
Weakly Supervised Semantic Segmentation for
Range-Doppler Maps

Konstantinos Fatseas#1, Marco J.G. Bekooij*#2

#Department of Computer Architectures for Embedded Systems, University of Twente, The Netherlands
*Department of Embedded Software and Signal Processing, NXP Semiconductors, The Netherlands

1k.fatseas@utwente.nl, 2marco.bekooij@nxp.com

Abstract — Deep convolutional neural networks (DCNNs) have
been successfully applied for object detection and semantic
segmentation of radar range-Doppler (RD) maps. However,
training a DCNN requires many annotated examples that are
costly and difficult to create. In this work we present a method
that reduces significantly the manual effort involved in the
annotation of RD maps to train a DCNN for segmentation. A
40 times reduction in manual labelling effort is achieved because
the annotation of each RD map includes only the class of the
objects instead of drawing a polygon around the corresponding
cells. The localization of the objects is performed by tracing back
from the output to the input of a classification neural network.
Experimental results show that our approach achieves robust
localization performance in complex real-world urban scenarios
as observed with a low-cost automotive radar. Furthermore, we
show that our approach performs similarly to DCNNs that are
trained with a publicly available dataset in which localization
information is provided.

Keywords — semantic segmentation, weak supervision,
range-doppler maps.

I. INTRODUCTION

Neural networks eliminate the use of heuristics and offer

robust performance when processing radar data in the form

of range-doppler maps. Each cell in these maps corresponds

to a certain range and velocity interval. A moving object

at a particular range and velocity results in a peak at the

corresponding cell of the RD map. Due to the high resolution

of recent radar sensors, one object often results in several

detections. Therefore, more than one cell of the RD map can

be related to the same object.

A key obstacle for applying neural networks in the radar

domain is that they require a large amount of annotated

data to train them. Adding labels such as bounding boxes

or segmentation masks to RD maps, is a tedious and costly

manual task. Furthermore, the maps can be hard to interpret

due to the presence of clutter and ghost targets.

In this paper, we propose a method that automatically

localizes objects in a radar training dataset with RD maps. Our

approach requires that only the presence of objects in an RD

map is manually indicated. The localization involves finding

the cells that correspond to an object. Additionally, their class

is also derived. These steps result to a segmented RD map.

Our approach relies on weak supervision because it

localizes objects by making use of a DCNN for classification

of objects as shown in Fig. 1. This network is trained using

manually provided input about which type of objects are

Fig. 1. Overview of the proposed neural network training procedure.

present in each RD map of a training data set. We then

trace-back from the outputs of this DCNN to its inputs to

identify pixels that correspond to the moving objects. The

result of this tracing back are the so-called saliency maps.

In our work we utilize the guided Grad-CAM algorithm [1]

to generate a saliency map for each object class. These saliency

maps are then processed and used to train a second DCNN that

performs segmentation using the same training set but this time

with the generated annotation. In the rest of the paper, we refer

to the generated set of annotations as pseudo-labels.

The reason we create pseudo-labels instead of directly

using our method for new data is the computational burden

that is involved in generating saliency maps. This is because

to compute the saliency maps, a forward and a backward pass

of the neural network is required. In contrast, the segmentation

DCNN requires only a forward pass and no further processing

of its output.

By comparing our non-optimized pseudo-label generation

method to a single pass of the best performing segmentation

DCNN on our workstation, we found the latter to be more

than X100 faster with a run-time of 3ms. Therefore, using a

dedicated DCNN for segmentation is the only feasible solution

for real-time automotive applications.

When compared to commonly used algorithms such as

CFAR, our method has two additional beneficial properties.
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One property is that it filters out unimportant detections

and ghost targets. This is because the classification DCNN

relies only on the important features. Thus, in the saliency

map, clutter and ghost targets are suppressed as these do not

contribute to the output of the classifier. Hence, this DCNN

acts as a context aware filter.

The other benefit is that we use the RD maps directly as

input of the DCNNs. Therefore, information in RD cells that is

below the (CFAR) detection threshold is taken into account and

classified, which improves the sensitivity of the radar system.

We evaluate the performance of our method using radar

data obtained with a low-cost automotive radar in real-world

complex urban scenarios. Additionally, we compare our results

with segmentation neural networks that were trained with a

publicly available dataset recorded in a controlled environment.

As performance metric we use the so-called intersection

over union (IoU) metric in order to perform a direct

comparison with the segmentation DCNNs trained with the

Carrada dataset [2]. This metric is the percentage of correctly

classified pixels over the total amount of pixels per class.

Our results show that our segmentation DCNN delivers robust

performance that is not affected by clutter and is comparable

to fully supervised DCNNs.

II. RELATED WORK

In this section we discuss studies related to object detection

and segmentation of RD maps. We divide the related work in

fully and weakly supervised neural network based methods.

Additionally, we briefly investigate other cases of radar data

segmentation.

