.

II. RELATED WORK

Related work spans two different fields: a) detection and
mapping of illegal dumping, and b) synthetic data generation.

A. Illegal dumping sites’ monitoring and mapping

A few studies have applied automated classification tech-
niques for identifying and mapping illegal waste disposal from
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aerial photography. These studies used either the direct spectral
signature of waste itself or indirect spatial signatures (stressed
vegetation near the waste dumping). Specifically, in [12], the
authors proposed waste dumping location detection in landfills
by using the multi-temporal Landsat thermal images. They
harness thermal remote sensing i.e. ten years Landsat images)
to measure the land surface temperature (LST), which aids
in outlining the waste dumping regions within a landfill. By
combining the multi temporal LST contours, a probability map
was created to indicate the possible location of waste dumping
within the studied landfill. The results derived during the
summer and winter seasons both yielded an overall accuracy
of 72%. The proposed solution in [12] is more suitable for
mapping landfill, which emits heat during the aerobic and
anaerobic phases.

Other studies used photographs to identify and map illegal
waste disposal sites [13]–[15]. For example, Dabholkar et
al. [15] designed a smart illegal dumping detector, which uses
deep learning (DL) to recognize various types of frequently
dumped wastes in images taken from streets. The authors
trained a DL model with a few images showing frequently
dumped waste from hundreds of images denoting illegal
dumping provided by the city of San Jose. An edge computing
station was installed, which run the DL model for captured
images of individual dumping hot spots, sending the images
to the server only when an image contained frequently dumped
wastes

Finally, in [14], an automatic solution for the detection of
clandestine waste dumps was proposed, using unmanned aerial
vehicle (UAV) images from the Saint Louis area of Senegal,
West Africa. The authors use very high-resolution UAV images
(on the order of a few centimetres). The proposed solution used
DL object detection for detecting waste dumping. The results
showed that the model recognizes well the areas concerned,
but presents difficulties on some areas lacking clear ground
truths.

B. Synthetic data generation

An important challenge and major limitation faced by
the research community in this application domain, is the
shortcoming of aerial imagery datasets containing dumping
sites. The authors have also faced this challenge, since most of
the publicly available datasets found involving high-resolution
satellite imagery were heavily biased towards other classes
(Non-dumping sites). Manual inspection of satellite photos and
annotation of dumping sites is difficult and costly (i.e. large
amounts of mostly non-dumping site data need to be carefully
checked since dumping sites are scarce in the datasets).

The lack of data can be dealt with the use of synthetic data
and heavy data augmentation, i.e. either producing artificial
data from scratch or using advanced data manipulation tech-
niques to produce novel and diverse training examples. In [16],
the authors trained a DL model with synthetic images and
then tested the model with real-world data from aerial images
produced by unmanned aerial vehicles (UAV), focusing on

two different applications: forest fire detection and buildings’
counting.

One common approach for generating synthetic data is
to harness software development kits for gaming and scene
generation. For example, UnrealCV [17] is an open-source
plugin for the popular game engine Unreal Engine 4 that
provides features that allow to set the camera location and
the field of view, to set objects in a scene together with their
positions, to set lighting parameters, to modify properties of
objects such as material, etc. As another example, Blender1

is a free open-source 3D creation suite that supports 3D
pipeline—modelling, animation, simulation, rendering, com-
positing and motion tracking, video editing and 2D animation
pipeline.

A Blender-based synthetic scene generator for recognizing
objects inside a refrigerator was proposed in [18], show-
ing improved results with a fully convolutional version of
GoogLeNet [19], adapted for object detection. Similarly, the
work in [20], [21] had successfully created realistic datasets
using the Grand Theft Auto V video game. The authors claim
that by capturing the communication between the game and
the graphics hardware, they were able to cut the labelling costs
by several orders of magnitude.

The novelty of our work lies in the application of synthetic
images in classification problem, which has important differ-
ences than the technique discussed in related work [14], [15].
The results show that the proposed method solves the problem
with good precision with minimum annotation. To the best of
our knowledge, no other work has focused yet on data genera-
tion approaches for applications involving aerial photography
or satellite imagery and dumping site classification.

III. METHODOLOGY

An illustration of the proposed methodology for dumping
site detection is shown in Figure 1, depicted as a system
pipeline. This pipeline consists of a classification DL model
which takes geo-referenced cropped images of size 256× 256
as input. The model predicts the class of the image, i.e. either
dumping site or not. For each image used as input where
a dumping class has been predicted, the image coordinates
are converted into geo-coordinates (latitude and longitude).
These geo-coordinates are then transformed to a GIS layer,
which points the exact locations of detected dumping in the
satellite images. This process is explained in detail in Section
III-D. The GIS layer could then be used as a web or mobile
application, a visualization data story or a visually-enhanced
report, helping the authorities take actions, e.g. to inform the
waste collection vehicles to clean the waste dumping and also
to monitor the cleaning process.

