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Abstract�The belief propagation algorithm is desirable for
a polar code based decoder, because of the potentially low
latency and the ability of integration in digital signal processing
units or other multi-core processor systems to parallelize the
computations. Although belief propagation polar code decoder
algorithms have the ability for a highly parallelized imple-
mentation, the algorithms require many iterations to achieve a
comparable frame error rate and bit error rate with respect
to a successive cancellation polar code algorithm. The iterative
nature of the belief propagation algorithms also result in a higher
computational complexity, i.e. O(IN(2 log

2
N � 1)) compared

to the computational complexity O(N log
2
N) of the successive

cancellation decoder algorithm.

In this paper we propose several simpli�cations for a simpli�ed
belief propagation algorithm for polar code decoders, where the
arithmetic complexity of the nodes is reduced.

The proposed belief propagation algorithm shows preliminary
results of a net reduction of the arithmetic complexity of � 13%.
This reduction is a result of the reduced number of arithmetic
operations, i.e., additions, compares, and multiplications, without
a lost in error-correcting performance.

Index Terms�Complexity, Belief Propagation, Polar Code,
Algorithm

I. INTRODUCTION

With the introduction of polar codes [1], much attention

has been given due to its provably capacity-achieving error

correction capability for any binary-input discrete memory-

less channel (B-DMC). The low complex decoding algorithm

successive cancellation (SC) was proposed for decoding polar

codes with a computational complexity O(N logN), where
N is the length of the codeword. Considering that, if the

block length N increases, the decoding latency and com-

putational complexity emerge as a bottleneck, thus the use

of shorter block length is preferred, especially for latency

critical applications, e.g. vehicle-to-X communication (V2X),

or resource constrained applications such as Internet of Things

(IoT) devices.

Recently, multiple possible solutions have been proposed

to improve both throughput and performance. Using the

successive cancellation list (SCL) or crc-aided successive

cancellation list (CA-SCL) [2] algorithms the performance can

be enhanced. Alternatively the usage of a larger code length

will increase the performance. Nonetheless, for the polar code

to compete, e.g. with the low-density parity check (LDPC)

error-correcting code, used in many standards, a polar code

with a block length of approximately 16 time larger is required.

An obvious disadvantage of this solution is the inherently

decreased decoding throughput.

By all of the solutions that improve the throughput, the sim-

pli�ed successive cancellation (SSC) [3] and fast successive

cancellation (FSC) [4] algorithms currently deliver the highest

improvement in throughput over the original SC algorithm.

Polar codes of length N are formed from two constituent

polar codes of length N=2 and using this recursive nature, the

decoding of the constituent polar codes directly, if possible and

without recursion, will increase the throughput of the decoder.

In this work we focus on the potential improvements of

the arithmetic complexity of the polar code BP decoding

algorithm. By using simpli�ed equations in the BP algo-

rithm, a new algorithm is obtained with a lower arithmetic

complexity, i.e. with less operations like additions and com-

pares. We present a polar code decoder algorithm that, for

a P(1024; 512) polar code, compared to the textbook BP

algorithm, can uses approximately 77%, 68%, and 84% of

the number of comparisons, additions and multiplications,

respectively. Preliminary results, using an ARM Cortex-R4,

indicates a net gain of � 13% in arithmetic complexity.

Additionally, the FER and BER of the proposed algorithm

is not changed with respect to the BP algorithm.

The remainder of this paper is organized as follows. Sec-

tion II gives an overview of related work. In Section III

we give a review of polar codes in general, and the BP

decoding algorithm in particular. Our proposed computational

complexity reduced BP decoding algorithm is presented in

Section V. In Section VI we describe the methodology used

and simulation results. Finally, in Section VII we state the

conclusions.

II. RELATED WORK

Since polar codes are introduced as a capacity achieving

code for any binary-input discrete memoryless channel (B-

DMC) [1], this type of codes has raised many interest in the

research community [5], [2], [6]. In spite of the proven capac-

ity achieving property for in�nite code length SC decoding,
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the error correcting performance for �nite length polar codes

is not assured. The natively sequential decoding structure of

the SC decoding algorithm is another hurdle to take. This

structure results in a lower throughput for longer code lengths.

