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Abstract—A polar code decoder based on the belief propaga-
tion algorithm is desirable because of the potentially low latency
and its suitability for parallel execution on multicore and SIMD
processors. However, current state-of-the-art algorithms require
many iterations to achieve comparable bit and frame error
rate compared to successive cancellation algorithms. Also, the
current state-of-the-art belief propagation algorithms have a high
computational complexity compared to successive cancellation.

In this paper we present an enhanced belief propagation
algorithm, in which parts of the computations are altered to
reduce the negative effect of the short cycles in the polar code
factor graph.

Our proposed algorithm has a gain of ≈ +0.4dB in both frame
and bit error rate compared to successive cancellation and a gain
of ≈ +0.16dB and ≈ +0.13dB at a frame and bit error rate
of 10−3 respectively, compared to belief propagation. Also, the
maximum number of iterations of our algorithm is reduce to
0.6 · Imax. As a result, the latency is up to ≈ 11 times lower
compared to successive cancellation and up to ≈ 1.8 times lower
compared to the current state-of-the-art belief propagation polar
code algorithm. Furthermore, the reduction in the maximum
iteration count results in a lower power consumption after
implementation.

Index Terms—Performance Enhanced, Belief Propagation, Po-
lar Code, Algorithm

I. INTRODUCTION

Polar codes are the first error-correcting code to achieve
the symmetric capacity of binary-input discrete memoryless
channel (B-DMC) with a low complexity implementation
using the successive cancellation (SC) algorithm as proposed
by Arikan [1] as the block length reaches infinity. However, the
error correcting performance of the polar code SC algorithm
degrades if the code length is degrased, since the polarization
effect is not fully utilized for these code lengths. Also the the
serial nature of the SC algorithm results in a low decoding
throughput of the SC algorithm [2] compared to, e.g. the
low-density parity check (LDPC) or convolutional Turbo code
(CTC) algorithms.

Multiple possible solutions have recently been proposed to
improve both performance and throughput. The performance
can be improved by using the successive cancellation list

(SCL) algortihm or the CRC-aided successive cancellation list
(CA-SCL) [3] algorithm. However, these approaches still suf-
fer from a low decoding throughput, because these algorithms
are based on the SC algorithm [2].

Among the throughput improving solutions, the simplified
successive cancellation (SSC) [4] and fast successive can-
cellation (FSC) [5] algorithms give the highest improvement
over the original SC algorithm. Polar codes of length N are
formed from two constituent polar codes of length N/2. Using
this recursive nature, the decoding of the constituent polar
codes can be performed directly and without recursion, which
increases the throughput of the decoder.

In this work we focus on improving the performance, in both
error correction performance and latency, of polar code de-
coders by enhancing the belief propagation (BP) algorithm. By
adapting the computations of some parts of the BP algorithm,
this results in that the decoder converges faster, hence less iter-
ations are required. We present a polar code algorithm that, for
a P(1024, 512) polar code decoder at 10−3, has an signal to
noise ratio (SNR) gain in frame error rate (FER) of ≈ +0.4dB,
and an SNR gain in bit error rate (BER) of ≈ +0.15dB,
with respect to both the SC and BP algorithm respectively.
Additionally, the latency of the proposed algorithm is, due to
the lower required number of iterations, approximately 7.7
to 11 times lower compared to the SC algorithm [1] and
approximately 0.95 to 2.2 times lower compared to the BP [6]
algorithm. The proposed algorithm is not bounded by code
length or code rate.

