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Exploiting Digital Surface Models for Inferring
Super-Resolution for Remotely Sensed Images

Savvas Karatsiolis , Chirag Padubidri, and Andreas Kamilaris

Abstract— Despite the plethora of successful super-resolution
(SR) reconstruction (SRR) models applied to natural images,
their application to remote sensing imagery tends to produce
poor results. Remote sensing imagery is often more complicated
than natural images, has its peculiarities such as being of
lower resolution, contains noise, and often depicts large textured
surfaces. As a result, applying nonspecialized SRR models like
the enhanced SR generative adversarial network (ESRGAN) on
remote sensing imagery results in artifacts and poor reconstruc-
tions. To address these problems, we propose a novel strategy for
enabling an SRR model to output realistic remote sensing images:
instead of relying on feature-space similarities as a perceptual
loss, the model considers pixel-level information inferred from
the normalized digital surface model (nDSM) of the image. This
allows the application of better-informed updates during the
training of the model which sources from a task (elevation map
inference) that is closely related to remote sensing. Nonetheless,
the nDSM auxiliary information is not required during pro-
duction, i.e., the model infers an SR image without additional
data. We assess our model on two remotely sensed datasets of
different spatial resolutions that also contain the DSMs of the
images: the Data Fusion 2018 Contest (DFC2018) dataset and
the dataset containing the national LiDAR flyby of Luxembourg.
We compare our model with ESRGAN, and we show that it
achieves better performance and does not introduce any artifacts
in the results. In particular, the results for the high-resolution
DFC2018 dataset are realistic and almost indistinguishable from
the ground-truth images.

Index Terms— Deep learning (DL), normalized digital surface
model (nDSM), perceptual loss, remote sensing, super-resolution
(SR) reconstruction (SRR).

I. INTRODUCTION

H IGH-QUALITY aerial photography and satellite imagery
facilitate the development of interesting remote sensing

applications for large-scale monitoring and Earth observation,
including land monitoring, urban planning, and surveillance.
However, the severe weakness of remotely sensed imagery,

Manuscript received 8 April 2022; revised 8 August 2022 and 10 September
2022; accepted 16 September 2022. Date of publication 26 September 2022;
date of current version 11 October 2022. This work was supported in part
by the European Union’s Horizon 2020 Research and Innovation Programme
under Grant 739578 and in part by the Government of the Republic of Cyprus
through the Deputy Ministry of Research, Innovation and Digital Policy.
(Corresponding author: Savvas Karatsiolis.)

Savvas Karatsiolis and Chirag Padubidri are with the CYENS Center
of Excellence, Nicosia 1016, Cyprus (e-mail: s.karatsiolis@cyens.org.cy;
c.padubidri@cyens.org.cy).

Andreas Kamilaris is with the Department of Computer Science,
University of Twente, 7522NB Enschede, The Netherlands, and also
with the CYENS Center of Excellence, Nicosia 1016, Cyprus (e-mail:
a.kamilaris@cyens.org.cy).

Digital Object Identifier 10.1109/TGRS.2022.3209340

in general, is its low spatial resolution, i.e., the detailed level
is insufficient for detecting certain objects of interest like tree
types, solar panels on rooftops, and cars. Remotely sensed
imagery usually has low spatial resolution due to the cost
and time required to collect high-quality/low-noise images and
the vulnerability of such images to environmental variations
during acquisition like atmospheric and light variations. Exces-
sive costs may diminish the advantages of using high-quality
imagery in remote sensing applications. A common alternative
to address this limitation is the use of low-quality (low spatial
resolution/high noise) images to reconstruct scene information
as much as possible and then perform inference based on the
information-enriched data. This strategy maintains the lower
image acquisition cost and improves the quality of the final
output.