To reduce the error correcting performance degradation of the

successive cancellation algorithm, the successive cancellation

list decoding algorithm [2] was proposed. The successive

cancellation list algorithm explores multiple paths of the

decoding tree and chooses the best candidate as the decoder

output. Choosing the best candidate will increase the error

correcting performance of the decoder, but consequently also

increases the computational complexity of the decoder.

To increase the throughput of a polar code decoder, a lot

of research is done on the BP algorithm [7], which allows

a highly parallel execution. To improve the error correcting

performance, a list variant of the BP decoder was proposed

by [8]. Reducing the number of iterations, needed for the

BP decoding algorithm, several early stopping criteria are

proposed in [9], [10], [11]. For increasing the throughput of the

BP decoder, several architectural optimizations are proposed

in [12]. Reducing the memory requirement of the BP decoder

is proposed in [13]. The number of memory operations are

reduced by a stage combined BP decoder as proposed in [14].

A vectorized BP decoder is proposed in [15], to address the

memory bottleneck of the BP decoder.

III. PRELIMINARY

A. Polar codes

Polar codes are designed as a linear, and capacity achieving

block code on any symmetric binary-input discrete memo-

ryless channel (B-DMC), like the binary symmetric chan-

nel (BSC). We assume a polar code, as de�ned in [1], to

be represented by a parameter vector (N;K;A; uAc), with
N = 2n 8n > 1, where N is the length of the code, K the

number of information bits, uAc represents the set of frozen

bits, and A the set of information bits. The encoding and

decoding process of a polar code consists of the following

steps:

1) The source vector uN1 = (u1; � � � ; uN ) is encoded using:

xN1 = uN1 GN = uN1 BNF

n; (1)

where GN is the generator matrix, BN is the permuta-

tion matrix, also known as the bit-reversal matrix, and

F
n is the Kronecker power of F de�ned as:

F
n = F 
 F
(n�1); (2)

where n = log2N , and F =

�
1 0
1 1

�
.

2) xN1 is sent using the polar code constructed vir-

tual channels WN , where the channel output yN1 =
(y1; y2; � � � ; yN ) is fed into the decoder.

3) Using the knowledge A, uAc of the polar code and the

given channel output yN1 the decoder estimates ûN1 .
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Fig. 1: (a) Belief propagation (BP) computational unit (CU);

(b) Polar code factor graph for code length N = 4.

B. Belief propagation polar decoding

Based on the BP polar code algorithm, as described in [7], a

belief propagation polar code decoder is created using a factor

graph. Fig. 1b shows an example of the created factor graph

for a 4-bits BP polar code decoder. Each stage constructed

with N=2 computational units (CUs), as shown in Fig. 1a.

Each of these CUs consist out of four terminals, as shown in

Fig. 1a. These terminals maps to:

R
(m+1)
s+1;i = f

�
R
(m)
s;i ; L

(m)
s+1;i+2n�s +R

(m)
s;i+2n�s

�
; (3)

R
(m+1)
s+1;i+2n�s = f

�
R
(m)
s;i ; L

(m)
s+1;i

�
+R

(m)
s;i+2n�s ; (4)

L
(m+1)
s;i = f

�
L
(m)
s+1;i; L

(m)
s+1;i+2n�s +R

(m)
s;i+2n�s

�
;(5)

L
(m+1)
s;i+2n�s = f

�
R
(m)
s;i ; L

(m)
s+1;i

�
+ L

(m)
s+1;i+2n�s ; (6)

with 1 � m � M , where M is the maximum number of

iterations, and the f function is calculated according to the

min-sum approximation, de�ned as:

f(x; y) � 0:9 � sign(x) � sign(y) �min(jxj; jyj): (7)

The BP decoding algorithm is an iterative, message passing

process using the constructed factor graph. Two types of

messages are involved in the decoding process: left bound

messages L and right bound messages R. Each message, rep-

resented by a log likelihood ratio (LLR), is initially assigned

an LLR depending on the position at which the node is located

in the factor graph.