A. Fully Supervised

Perez et al. [3] trained a DCNN to classify RD maps that

contained a single object of the following classes: pedestrian,

cyclist, and vehicle. By doing so, they were able to instantly

classify targets without delay, but the targets are not localized

so no further information can be derived. A method that can

detect and track multiple objects in RD maps, was introduced

in [4]. To detect multiple objects the authors utilized a single

shot DCNN detector followed by a tracking algorithm that uses

Kalman filters to track detected objects.

B. Weakly Supervised

Regarding weak supervision, authors in [5], [6]

automatically produce the ground truth labels by processing

data from a synchronized lidar sensor. They also train their

networks under weak supervision as the labels are noisy and

sometimes inaccurate.

However, a difference with our work is that we do not

create the segmentation pseudo labels based on another sensor

that can project its detections to a common plane with the

radar. In contrast, we use abstract information about object

classes to train a classification DCNN and subsequently exploit

its knowledge to generate fine grained localization information.

C. Semantic Segmentation

There are several studies in which neural networks have

been trained for semantic segmentation on radar data. For

example, in [7] authors perform semantic segmentation on

point clouds that include reflections from static and non-static

objects. Prophet et al. [8] performed an evaluation of several

commonly used neural networks at the task of static object

point semantic segmentation. In both studies the segmentation

is performed on manually labelled data that includes the

azimuth direction of arrival information for each object.

More recently, the Carrada dataset [2] was made available.

The authors provide range-Doppler and range-angle maps

together with fine-grained labels that have been generated

in a semi-automatic way. Additionally, they also trained a

segmentation network as a baseline for comparison. In section

IV we include results of evaluating our method with the RD

maps from Carrada dataset.

To the best of our knowledge, our method is the first

weakly supervised radar data segmentation method that makes

use of labels generated with saliency maps.

III. METHODOLOGY

In our work we make use of the guided Grad CAM

algorithm [1], which combines the gradient of the neural

network and the CAM method [9] to generate saliency maps

for a given input of the DCNN.

This section describes how we train a neural network to

perform classification of RD maps and how we exploit its

knowledge by utilizing the guided Grad CAM algorithm to

generate pseudo-labels for segmentation. We also discuss the

usage of the generated labels to train DCNNs to directly

perform segmentation of RD maps.

A. Range-Doppler Map Multi-Label Classification

The classification neural network (Fig. 1) is trained to

perform multi-label classification of range-Doppler maps. The

maps may contain multiple objects that belong to different

classes. Therefore, more than one neuron of the output layer

can be activated simultaneously. For RD maps that do not

contain any object, all neurons should remain deactivated.

Our experiments indicated that classification accuracy is

improved by feeding the classifier with a series of consecutive

range-Doppler maps. In doing so, the DCNN is able to exploit

the temporal behaviour of each object to better predict its class.

Neural networks with spatio-temporal convolutions have a

significant advantage over common 2D DCNNs on our dataset.

Therefore, we make use of a 3D Resnet18 [10] which we

fine-tune to our training dataset. The DCNN was pre-trained

for action recognition in video.

The best classification accuracy we achieved on the test

dataset is 82.4%. This accuracy was reached after training the

classification DCNN for 37 epochs. The learning rate was 0.01

and the batch size was 64. We utilized the Adam optimizer with

its default parameters to minimize the binary cross-entropy

loss.
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Fig. 2. Overview of the pseudo-label generation. We show only a part of the
range-Doppler map for clarity. The resulting segmentation mask is depicted at
the lower left corner. Note that the camera image is only used as a reference
and is not used in our method.

B. Pseudo-Label Generation

The DCNN which has been trained for classification is

subsequently used to generate saliency maps for each RD map

of the training dataset as seen in Fig. 2. The RD maps are fed

through the neural network and a saliency map for each class

is computed. The maps are then summed in order to create

a class agnostic binary map with all valid detections. This is

done by thresholding and clustering the sum. Finally, a class

is assigned to each connected component of the binary map

by finding the saliency map with the largest sum of values for

that region.

It can be seen in Fig. 2 that static detections and clutter are

not present in the created segmentation mask. It contains only

the detections that correspond to the three moving objects. In

contrast, the commonly used CFAR algorithm is not able to

remove ghost detections or clutter and further processing of

the filtered RD map is required.

C. Semantic Segmentation

The algorithm we presented to generate pseudo-labels, is

also possible to be used for computation of segmentation

masks of the test data set as well, with very good results

(Table 1). However, our method is significantly slower than a

single forward computation of a DCNN. Therefore, we opted

for utilizing the pseudo-labels to train DCNNs that can directly

predict the segmentation of a RD map.

We tried two different segmentation DCNNs, a slightly

modified UNet [11] and a pre-trained DeeplabV3 [12]. The

only modification on the UNet was that the number of

convolutional filters per layer was halved. The resulting DCNN

has 7.8 million parameters while the DeeplabV3 network

consists of 42 million coefficients.

Fig. 3. Images captured with the camera of the setup in four of the locations
that we collected our radar and video data.

The models were trained to extract segmentation masks for

each of the following classes: background, pedestrian, cyclist

and vehicle. The background class represents all pixels that do

not contain an object but also the static objects and clutter. We

used the Adam optimizer with default parameters to minimize

the sum of the IoU and the categorical cross-entropy losses.