The remainder of this paper is organized as follows. In
Section II we present related work. In Section III we give
a review of polar codes, and the SC, and BP algorithms.
Our proposed enhanced algorithm is presented in Section V,
including a more formal explanation of why our modification
of the BP algorithm improves its performance. In Section VI
we describe the used methodology and the simulation results.
Finally, in Section VII we state the conclusions.
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II. RELATED WORK

As a capacity achieving code for any binary-input discrete
memoryless channel (B-DMC) [1], polar codes are introduced.
This type of codes has recently raised a lot of interest in
the research community due to this property [3], [7], [8].
Although, for infinite code lengths in combination with suc-
cessive cancellation (SC) decoding, this capacity achieving
property has been proven, the error correcting performance
for finite code length is not guaranteed to be optimal. Another
hurdle to take is the inherently sequential decoding structure
of the SC algorithm, resulting in a decreasing throughput if the
code length increases. To reduce the degradation of the error
correcting performance of the SC algorithm for shorter code
lengths, the successive cancellation list (SCL) algorithm [3]
was proposed. This algorithm explores multiple paths of the
decoding tree and the best candidate is chosen as the decoder
output, hence increasing the error correcting performance of
the decoder, but at the cost of an increased computational
complexity of the decoder.

Research has been performed on the belief propagation (BP)
algorithm [6] in order to increase the performance in terms of
error correcting capabilities, throughput, or latency of the polar
code BP decoder. Unlike the SC algorithm, the BP algorithm
can be executed in parallel to a high degree. To improve the
error correction performance a list variant of the BP decoder
was proposed in [9]. A latency efficient BP decoder was
proposed in [10], by reducing the critical path delay. Several
early stopping criteria have been proposed in [11]–[13], which
also reduces the decoding latency. Architectural optimizations
have been proposed in [14], to increase the throughput of
the BP decoder. Other proposed methodes to improve the
throughput of the polar code decoder are the vectorized version
of the BP decoder in [15] and a stage combined BP decoder
in [16].

III. PRELIMINARY

A. Polar codes

We assume a polar code, as in [1], to be defined by a
parameter vector (N,K,A, uAc), where N = 2n, ∀n > 1
is the length of the codeword, K the number of information
bits, A the set of indices of the information bits, and uAc

representing the frozen bits. The encoding and decoding
process is represented as x = uF⊗n, where u is the input
vector and F⊗n is the n-th Kronecker power of F =

[
1 0
1 1

]
,

where n = log2 N .

B. Successive cancellation polar decoding

Fig. 1a shows the tree representation of a P(8, 4) polar
code with the root node initialized with the vector α0→N

n ,
denoting the channels log likelihood ratios (LLRs), defined
as αj

n = ln
(
Pr[yj | xj = 0]/Pr[yj | xj = 1]

)
. Each node

will compute their respective αj
s and βj

s , using the min-sum
approximation according to [2]:

αj
s ≈ φ

(
αj
s+1 · α

j+2s

s+1

)
min

(∣∣∣αj
s+1

∣∣∣, ∣∣∣αj+2s

s+1

∣∣∣), (1)

with φ is the sign function, or

αj+2s

s =

{
αj+2s

s+1 + αj
s+1, if βj

s ≥ 0;

αj+2s

s+1 − αj
s+1, otherwise,

(2)

where βj
s is the modulo-2 sum of the decoded bits. Equa-

tion (1) is known as the f -function and (2) as the g-function.

C. Belief propagation polar decoding

Based on [6], a belief propagation decoder for polar codes
is constructed using the same factor graph representation as
used for the SC algorithm. Fig. 1b shows an example of the
factor graph for the case of an N = 4 BP polar decoder, where
each computational unit (CU) has four terminals, as shown in
Fig. 2a, which map to:

L
(m+1)
s,i = f

(
L
(m)
s+1,i, L

(m)
s+1,i+2n−s +R

(m)
s,i+2n−s

)
(3)

L
(m+1)
s,i+2n−s = f

(
R

(m)
s,i , L

(m)
s+1,i

)
+ L

(m)
s+1,i+2n−s (4)

R
(m+1)
s+1,i = f

(
R

(m)
s,i , L

(m)
s+1,i+2n−s +R

(m)
s,i+2n−s

)
(5)

R
(m+1)
s+1,i+2n−s = f

(
R

(m)
s,i , L

(m)
s+1,i

)
+R

(m)
s,i+2n−s (6)

The function f(x, y) is computed using (1). Each message is
initially assigned an LLR depending on the side at which the
node is located. The left most R messages are initialized with
R0,i = +∞ if i ∈ Ac, where Ac is the set of frozen bits,
otherwise R0,i = 0. The right most L messages are initialized
with the channel LLR. All other, intermediate messages in the
factor graph are initially set to zero (0) and updated iteratively
using (3)-(6). After M iterations, ûN

1 can be decided using
threshold detection at the left most terminals.