The left most R messages are assigned a value according

to (8).

R1;i =

(
0; if j 2 A;

1; if j 2 Ac;
(8)

where Ac is the set of frozen bits and A is the set of

information bits.

The right most L messages are assigned a value according

to the channels LLR using (9).

Ln+1;i = ln

 
Pr[yi j xi = 0]

Pr[yi j xi = 1]

!
: (9)

All other, intermediate node messages in the factor graph

are initially set to zero. AfterM iterations, ûN1 can be decided
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Fig. 2: Several cycles of size 12 in a N = 8 polar code Tanner

graph, indicating the girth of this graph. Variable nodes are

shown as circles, check nodes as squares.

using threshold detection at the left most terminals using (10).

ûi =

(
0; if L1;i +R1;i � 0;

1; otherwise:
(10)

C. Girth of a graph

The girth is the length of the shortest cycle in a graph. In

an iterative decoding algorith, like BP, every variable nodes

information remains uncorrelated upto the point the iteration

reaches the graphs girth. The higher the girth of a code is,

the better the decoding performance the code has, using the

BP algorithm. In [16] (and references therein) a technique is

proposed to guarantee girth equal or larger then 12, as such

a girth is considered more desirable for many different code

constructions, like LDPC or polar codes.

In Fig.2 some of the shortest cycles in a polar code with

N = 8 are shown. The shorests cycles in this graph are of

length 12. For polar codes with larger code length will also

have a girth of 12, due to the recursive nature of the code

construction.

IV. BASIC IDEA

Output values of some nodes in the polar code factor graph

are �xed [17], depending on the input values. In [17] only

four speci�c node con�gurations on the left side of the factor

graph are used, in order to reduce the cycle-12 count in the

factor graph.

In our proposal we extend this principal to all nodes in

the factor graph. For every possible valid combination of

input values, the expected output equations are determined.

Depending on the input value combinations, the arithmetic

complexity of the used equation is equal or less then the

currently used BP equations (3)-(6).

V. PROPOSED ENHANCED BELIEF PROPAGATION

ALGORITHM FOR POLAR CODES

For our proposal we observe the inputs and outputs of a

single computational unit (CU) as used in the BP polar code

decoding algorithm. To simplify the expressions, we denote

the left two nodes in Fig. 3 as a and b and the right two nodes

as c and d. The LLRs of any of these nodes will have a value

a

b

c

d

Fig. 3: Simpli�ed belief propagation computational unit.

in R, but there are three speci�c values of interest, i.e. 0, +1,

and �1. Since +1, and �1 are very hard to implement,

we will assume that a maximum number given for the number

representation is selected, which replaces +1, and �1 with

+Umax and �Umax respectively.

Depending on the input values, the equations (3)-(6) for

the associated output can be simpli�ed into several other

equations, as we will explain in Sec. V-A to Sec. V-D.

A. Simpli�cations for the right bound upper node

Like the de�nition in (3), the equation mapped to the upper

right node c in Fig. 3 in simpli�ed form is as follows:

Rc � s � sign(Ra) � sign(Rb+Ld) �min(jRaj; jRb+Ldj) (11)

With Umax suf�ciently large, it is save to assume that if

Rb = �Umax, then Rb + Ld � Rb.