A. Dataset description

To demonstrate the proof of concept of the proposed ap-
proach, the 2018 IEEE GRSS Data Fusion Challenge - Urban
land use and land cover classification dataset was used [22].

1https://www.blender.org/
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Fig. 1. Block Diagram of the proposed methodology for dumping site detection.

The multi-resolution and multi-modal optical remote-sensing
dataset was released by the Hyperspectral Image Analysis Lab-
oratory and the National Center for Airborne Laser Mapping
(NCALM) of the University of Houston. In this paper, we use
the high resolution RGB of the dataset. The dataset consists
of 14 11920 × 12020 resolution images which span between
29.7271 N to 29.7225 N and -95.3627 W to -95.3195 W
(WGS-84) covering urban and semi urban region of the city
of Houston.

B. Data pre-processing
During data preparation stage, we extracted image patches

for training and testing using sliding window-based cropping
with zero stride, resulting in 29, 000 image patches. The
image patches were visually examined and classified into two
classes, dumping and background class. Using this method,
we obtained 176 image patches with garbage dumping, which
serve as the ground truth information during the evalua-
tion process (see Section IV). Out of a remaining 28, 824
(29000 − 176) image patches, 18, 000 were randomly picked
from background class for the experiment. 2000 image patch
was used for synthetic data generation and 16, 000 as Non-
dump class image

1) Synthetic data generation:: Blender, an open-source
software for creating 3D environments, was used to generate
synthetic data. Blender allows the user to write scripts and
add-ons in Python to automate the data generation process.
The freely available dumping 3D objects [23], [24], provided
by Blender, were used in the proposed work. A 2000 images
were selected from background class and manually annotated
with dots where possible dumping pile may occur. Using
the Blender’s Python modules, the dumping 3D objects were
placed on the images based on the location determined in
the previous step, generating incidents of dumping classes to
properly train the DL classification models involved (Section
III-C). The background class images were only used as back-
ground for generating synthetic images, they were not used in
the training or the validation set. We note that the synthetic
dumping sites contained a variety of 3D objects placed in the
piles randomly.

Data generation was based on a positive feedback loop,
i.e. an iterative process was followed where a baseline model

(Section III-C1) was trained at each iteration and then the
results were examined. In case some dumping sites were not
detected by the DL baseline model, due to different materials
disposed which were not covered adequately by the Blender’s
3D objects, then more synthetic data was generated in order to
better approximate the data distribution of dumping sites, piles
and materials. The data generation iteration was stopped based
on the baseline model performance (here, the iterative process
was followed approximately 5 times) and the final result
was the generation of 2, 000 synthetic dumping images. The
Figure 2 shows the comparison between model performance
in terms of the materials depicted in the synthetic data. Based
on these results, we decided to use the following material
distribution in the synthetic data. (a) Plastic (Number of items
in each generated image varied between, 0-30%), (b) Wood
(Number of items, 0-35%), (c) Packages and Paper waste
(Number of items, 0-15%), (d) Bottles and Cans (Number of
items, 0-20%).

C. Dumping classification

Two different classification models were developed, a) A ba-
sic convolutional neural network (CNN) classification model,
b) A deeper model with residual blocks. These two models
are described below.

1) Basic CNN classification model:: The basic CNN model
is a baseline model consisting of three hidden blocks (Figure
3.a). Each block consists of a convolutional layer, followed by
pooling and batch normalization. After each block, the input
size was halved by setting the stride equal to 2 and the filter
size was doubled. At the final block, the output was flattened
before passing through the final dense layers. The output of the
dense layers applies a sigmoid activation. This model was used
to create a baseline and provide feedback for the generation
of the synthetic data.

2) Residual block classification model:: The residual block
classification model consists of two types of residual blocks,
as shown in Figure 4: (a) A typical residual block (RBLK)
(Figure 4.a), (b) A down-sampling residual block (DRBLK)
(Figure 4.b).

A typical residual block (RBLK) contains two convolutional
layers at the data path and a convolutional layer with a
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TABLE I
TEST RESULTS OF THE DL MODELS ON REAL-WORLD DATASETS.