IV. BASIC IDEA

With a careful comparison of the left bound LLR calcu-
lations of both the equations (1) and (3) of the SC and BP
algorithm, respectivily, a difference in the form of the addition
of an extra variable can be observed. This extra variable in (3)
has a large effect on the behaviour of the BP algorithm. To
outperform the SC algorithm a large number of iterations are
required, with a much higher computational complexity as a
result. In our proposal we replace (3) of the BP algorithm
with a more general equation, which is applicable for the
BP algorithm as well as the SC algorithm. By adapting a
parameter in this equation, the performance measured in error
rate as in latency can be improved.
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Fig. 1. (a) Tree representation of a P(8, 4) polar code decoder; (b) Polar
code factor graph for codelength N = 4.
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Fig. 2. (a) Belief propagation computational unit; (b) Basic polar code
channel transformation.

V. PROPOSED ENHANCED LOOP-WEAKENED BELIEF
PROPAGATION ALGORITHM FOR POLAR CODES

For our proposal we will first give Lemma 1 on how the
upper node input likelihood ratio (LR) a can be estimated
using the other LRs b, c and d of the basic polar code channel
transformation as defined in Fig. 2b. These estimations are
indicated as â, b̂, ĉ and d̂.

Lemma 1. For the estimation â of the upper input node a
of the basic polar code channel transformation, as shown in
Fig. 2b, the estimation b̂ of the lower input bound node b is
not required. Therefore LLR(â) = f

(
LLR(ĉ),LLR(d̂)

)
, where

f(x, y) is computed using (1).

Proof: Using the basic polar code channel transformation,
as shown in Fig. 2b, to decode the channel, it is trivial that
the relationship between the estimated output values â and b̂
and the estimated input values ĉ and d̂ are derived as follows:
â = ĉ⊕ d̂ and b̂ = d̂. Similar to the SC polar code algorithm,
the probabilities of ĉ and d̂ are the inputs of the basic channel
transformation, Fig. 2b, to compute the probabilities of â and
b̂.

Consider that Pr(â = s) ≜ Pr(â = s, ûi−1
1 |y) where

s ∈ {0, 1}. In the case that â = 0, there are two possible
combinations of ĉ and d̂: ĉ = d̂ = 0 or ĉ = d̂ = 1. Therefore,
Pr(â = 0) = Pr(ĉ = 0)Pr(d̂ = 0) + Pr(ĉ = 1)Pr(d̂ = 1).
In the case that â = 1, the two possible combinations of ĉ
and d̂ are: ĉ = 0 and d̂ = 1 or ĉ = 1 and d̂ = 0. Therefore,
Pr(â = 1) = Pr(ĉ = 0)Pr(d̂ = 1) + Pr(ĉ = 1)Pr(d̂ = 0).

The LR of â is defined as LR(â) = Pr(â = 0)/Pr(â = 1),
hence

LR(â) =
Pr(â = 0)

Pr(â = 1)

=
Pr(ĉ = 0)Pr(d̂ = 0) + Pr(ĉ = 1)Pr(d̂ = 1)

Pr(ĉ = 0)Pr(d̂ = 1) + Pr(ĉ = 1)Pr(d̂ = 0)

=
Pr(ĉ = 0)Pr(d̂ = 0)

Pr(ĉ = 0)Pr(d̂ = 1) + Pr(ĉ = 1)Pr(d̂ = 0)

+
Pr(ĉ = 1)Pr(d̂ = 1)

Pr(ĉ = 0)Pr(d̂ = 1) + Pr(ĉ = 1)Pr(d̂ = 0)

=
Pr(ĉ = 1)Pr(d̂ = 1)

(Pr(ĉ=0)Pr(d̂=0)

Pr(ĉ=1)Pr(d̂=1)