By an exhaustive search of all possible special input combi-

nations in (11), including the case when no node has a special

value, we get the following list of simpli�ed equations:

1) Ra = 0)

Rc � s � sign(0) � sign(Rb + Ld) �min(0; jRb + Ldj)

� s � sign(Rb + Ld) � 0 = 0 (12)

2) Rb = Ld = 0)

Rc � s � sign(Ra) � sign(0 + 0) �min(jRaj; j0 + 0j)

� s � sign(Ra) � 0 = 0 (13)

3) jRaj = jRbj = +Umax)

Rc � s � sign(Ra) � sign(Rb)�

min(+Umax;+Umax)

� s � sign(Ra) � sign(Rb) �+Umax (14)

4) jRaj = +Umax ^Rb = 0)

Rc � s � sign(Ra) � sign(0 + Ld)

�min(+Umax; j0 + Ldj)

� s � sign(Ra) � Ld (15)

5) jRaj = +Umax)

Rc � s � sign(Ra) � sign(Rb + Ld)

�min(+Umax; jRb + Ldj)

� s � sign(Ra) � (Rb + Ld) (16)

6) Ld = 0)

Rc � s � sign(Ra) � sign(Rb + 0) �min(jRaj; jRb + 0j)

� s � sign(Ra) � sign(Rb) �min(jRaj; jRbj) (17)
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7) Rb = 0)

Rc � s � sign(Ra) � sign(0 + Ld) �min(jRaj; j0 + Ldj)

� s � sign(Ra) � sign(Ld) �min(jRaj; jLdj) (18)

8) otherwise)

Rc � s � sign(Ra) � sign(Rb + Ld) �min(jRaj; jRb + Ldj)
(19)

B. Simpli�cations for the right bound lower node

With the de�nition in (4), the equation mapped to the lower

right node d in Fig. 3 in simpli�ed form is as follows:

Rd � s � sign(Ra) � sign(Lc) �min(jRaj; jLcj) +Rb (20)

With Umax suf�ciently large, it is save to assume that if

Rb = �Umax, then Rb + f(Ra; Lc) � Rb.

By an exhaustive search of all possible special input combi-

nations in (20), including the case when no node has a special

value, we get the following list of simpli�ed equations:

1) Ra = Rb = 0)

Rd � s � sign(0) � sign(Lc) �min(0; jLcj) + 0 = 0
(21)

2) Rb = Lc = 0)

Rd � s � sign(Ra) � sign(0) �min(jRaj; 0) + 0 = 0
(22)

3) jRaj = jRbj = +Umax)

Rd � s � sign(Ra) � sign(Lc)�

min(+Umax; jLcj) +Rb

� s � sign(Ra) � sign(Rb) � Lc +Rb

� Rb (23)

4) jRaj = +Umax ^Rb = 0)

Rd � s � sign(Ra) � sign(Lc)

�min(+Umax; jLcj) + 0

� s � sign(Ra) � Lc (24)

5) jRaj = +Umax)

Rd � s � sign(Ra) � sign(Lc)

�min(+Umax; jLcj) +Rb

� s � sign(Ra) � Lc +Rb (25)

6) Rb = 0)

Rd � s � sign(Ra) � sign(Lc) �min(jRaj; jLcj) + 0

� s � sign(Ra) � sign(Lc) �min(jRaj; jLcj) (26)

7) otherwise)

Rd � s � sign(Ra) � sign(Lc) �min(jRaj; jLcj) +Rb

(27)

C. Simpli�cations for the left bound upper node

Similar with the de�nition in (5), the equation mapped to

the upper left node a in Fig. 3 in simpli�ed form is as follows:

La � s � sign(Lc) � sign(Ld+Rb) �min(jLcj; jLd+Rbj) (28)

With Umax suf�ciently large, it is save to assume that if

Rb = �Umax, then Ld +Rb � Rb.

By an exhaustive search of all possible special input combi-

nations in (28), including the case when no node has a special

value, we get the following list of simpli�ed equations:

1) jRbj = +Umax)

La � s � sign(Lc) � sign(Ld +Rb) �min(jLcj; jLd +Rbj)

� s � sign(Lc) � sign(Rb) �min(jLcj;+Umax)

� s � sign(Rb) � Lc (29)

2) Rb = 0)

La � s � sign(Lc) � sign(Ld + 0) �min(jLcj; jLd + 0j)

� s � sign(Lc) � sign(Ld) �min(jLcj; jLdj) (30)

3) otherwise)

La � s � sign(Lc) � sign(Ld +Rb) �min(jLcj; jLd +Rbj)
(31)