Traditional upsampling methods such as nearest-neighbor
and bicubic interpolation [1] rely on surrounding pixels to
add a small amount of information to an image and tend to
produce blurry and distorted results mainly because they fail
to recover high-frequency information. Inevitably, demanding
applications like small-object detection tasks do not generally
benefit much from image interpolation by methods that rely
on neighboring pixels to add some level of detail to the
image. Some early attempts to produce better results than
the traditional interpolation methods involved the learning
of degradation models [2] and the feature matching of low-
resolution (LR)/high-resolution (HR) patches to facilitate the
recovery of HR images [3], [4], [5]. Slightly more sophis-
ticated methods built sparse representations that comprised
of a dictionary used to reconstruct the HR counterpart of
an LR patch [6], [7]. While image upsampling using sparse
representations tends to slightly improve the recovery of high-
frequency information, it is a very computationally intensive
technique [7]. The limited performance of these approaches
in effectively converting an LR image to its realistic HR
counterpart originates from their inability to learn.

One of the reasons that deep learning (DL) and con-
volutional neural networks (CNNs) have become extremely
popular is their ability to supply end-to-end models that
perform inference based on raw data without relying on
hand-engineered features or extensive incorporation of task-
related knowledge into the model. These characteristics posi-
tioned DL as the mainstream approach nowadays to solve
challenging remote sensing tasks. As such, DL is widely used
for tackling the super-resolution (SR) reconstruction (SRR)
task, i.e., converting a single LR image to an HR one. The
output of the SRR task is called an SR image, and its goal is
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to learn how to produce SR images from LR images that are
indistinguishable from the ground truth, i.e., the HR images.
Furthermore, the development of efficient SSR models will
greatly benefit DL models performing a plethora of remote
sensing tasks since high-quality imagery is especially benefi-
cial for DL models [8], [9], [10], [11]. With the ever-increasing
usage of DL methodologies for developing remote sensing
applications [12], [13], [14], [15], [16], training and inferring
on HR images greatly increase the chances of obtaining good
results on notoriously difficult tasks.

II. RELATED WORK

The first attempts of using DL for the SSR task used
pixel loss between the SR output and the HR image (ground
truth). Pixel losses are straightforward to implement. Specifi-
cally, minimizing the mean squared error (MSE) conveniently
maximizes the peak-signal-to-noise ratio (PSNR), which is a
commonly used measure for evaluating SRR models. However,
PSNR is not a good measure of perceptual similarity because
it fails to capture perceptually relevant differences [17].
In particular, the textual detailed level is not reflected in
the magnitude of the measured PSNR. Pixel losses tend to
produce overly smoothed outputs that constitute candidate
HR reconstructions: the model calculates a statistical average
of the plausible HR reconstructions introduced to it during
training. SRCNN [18] was one of the early attempts that
used a DL model trained on a pixel loss for the SRR task.
Many following attempts experimented with various advanced
architectural features in the DL model to mitigate the effects
of pixel losses. Kim et al. [19] applied residual learning [20]
into a very deep CNN, Zhang et al. [21] applied deep residual
channel attention mechanisms, and Lai et al. [22] proposed
the Laplacian super-resolution network (LapSRN), which sup-
ported high up-sampling factors with the use of residual
skip connections. Despite the extensive focus on identifying
novel architectural features that improve SRR models, the gap
between the quality of the HR images and the SR outputs
remained. To overcome the limitations created by applying
a pixel loss between the ground truth and the SR image,
Johnson et al. [23] introduced a perceptual loss to measure
semantic similarity between the two images. They specifically
used a Visual Geometry Group (VGG)-16 [24] model trained
on ImageNet [25] and minimized the Euclidean distance
between the features of the HR images and the features of
the SR images (i.e., a perceptual loss). They showed that
this strategy allowed the model to reconstruct fine details and
edges. These results are in line with Mahendran and Vedaldi
[26] who also showed that matching the features of higher
layers in the pretrained model preserves the image content
and the spatial structure of an image. Johnson et al. [23]
trained two SRR models: one that did not use any pixel loss
during training and relied solely on the perceptual loss and
one that only used a pixel loss. The outputs produced by
the two models confirmed that while the perceptual loss is
better at reconstructing minute details and producing visually
appealing results, the pixel loss gives much fewer artifacts
mainly because of its smoothing effect on the pixel values.
This result suggests that both losses are useful for the SRR
task.