)
Pr(ĉ = 1)Pr(d̂ = 1)

(Pr(ĉ=0)
Pr(ĉ=1) +

Pr(d̂=0)

Pr(d̂=1)

)

+
Pr(ĉ = 1)Pr(d̂ = 1)

Pr(ĉ = 1)Pr(d̂ = 1)
(Pr(ĉ=0)
Pr(ĉ=1) +

Pr(d̂=0)

Pr(d̂=1)

)
=

Pr(ĉ=0)
Pr(ĉ=1) ·

Pr(d̂=0)

Pr(d̂=1)

Pr(ĉ=0)
Pr(ĉ=1) +

Pr(d̂=0)

Pr(d̂=1)

+
1

Pr(ĉ=0)
Pr(ĉ=1) +

Pr(d̂=0)

Pr(d̂=1)

=

Pr(ĉ=0)
Pr(ĉ=1) ·

Pr(d̂=0)

Pr(d̂=1)
+ 1

Pr(ĉ=0)
Pr(ĉ=1) +

Pr(d̂=0)

Pr(d̂=1)

=
LR(ĉ)LR(d̂) + 1

LR(ĉ) + LR(d̂)
. (7)

The LLR of â equals to:

LLR(â) = log

(
LR(â)

)
= log

(
LR(ĉ)LR(d̂) + 1

LR(ĉ) + LR(d̂)

)
≈φ

(
LLR(ĉ) · LLR(d̂)

)
min

(
|LLR(ĉ)|, |LLR(d̂)|

)
=f

(
LLR(ĉ),LLR(d̂)

)
, (8)

which concludes the proof of Lemma 1.
We look at the BP polar code algorithm, which is based

on the loopy BP, refering to the Pearl polytree algorithm [17]
for Baysian networks with loops. This algorithm is an exact
inference algorithm for singly connected networks, but will
not give the correct beliefs for multiply connected networks.

When short cycles exists in the graph, as is the case in the
polar code BP algorithm, after several iterations the beliefs
from a variable node are propagated back to the same node.
The correlations between the nodes in the graph result in a
degradation of the algorithms decoding performance. For the
estimation of â, using the scaled version of (5), the following
equation is used:

â ≈ s · φ(ĉ · (b̂+ d̂))min(|ĉ|, |b̂+ d̂|). (9)

It is trivial that the value of b̂ is introduced by the short cycles
in the polar code construction. To reduce the effects of the
short cycle, and therefore to reduce the possibility for the
algorithm to get stuck in a local minimum, we come with
the following proposition.

Proposition 1. For the estimation â, as shown in Fig. 2b, when
using the BP algorithm for polar codes, a scaled version of
the feedback of node b is required to weaken the influence of
the short cycle.

Following Proposition 1, we can rewriting (9):

â ≈ s1 · φ(ĉ · (s2 · b̂+ d̂))min(|ĉ|, |s2 · b̂+ d̂|). (10)

In Lemma 2 we show in which interval the scaling factor s2
for the feedback node b̂ is located.

Lemma 2. For scaling the feedback node b̂, the factor s2 is
in between 0 and 1, that is s2 ∈ [0, 1]

Proof: For the lower bound of the interval we compare
(8) to (10). Setting the two equations equal to each other we
get the lower bound value for s2.

s1 · φ(ĉ · d̂)min(|ĉ|, |d̂|) =
s1 · φ(ĉ · (s2 · b̂+ d̂))min(|ĉ|, |s2 · b̂+ d̂|) (11)
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It is trivial from (11) that there is equality if and only if s2
is equal to 0. Any value of s2 < 0 will change the sign
of feedback node b̂, introducing a bit-flip on this node, and
therefore an error in the computation of â, hence (11) is the
lower bound.

For the upper bound of the interval we compare (9) to (10).
Similar to the lower bound, setting the two equations equal to
each other we get the upper bound value for s2.

s1 · φ(ĉ · (b̂+ d̂))min(|ĉ|, |b̂+ d̂|) =
s1 · φ(ĉ) · (s2 · b̂+ d̂))min(|ĉ|, |s2 · b̂+ d̂|) (12)

It is trivial from (12) that there is equality if and only if s2 is
equal to 1. Any value of s2 > 1 will increase the value of the
feedback node b̂, and therefore the influence of the feedback
node is not weakened, hence (12) is the upper bound. Which
concludes the proof of Lemma 2.