D. Simpli�cations for the left bound lower node

Finally, the de�nition in (6), the equation mapped to the

lower left node b in Fig. 3 in simpli�ed form is as follows:

Lb � s � sign(Ra) � sign(Lc) �min(jRaj; jLcj) + Ld (32)

By an exhaustive search of all possible special input combi-

nations in (32), including the case when no node has a special

value, we get the following list of simpli�ed equations:

1) Ra = 0)

Lb � s � sign(0) � sign(Lc) �min(j0j; jLcj) + Ld

=0 + Ld = Ld (33)

2) jRaj = +Umax)

Lb � s � sign(Ra) � sign(Lc) �min(+Umax; jLcj) + Ld

� s � sign(Ra) � Lc + Ld (34)

3) otherwise)

Lb � s � sign(Ra) � sign(Lc) �min(jRaj; jLcj) + Ld
(35)

VI. PERFORMANCE ANALYSIS AND COMPARISON

A. Methodology

An implementation of the proposed algorithm is validated

using a simulation and compared against a textbook BP [7] al-

gorithm. For the proposed algorithm, the simpli�ed equations,

as given in Sec. V-A to Sec. V-D, are implemented in the order

given in this paper. If the condition is true, the accompanying

simpli�ed equation is executed and no further actions are taken

for this node.
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Fig. 4: BER and FER simulation results for the BP and

proposed algorithms. A P(1024; 512) polar code is.

To evaluate the performance of the proposed and other

the decoder, a Monte Carlo simulation is performed. In the

simulation, 10000 random vectors u are created, which are

encoded into a P(1024; 512) polar code codeword, using a

systematic polar code encoder. Before transmission, the code-

word is modulated with binary phase-shift keying (BPSK) and

transmitted over an additive white Gaussian noise (AWGN)

channel at noise levels (signal to noise ratio (SNR)).

Finally, the received signal is demodulated and the LLRs are

computed. The LLRs are processed by the proposed and BP

decoders, for which the maximum number of iterations for the

proposed and BP algorithms are set to 30. After decoding the

received signal, the estimated vector û is compared with the

send vector u, which �nally results in frame error rate (FER)

and bit error rate (BER) plots. At the same time several other

statistics are gathered, like average iteration count, average

latency and average operational counts like additions and

comparisons.

B. Proposed algorithm compared to the BP algorithm

In both the simulated proposed and BP decoder the main

scaling factor s = 0:9 and the maximum number of iterations

Imax = 30 is used.

As shown in Fig. 4, both decoders have an equal bit error

rate (BER) and frame error rate (FER) performance.

If we look at the decoding of a single codeword, it is trivial

that, for any given SNR, the proposed algorithm with the

simpli�ed equations is performing less operations to decode a

codeword, then the BP algorithm [7]. In Tab. I a breakdown of

the number of operations is given, showing that the proposed

algorithm performs approximately 23:6% less operation for

a codeword send over a 0dB AWGN channel. A similar

breakdown is given in Tab. II for a +4dB channel, resulting

in approximately 27:2% less operations used in the proposed

algorithm.

In Fig. 5 the average number of the speci�c operations are

plotted for both the proposed and the BP decoder algorithms.

TABLE I: Breakdown of the average number of operations for

the BP and the proposed algorithms at 0dB

BP [7] proposed gain

# Iterations � 30 � 30 0%
# Nodes � 583; 668 � 583; 668 0%
Additions � 583; 668 � 397; 599 � �31:9%
Compares � 583; 668 � 447; 001 � �23:4%

Multiplications � 583; 668 � 492; 830 � �15:6%

Total # Ops � 1; 751; 004 � 1; 337; 430 � �23:6%

TABLE II: Breakdown of the average number of operations

for the BP and the proposed algorithms at +4dB

BP [7] proposed gain

# Iterations � 9 � 9 0%
# Nodes � 180; 104 � 180; 104 0%
Additions � 180; 104 � 115; 025 � �36:1%
Compares � 180; 104 � 132; 111 � �26:6%

Multiplications � 180; 104 � 146; 079 � �18:9%

Total # Ops � 540; 312 � 393; 215 � �27:2%
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Fig. 5: BER and FER simulation results for the BP and

proposed algorithms. A P(1024; 512) polar code is.