Model Natural Image
Precision Recall

Basic CNN model 0.98 0.90
Residual model 0.97 0.92

kernel size of 1 at the residual connection path. The down-
sampling residual block differs in the stride used for the first
convolutional layer and the skip connection. Using a higher
stride in these convolutions, the previous feature maps are
down-scaled by a factor of 2 in the first convolutional layer
of the block and the skip connection, which reduce the input
feature map to half the input size, resulting in a smaller feature
map.

The residual block classification model consists of these two
pairs of residual blocks. Each pair comprises a RBLK followed
by a DRBLK, as shown in Figure 3.b. The output of the final
residual block is flattened and fed to the dense layers. The
final output layer consists of a single neuron with a Sigmoid
activation. The residual architecture was selected for its good
performance on classification tasks [25].

3) DL model training:: The dataset used for training the DL
models consisted of 16,000 non-dumping images and 2,000
synthetic dumping images (see Section III-B1). An additional
20% (35 images) of real-world dumping site images were
added to the training dataset. Simple augmentations were
applied on the patches during training: rotations of 90, 180
and 270 degrees, colour channel small-value shifting, blurring,
brightness adjustment and vertical/horizontal shifting. All pa-
rameters were initialized with the He normal technique [26].
The dataset was randomly split into two sets: a training set
(80%) and a validation set (20%). The validation set was used
for hyperparameter fitting. A separate real-world dataset was
then used as the testing set, to assess the model’s performance
(see Section III-A) on real images. Both DL models were
trained using the Adam optimizer and the binary cross-entropy
loss function, using an Nvidia RTX2060 GPU.

D. Geographic information system data output
A dumping site detection pipeline was created using Python

(Figure 1), as mentioned before. The inputs to the pipeline
was the real-world dataset used for testing (2018 IEEE GRSS
Data Fusion Challenge) and the output was a GIS vector file
with the exact locations of the dumping sites detected. Since
the model operates on patches of size 256× 256, the original
RGB image of size 11920 × 12020 was divided into smaller
patches (as described in III-B).

The image patches were given as input to the DL clas-
sification models and a class for each patch was predicted
(i.e. 1 for Dump class and 0 for non-dump class). The sliding
window patch coordinates (x, y) were recorded only for images
classified as dumping sites. These coordinates were used to
determine the pixel coordinates [X, Y] of the image patch
with respect to the HR IMG.

[X,Y ] =

[
w ×

(
2x+ 1

2

)
, h×

(
2y + 1

2

)]
(1)

The patch coordinates [X, Y] were converted into geo-
coordinates [Xgeo, Ygeo] using the Python GDAL library [27].
The image patch ID, class and geo-coordinates were plugged
to a vector layer (CSV). The vector file was uploaded as a layer
file to some GIS software (QGIS [28]). The QGIS pinpoints
the locations of dumping sites on an actual geographical map,
which could then be used to inform the authorities to take
appropriate measures. As future work, a web application will
be developed for authorities to visualize and monitor the
dumping as well as actions taken remotely.

IV. RESULTS

Both models were trained with synthetic data and small
percentage of real-world data but were tested only on real-
world data, i.e. aerial images. The results from the test are
shown in Table I, considering the metrics of precision and
recall. The precision measures the percentage of images that
were correctly classified as dumping sites, and the recall
measures the percentage of actual dumping site images that
were correctly classified as dumping sites.
For the basic CNN model, precision and recall scores of 0.98
and 0.90 respectively were recorded for the real-world images.
Similarly, for the residual model, precision and recall scores
of 0.97 and 0.92 were recorded for the real-world images
respectively. Both models showed a similar performance, but
the residual model had lower number of false positives, i.e. it
had less number of non-dumping images classified as dumping
sites. On the other hand, the basic CNN model had a lower
number of false negatives, i.e. misclassification of dumping
images as non-dumping images.

V. DISCUSSION

Results have shown that the proposed DL models address
the problem of detecting dumping sites quite well, showing
high accuracy and very good performance. The results show
that the proposed solution has high classification accuracy with
a very low number of misclassified samples. Due to unavail-
ability of any relevant work in synthetic data in dumping site
detection, we couldn’t compare our results with any state-of-
art technique. But the method used in this paper constitutes
a novel approach for detection of dumping site from high-
resolution aerial imagery. The proposed solution tackles a
challenging problem in computer vision in generally, i.e. the
problem of having to deal with highly unbalanced datasets and
extremely under-represented classes of interest. The approach
used for generating additional data for training the DL models
works quite well, allowing to create diverse training samples
that capture the whole spectrum of the data distribution of the
real-world dataset used, for the city of Houston, USA.