VI. PERFORMANCE ANALYSIS AND COMPARISON

A. Methodology

The proposed algorithm has been validated against a base-
line implementation of both the original SC [1] and BP [18]
algorithms. For a more elaborate comparison the proposed
algorithm is also compared to the FSC [5] and SCL algorithms.

A Monte Carlo simulation is performed to evaluate the
performance of the baseline and proposed algorithms. A polar
code of different block lengths (n ∈ {8, 10, 11}), using a sys-
tematic encoder, as described in [1], are used. The codeword
is then modulated using binary phase-shift keying (BPSK)
and send over an additive white Gaussian noise (AWGN)
channel. The received signal is then demodulated, the LLRs
are computed and fed to 3 variants of the proposed decoder, the
baseline BP decoder, the baseline SC decoder, and the FSC and
SCL decoders. For the baseline BP and proposed decoders, the
maximum number of iterations Imax = 60. Decoding results
in a BER and FER for the simulated SNR range. At the same
time several other statistics are gathered, like average iteration
count and average latency.

In the BP decoding algorithm the computational complexity
of the nodes is equal for all nodes, see (3)-(6). The complexity
of the upper node in the SC algorithm is is slightly less
compared to the BP algorithm and the lower node is even less
complex, but still requires an addition and a multipication if
the scaled algorithm is used. For ease of use we assume that
all nodes can be computed within 1 time unit, regardless of
the number of internal operation, like additions and multiplica-
tions. We also assume that the highest possible parallelization
is used. Therefore, for all the nodes in the algorithm that can
be computed simultanious, the latency is increased by 1.

B. Proposed algorithm versus baseline algorithms

Before comparing the proposed enhanced belief propagation
(eBP) algorithm to the original algorithms, a simulation with
different scaling factors for the proposed algorithm are exe-
cuted in order to find the scaling parameters which will be used
for the rest of the comparisons. These simulations showed that

TABLE I
SIMULATION PARAMETERS FOR THE SC, BP,

AND THE PROPOSED ALGORITHMS

Algorithm s(s1) s2 Imax

SC [1]
0.9 − −SCL (List = 8)

BP−4 [18] 0.9375
60proposed (eBP) 0.984375 0.25
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SC (FER) BP (FER) eBP (FER)

Fig. 3. BER and FER results for a P(1024, 512) polar code using the SC,
BP, and the proposed (eBP) algorithms. Dashed plots show the BER and solid
plots show the FER.

the proposed algorithm performs well using a scaling factor of
s1 = 0.984375 = 1− 2−6 and s2 = 0.375 = 2−2 + 2−3. For
realization purposes, we will use s2 = 0.25 = 2−2 instead,
because this scaling can be realized with only a shift operation.
The parameters in Table I will be used for the comparison of
all algorithms in this paper, unless stated otherwise.

The main performance parameter of the proposed algorithm
are the BER and FER. As shown in Fig. 3, the proposed
algorithm outperforms both the SC and BP algorithms. At an
error rate of 10−3, the proposed algorithm has an SNR gain
of ≈ +0.4dB and ≈ +0.13dB (FER), and ≈ +0.37dB and
≈ +0.16dB (BER), with respect to the SC and BP respectively.

As explained in Section VI-A we will assume that the
latency for all the computations are equal to 1 time unit.
We also assume that the highest possible parallelization is
used. Given these assumptions, the latency of our decoder is
approximately 1.8 to 10.9 times lower compared to the SC
algorithm and approximately 0.8 to 1.8 times lower compared
to the BP algorithm.