TABLE III: Average frequency of occurrence of the proposed

equations for Rc

Simpli�ed equations from Sec.V-A
(12) (13) (14) (15)

Count
25898 512 11610 1885

(� 18:7%) (� 0:4%) (� 8:4%) (� 1:4%)

Simpli�ed equations from Sec.V-A
(16) (17) (18) (19)

Count
1740 547 12963 83083

(� 1:3%) (� 0:4%) (� 9:4%) (� 60:1%)

In Tab. III to Tab. VI, the average frequency of occurrence

of the proposed equations are given.

After a more careful analysis of the used equations, a

pattern became visible in which the proposed equations for

the upper and lower nodes of the CU (see Fig. 1a) form a

pair of equations. This holds for both computational directions

in the iteration as well as for all simulated block lengths,

i.e. N 2 f128; 512; 1024g. After examination of all possible

pairs, it is shown in Tab. VII and Tab. VIII that there is
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TABLE IV: Average frequency of occurrence of the proposed

equations for Rd

Simpli�ed equations from Sec.V-B
(21) (22) (23) (24)

Count
25898 512 11610 1885

(� 18:7%) (� 0:4%) (� 8:4%) (� 1:4%)

Simpli�ed equations from Sec.V-B
(25) (26) (27)

Count
1740 12963 83630

(� 1:3%) (� 9:4%) (� 60:5%)

TABLE V: Average frequency of occurrence of the proposed

equations for La

Simpli�ed equations from Sec.V-C
(29) (30) (31)

Count
11610 41769 100218

(� 7:6%) (� 27:2%) (� 65:2%)

TABLE VI: Average frequency of occurrence of the proposed

equations for Lb

Simpli�ed equations from Sec.V-D
(33) (34) (35)

Count
26410 15360 111828

(� 17:2%) (� 10:0%) (� 72:8%)

only a limited number of valid pairs. Therefor the number

of required conditions is also limited, hence the possibility

of a less complex implementation. Preliminary results, using

the instruction set and cycle timings of an ARM Cortex-R4

processor, show that a net gain of � 13% in the reduction of

arithmetic operations used in the proposed algorithm compared

to the usage of only the equation pairs (19)/(27) and (31)/(35),

i.e. the textbook BP algorithm, could be expected.

VII. CONCLUSION AND FUTURE WORK

In this paper we have introduced a number of simpli�cations

for the equations used in the belief propagation (BP) algo-

TABLE VII: Valid equation pairs for right bound node com-

putations.

Pair (upper/lower) Condition

(12) / (21) Ra = Rb = 0
(13) / (22) Ra = Rb = Lc = Ld = 0
(14) / (23) jRaj = jRbj = +Umax

(15) / (24) jRaj = +Umax ^Rb = 0
(16) / (25) jRaj = +Umax

(17) / (27) Ld = 0
(18) / (26) Rb = 0
(19) / (27) otherwise

TABLE VIII: Valid equation pairs for left bound node com-

putations.

Pair (upper/lower) Condition

(29) / (34) jRaj = jRbj = +Umax

(30) / (33) Ra = Rb = 0
(30) / (34) jRaj = +Umax ^Rb = 0
(30) / (35) Rb = 0
(31) / (34) jRaj = +Umax

(31) / (35) otherwise

rithm. The proposed simpli�ed algorithm results in an equal

bit and frame error rate compared to BP [7]. In total, the

proposed simpli�ed algorithm, allows, in simulations, for the

skipping of arithmetic operations upto 27:2%.

As future work we would like to explore the net bene�ts of

the reduced number of operations on energy consumption in

digital realizations and cycle counts on processors. Preliminary

results show a cycle count reduction of 13% on an ARM

cortex-R4 processor.
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