We strongly believe that by exploiting the proposed method,
potential users and stakeholders such as governmental agen-
cies, municipalities and local authorities have the following
options and opportunities:
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Fig. 2. Graph showing model performance vs synthetic data generation.
During each trail (from left to right) new material usually found in waste
were added which leads to better model performance

Fig. 3. The architecture of the DL classification models: a) Basic CNN
classification model, b) Residual block classification model. BN stands for
batch normalization, n is the number of neuron. The basic CNN uses ”valid”
padding for all convolutions, while the residual network uses ”same” padding.

Fig. 4. The architecture of the two types of residual blocks used in the
proposed models: (a) the typical residual block (RBLK). (b) The down-
sampling residual block (DRBLK) using a stride of 2 at both the first
convolutional layer and the skip connection. LReLU stands for parametric
ReLU and s is the stride of the convolutional layer.

• Detect illegal dumping accurately and as fast as possible,
within few days from the occurrence of the activity
(i.e. time frequency depends on the next flight of a
UAV/aeroplane or the passing by a satellite).

• Alleviate the environmental impact of illegal dumping, by
understanding where illegal dumping occurs and when,
taking cleaning measures and monitoring the measures
taken.

• Fighting dumping effectively, before it becomes a poten-
tial source of environmental pollution and contamination.

• By recording the dumping locations, visualizing them in
space and time, allows detecting hot-spots of frequent il-
legal dumping activity. This could facilitate more targeted
campaigns for raising pro-environmental and responsible
behaviour of the local citizens.

• Encourage, promote and empower waste reuse and re-
cycling, building successful and enlightening stories of
circular economy. Waste materials such organic waste,
construction work, plastic, wood, electrical appliances
and metals could be reused in a range of industries, such
as agriculture, construction, manufacturing, etc.

As a more complete solution suitable for commercial use,
the outputs of the proposed method could be fed to a GIS
application, which would take the outputs from the DL model
and place the coordinates where (and when) dumping has
happened on a map of different cities, regions or countries,
which would then be divided in different administrative zones
(i.e. regions, municipalities, communities and/or villages).
Each agency, organization or body responsible for some zone
would have access only to dumping activity inside that zone,
being able to perform the necessary actions.

A. Limitations

Although the proposed solution was able to correctly predict
the class for most of the images as dumping or non-dumping,
there were few image patches which were wrongly classified.
Figure 5 (Row-1) depicts a few examples which were mis-
classified as dumping. The confusion occurs mainly due to the
characteristics of those images, which contain visual features
that are very similar to waste dumping. Similarly, Figure 5
(Row-2) shows few examples which have been misclassified as
non-dumping while they constitute actual dumping sites. Such
issues of eliminating false negatives/positives will be solved
by adding more examples to the training, better capturing
the whole spectrum of the data distribution of waste, garbage
and dumping. Moreover, another limitation is the fact that the
proposed approach requires high-resolution imagery to work
properly. It is questionable whether the DL classification mod-
els would work well with lower-resolution aerial photography
or satellite imagery.

Fig. 5. Examples of false predictions of the DL models. Row-1 shows
examples of the non-dumping class misclassified as dumping site. Row-2
shows examples of the dumping class misclassified as a non-dumping site.

PerAwareCity & WSCC 2022: Joint Workshop on Pervasive Smart Sustainable CitiesPerAwareCity & WSCC 2022: Joint Workshop on Pervasive Smart Sustainable Cities

455
Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on March 14,2024 at 12:37:02 UTC from IEEE Xplore.  Restrictions apply. 



B. Future work
Future efforts will focus on improving the classification

accuracy of the proposed DL models, as described in Section
V-A. Various optimization techniques will be considered,
while the generation of more complex synthetic data will be
performed, including low-represented incidents of dumping,
especially scenarios where the DL models could not correctly
detect dumping. More data will be used for training the model
to advance its performance and achieve generalization on
dumping sites located in diverse regions of the world.

Moreover, following the discussion of Section V in respect
to the possibilities and features of a complete solution based on
the proposed method for local authorities and municipalities,
we plan to develop web and mobile applications, which would
then allow clients to visualize and monitor illegal dumping
occurrences, taking appropriate measures and actions.

VI. CONCLUSIONS

This paper presented a method for the accurate detection
of illegal dumping sites from high-resolution airborne images
based on deep learning. The performance of the proposed
method was assessed based on aerial photography of the city
of Houston, USA. Due to the unavailability of labelled data
required to train the DL models used, synthetically generated
images were used, allowing the DL models to successfully
learn the problem of detecting waste and dumping occurrence.
The results showed that the proposed method solves the
problem with high precision, and it constitutes a promising
technique for problems dealing with highly imbalanced or very
limited data.
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