The learning rate was 0.0001 and the batch size was 16.

Finally, in a same fashion as with the classification network,

we allow the DCNN to observe the past by stacking the 4

most recent RD maps together with the one which is being

analysed.

IV. RESULTS AND DISCUSSION

A. Dataset

Due to the lack of a publicly available datasets with high

resolution range-Doppler maps of real world scenarios, we

performed measurements in urban areas with mixed traffic

and pedestrians (Fig. 3). The setup used to perform our

measurements consist of the TEF810X 77 GHz low-cost

automotive radar transceiver and a camera with a wide-angle

lens. During the recordings we acquired synchronized image

and radar data with a rate of 5Hz. Our setup remained

stationary throughout the recordings.

Our dataset consists of 14385 RD maps from 14 recordings

with a total duration of 48 minutes. We use 12 recordings for

training and the remaining 2 recordings which contain 27%

of the RD maps for testing. The label for each range-Doppler

map is the class of the moving objects that are present within

the radar’s range.

Initially, the annotation of the presence of objects from a

particular class is automatically generated by detecting objects

in the synchronized video with an off-the-self object detector

for images. This stage was followed by manual inspection

and a few corrections of the automatically created labels. We

also manually annotated with segmentation masks the testing

dataset such that we could evaluate the semantic segmentation

performance of the DCNN that was trained using automatically

generated localization information. Manually annotating the

RD maps to train the classification DCNN was × 40 faster

than annotating the RD maps of the test dataset with polygons,

which are required to create segmentation masks.

B. Results

In this section we provide qualitative and quantitative

results from the evaluation of our method. In Table 1 we

present IoU score that the segmentation DCNNs achieve on our

test dataset. Additionally, we also evaluate the segmentation

masks that we generated for the test data.
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Fig. 4. Segmentation masks generated with the DeeplabV3 DCNN (bottom
row) from selected RD maps (top row). Blue represents vehicles, red is for
pedestrians and green for cyclists.

Interestingly, the best score for all classes is achieved by

the segmentation masks that we generate with our GradCAM

based method. The UNet performs worse for all classes and its

performance is not improved even if we increase the number

of its filters. In contrast, the DeeplabV3 is much closer to

the guided GradCAM based method and the main reason for

its worse performance is that it generates masks that cover an

area larger than the objects. This mainly affects smaller objects

such as the pedestrians. Nevertheless, it can be seen on the left

column of Fig. 4 that by processing raw data the segmentation

DCNN is very sensitive and can correctly detect a pedestrian

which is walking 30 meters away from the radar sensor.

Besides the IoU metric, we also evaluate the DeeplabV3

in terms of object detection. We do so by detecting connected

components in the manually annotated segmentation masks of

the test dataset and the predicted masks from the DCNN. A

detection is valid when the connected components have an IoU

greater than 10%. Our results show that DeeplabV3 detects

89.1% of the moving objects while it correctly classifies 80.4%

of the detections.

To evaluate our method against fully supervised DCNNs,

we used our method to generate pseudo-labels for the the RD

maps of the Carrada dataset. The obtained results after training

DeeplabV3 with our segmentation pseudo-labels can be seen

in Table 1. The IoU scores it achieves are comparable to the

results of the networks that the authors trained.

V. CONCLUSION

In this work we present a method based on weak

supervision to significantly reduce (× 40) the manual effort

for annotation of RD maps to train segmentation DCNNs.

The manual annotation effort is limited to indicating which

object types are present in the RD maps of the training dataset

because localization information is automatically derived.

We show in our evaluation that the proposed method

generates pseudo-labels that allow the segmentation network

to attain performance comparable to networks trained in a

Table 1. Comparison of Different Segmentation DCNNs on Our and
the Carrada Dataset

Dataset Model IoU (%)

B
ac

k
g

ro
u

n
d

P
ed

es
tr

ia
n

C
y

cl
is

t

V
eh

ic
le

m
ea

n
Io

U

Our
Resnet3D + GradCAM* 99.9 23.9 29.1 28.2 45.3

DeeplabV3 99.9 15.6 24.3 27.4 41.8
UNet 99.9 13.8 20.8 22.5 39.2

Carrada
FCN-8s [2] 99.7 45.2 15.5 51.3 52.9
DeeplabV3 99.4 26.6 10.3 42.7 44.7

FCN-16s [2] 99.6 28.9 7.2 42.1 44.5

* This is the classification model from subsection III-A, we create the
segmentation masks as illustrated in Fig. 2.

fully supervised manner. More specifically, with our method

we created pseudo-labels for the Carrada dataset and achieved

an IoU score of 44.7% by training the DeeplabV3 model.

Furthermore, our results show that the performance is not

compromised even in complex real-world urban scenarios that

produce cluttered RD maps.

We expect that the proposed method can be generalized

such that information provided by sensors, such as cameras,

that measure other modalities than range and velocity, can be

used to train DCNNs for segmentation of RD maps. Resulting

to a fully automated data processing pipeline that can classify

and localize objects in RD maps for the creation of a training

dataset without any human intervention.
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