Further, generative adversarial networks (GANs) [27] are
highly effective generative models for producing realistic
images. The GAN learns a mapping from one manifold to
another via an adversarial game between a generator model
and a real/generated image discriminator model. GAN’s ability
to produce sharp images by learning the actual data distrib-
ution [27] suggests that the adversarial loss might be a good
fit for the SRR task. Indeed, Ledig et al. [17] proposed a
GAN-based model for the SR task (SRGAN), combining three
losses: a content loss (MSE pixel loss), a perceptual loss
(VGG feature matching like in [23]), and an adversarial loss
that encourages the network to favor solutions that reside on
the manifold of natural images. Wang et al. [28] proposed
some improvements to SRGAN including: 1) the implemen-
tation of residual-in-residual dense blocks (RRDBs), which
constitute an extension to densely connected networks [29];
2) the use of relativistic adversarial loss [30] which stabi-
lizes the GAN’s training and improves its performance; and
3) the application of the perceptual loss before the acti-
vations of the VGG layers. Wang et al. [28] called their
improved model enhanced SR GAN (ESRGAN). While the
ESRGAN’s performance on natural images is quite impres-
sive, it tends to create artifacts in remotely sensed imagery
[31]. This may emanate from the complexity and variability
of the scenes depicted in remote sensing [31] or from the
images’ lower spatial resolution and the higher noise they
usually exhibit. Furthermore, a huge portion of remotely
sensed images often includes textured surfaces, in contrast
to the images contained in the ImageNet dataset that have
more high-frequency components spread throughout the image
area.

These peculiarities of remotely sensed images are better
managed by models that are oriented to work with such data.
In this direction, Gong et al. [31] proposed the enlighten-GAN
model that uses a self-supervised hierarchical perceptual loss.
Liu et al. [32] exploited the salient maps of images to
learn additional structure priors and to make the model focus
more on the salient objects. Huan et al. [33] proposed a
multiscale residual network with hierarchical feature fusion
and multiscale dilation residual blocks. Courtrai et al. [34]
used a cycle-GAN [35] to convert LR images to HR images
as well as HR images to LR images, which is a process that
seems to help the model learn the mapping between the two
domains. Courtrai et al. [34] also integrated a YOLOv3 [36]
model into their architecture to conduct small object detection.
The integrated object detection model, together with the cycle-
GAN, trains the generator synergically. Despite small object
detection being the model’s main aim, the generator produces
upsampled images to facilitate the task.

Summing up, previous works on the SRR task for remote
sensing imagery focus either on the architecture of the model
or on small training procedure differentiations that potentially
improve the results to a certain extent. In this article, the
authors exploit the best practices derived from the state-of-
the-art experimentation up to date, suggesting partly keeping
the training principles (content and adversarial losses) of the
highly successful ESRGAN while modifying the way the
perceptual loss is conceived in the context of SR in general and
in remote sensing specifically. The key idea of the proposed