Further simulations show that a reduction of 60%, i.e.
Imax = 24, will still provide a decoding performance that
is near equal to the BP algorithm (see Fig. 4), but inherently
with a major reduction of the latency (see Fig. 5). A further
reduction of ≈ 60% to Imax = 10 will provide a decoding
performance that is near equal to the SC algorithm. This
extra reduction of iterations will reduce the expected latency
even more. The latency of the proposed eBP60 decoder is
approximately 1.8 to 11.0 times lower compared to the SC
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Fig. 4. BER and FER results for a P(1024, 512) polar code using the SC,
BP, and the proposed (eBP) algorithms, with Imax as a subscript. Dashed
plots show the BER and solid plots show the FER.
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Fig. 5. Latency results for a P(1024, 512) polar code using the SC, and
the proposed (eBP) algorithms, with Imax as a subscript.

algorithm. The latency of the proposed eBP24 decoder is
upto ≈ 2.5 times lower compared to the proposed eBP60

algorithm. Finaly the latency of the proposed eBP10 decoder
is approximately 2.4 to 0.1 times lower compared to the
proposed eBP24 algorithm, as shown in Fig. 5.

In Fig. 6 the results are shown for the smaller and larger
sized polar codes, P(256, 128) and P(2048, 1024) respec-
tivily. It is clear that the influence of the short cycles become
larger as the code size is increased. At an error rate of 10−3,
the proposed algorithm has an SNR gain of ≈ +0.37dB and
≈ +0.17dB (FER), and ≈ +0.35dB and ≈ +0.17dB (BER),
with respect to the SC and BP respectively, for the polar code
of block size N = 2048. For the smaller sized polar code,
the error correcting performance of the BP and the proposed
algorithm are nearly equal.

Finally, the error correcting performance and the latency of
the proposed algorithm are compared to a simulation of the
SCL and FSC algorithms. As shown in Fig. 7, and Fig. 8,
the proposed algorithm outperforms the FSC algorithm, but
still has a performance gap compared to the SCL algorithm,
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Fig. 6. BER and FER results for different size polar codes (P(256, 128),
and P(2048, 1024)) using the proposed (eBP) algorithm, and the original
SC, BP algorithms.

in terms of error correcting performance. At an error rate of
10−3, the proposed algorithm has an SNR loss of ≈ +0.3dB
and a gain of≈ +0.37dB (FER), and a loss of ≈ +0.4dB and
a gain of ≈ +0.4dB (BER), with respect to the SCL and FSC
algorithms respectively.

The latency of the proposed eBP decoder is approximately
1.8 to 11.0 times lower compared to the SCL algorithm, due
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Fig. 7. BER results for a P(1024, 512) polar code using the SCL, FSC,
and the proposed (eBP) algorithms.
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Fig. 9. Latency results for a P(1024, 512) polar code using the SCL, FSC,
and the proposed (eBP) algorithms, with Imax as a subscript.

to the equal latency of the SCL algorithm compared to the
SC algorithm (see Fig. 5). The latency of the proposed eBP
decoder is ≈ 4.7 upto ≈ −1.29 times lower compared to the
proposed FSC algorithm, as shown in Fig. 9.

VII. CONCLUSION

In this paper we have introduced an enhanced belief prop-
agation algorithm for the use in a polar code decoder. The
enhanced algorithm uses a different scaling factor, but also
scales one of the input parameters in order to reduce the
effect of short cycles in the factor graph, which improves the
bit error rate and frame error rate compared to both the suc-
cessive cancellation, fast successive cancellation, and current
state-of-the-art belief propagation algorithms. The proposed
algorithm also converges faster resulting in 60% less iterations
required for the decoding of the received codeword then the
belief propagation algorithm. This lower maximum number of
iterations results is a lower latency compared to the successive
cancellation [1], successive cancellation list, and the belief
propagation [6] algorithms. Depending on the current signal
to noise ratio, the proposed algorithm is ≈ 4.7 times slower
upto ≈ 1.29 time faster then the state-of-the-art fast successive
cancellation algorithm. Finally, a reduction of almost 84% in
the maximum number of iterations results in a near identical
decoding performance (BER and FER) compared to the SC
algorithm, and will subsequentally reduce the latency and the
required number of operations even further.
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