KARATSIOLIS et al.: EXPLOITING DSMs FOR INFERRING SR FOR REMOTELY SENSED IMAGES 4414213

approach lies in the observation that single-image SR is an
ill-posed problem in the sense that for any LR image exists
numerous HR images that could correspond to it [23], [31],
[32]. Thus, for any successful model to achieve superior
performance, it must derive significant pixel-level knowledge
during the training. Up to date, most promising models use
a perceptual loss that is based on feature matching, i.e.,
matching the similarity of two images in feature space [17],
[23], [28]. Alternatively, the authors propose the replacement
of the perceptual loss with a pixel-level loss which is more
appropriate for SRR models operating on remotely sensed
imagery. Specifically, the authors exploit the normalized digital
surface model (nDSM), defined as the difference between the
DSM and the digital elevation model (DEM), i.e., nDSM =
DSM − DEM. The nDSM holds a great amount of pixel-level
information that can restrain the model’s flexibility in out-
putting a statistical average of viable solutions: a candidate
solution must have the same nDSM as the ground-truth HR
image. The main difference between the proposed approach
and a feature matching perceptual loss is that the nDSM
contains most of the spatial relations within an image while
feature space similarities may be misleading: semantically
unrelated images can have a similar subset of features.
Johnson et al. [23] also note this while discussing which
VGG layers (lower level or higher level) to choose when
constructing the perceptual loss. The results of this article
suggest that the gradients flowing from the nDSM back to the
SRR model during training improve the quality of the latter.
Some task-specific training techniques have also been applied,
which stabilize training and improve the results.

III. USING DSMS TO APPLY SR

As mentioned in the related work, the ESRGAN model’s
performance in upsampling natural images is impressive in
part due to the perceptual loss used during training. The
perceptual loss of the ESRGAN is calculated using a second
model pretrained on a second task relevant to the primary
task of interest, e.g., a classification task conducted via a
VGG model. Regarding the ESRGAN’s training, the VGG
model used for calculating the perceptual loss was trained
on the 1000 classes of the ImageNet dataset. This substantial
number of classes, in combination with the millions of images
contained in the dataset and the effectiveness of the VGG
model, facilitated the training of the SRR task. However,
remote sensing imagery differs from the images contained in
the ImageNet dataset in several aspects: they have lower spatial
resolution and level of detail, they have higher noise, and they
depict larger textured surfaces instead of individual objects
dominating the image. Thus, a pretrained VGG model on the
ImageNet dataset might not be the best choice for training an
SRR model that takes as input aerial photography or satellite
imagery. Even if an ESRGAN-like model is trained on a
remote sensing task from scratch, using its learned features
for building a perceptual loss, it will most probably not be
exposed to hundreds of classes or have access to millions of
HR images. Such limitations are quite common when dealing
with remote sensing tasks. Furthermore, both large textured
surfaces and image variability in remote sensing imagery tend

Fig. 1. nDSM [38] infers the height map of the objects depicted in an aerial
image. (Left) RGB aerial images are shown. (Right) Predicted elevation heat
maps are shown. The color bars indicate the color-coded height in meters.

to reduce the effectiveness of feature space similarity metrics.
In Sections III-A–III-D, we describe the loss functions used
in the proposed SRR model.

A. nDSM-Based Loss

The authors address the problems imposed on the SRR
task of remote sensing imagery by applying a pixel-level loss
based on information that is closely related to the domain,
harnessing the nDSM. An nDSM inferring model captures
the spatial relations in remotely sensed images to infer the
heights of the depicted objects. Interestingly, neural networks
(NNs) predicting depth from single images also use object
interactions, like shadows, to identify objects in the scene [37].
To infer the nDSMs, we use a model developed in previous
work [38] that converts single RGB images to nDSMs and
we pretrain it with the data used for the SRR task. The
model inferring the nDSMs from RGB images uses a U-Net
architecture [39] to compress an image into smaller repre-
sentations that the model then decodes to form the elevation
map. For a detailed model architecture and details regarding
its training, we kindly refer the readers to [38]. Fig. 1 shows
examples of inferring the elevation map of an aerial image via
the nDSM.

The pretrained nDSM provides the means for defining a
loss that closely relates to the domain data. Besides the nDSM-
based loss, our proposed SRR methodology also uses a content
loss (pixel-loss) and an adversarial loss. The content loss
forces the model to output images that maintain the content
of the LR image while the adversarial loss drives the model
to infer images that are sharper and more realistic.

Ideally, an SR image calculated from its LR counterpart
should result in the same nDSM as the ground-truth HR image
corresponding to the LR image. The closer an SR image is to
the ground-truth HR image, the closer their inferred nDSMs
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should be. This is reflected in the following loss:
LnDSM = � fnDSM( fSR(xLR))− fnDSM(xHR)�2 (1)

where fnDSM(·) is the nDSM-inferring model, fSR(·) is the
SRR model, xLR is the LR image, and xHR is the HR image.
During training, the LR image is used as the input of the
SRR model and its SR reconstruction is passed through the
pretrained nDSM. Then, the ground-truth HR image is also
passed through the nDSM, and the Euclidean distance of the
inferred height maps is calculated. During production, the
nDSM is no longer required, since its sole purpose is to
facilitate the model training by forcing the parameters’ update
operation to favor weights that output SR images that are
similar to the HR images.

B. Adversarial Loss

In addition to the content loss and the nDSM loss, we also
use an adversarial loss to bias the model toward images that
reside on the HR images’ manifold. We adopt the original
GAN methodology proposed by SRGAN [17] and not the
relativistic GAN suggested in ESRGAN [28] because we did
not observe any improvements in our results when the latter
was used. However, we noticed that the proposed nDSM loss
stabilizes the training and facilitates learning, which makes the
use of a vanilla GAN sufficient. The adversarial loss is defined
as

Ladversarial =
�

n

− log fDGAN( fSR(xLR)) (2)

with fDGAN being the discriminator of the GAN, fSR is the
SRR model, and xLR is the LR image. We use this formulation
instead of minimizing log(1 − fDGAN( fSR(xLR)) to avoid the
saturating gradient issue [27]. The GAN discriminator is
trained on predicting whether input images source from the
HR images’ distribution or the SR images’ distribution.

C. Proposed SR Model Architecture

ESRGAN employs the basic architecture of SRGAN [17],
incorporating modifications such as the removal of batch
normalization [40] everywhere in the model and the use
of RRDBs as the basic block of the model. The specific
architecture performs most computations in the LR feature
space and uses up-scaling units located near the output which
increases the resolution of the feature maps calculated by the
RRDBs. We apply some further modifications to the ESRGAN
architecture that enhance its performance on remote sensing
imagery.

1) Each subpixel up-sampling (x2) layer is followed by two
convolutional layers with parametric rectified linear units
(PReLUs) [41].

2) After the upsampling units, we use two additional con-
volutional layers with PReLU activations.

3) The output convolutional layer applies a hyperbolic
tangent activation function followed by an operation
that converts the resulting values in the range [0, 1].
Specifically, the rescaling operation applies the function
0.5 × (x − 1) + 1 to an input x .

Fig. 2 shows the proposed modified architecture for the SR
network. The modifications made to the original ESRGAN
architecture are noted in Fig. 2. The model implements several
blocks, each consisting of three RRDBs that contain residual
nodes and dense connections. Each residual node applies a
scaling parameter β to the output of each RRDB before adding
it to the residual path. A similar scaling is applied at the
output of each RRDB and specifically at the residual node
that merges the input of the block with its output. Residual
scaling prevents instability during the training and allows for
smoother updates [28].

D. Content Loss

Most SRR models use either the MSE or mean absolute
error (MAE) to implement the content loss. These error
functions tend to be a good fit for close-range photography,
but this might not be the case for remotely sensed imagery.
As mentioned before, aerial images usually have low spatial
resolution and are noisy. Large texture surfaces of a wide
variety make the SRR task even harder. Images of rocky
areas, random soil formations, dumping fields with randomly
disposed waste, and varied objects’ orientations make it
extremely hard for a DL model to learn the data distribution.
Furthermore, trees with entangled branches and an infinite
number of leaves configurations render the SRR task on remote
sensing imagery extremely hard even for the state-of-the-
art models like the ESRGAN. In particular, soil and leaves’
configurations are very complex and thus very hard to model
in the SR context. MSE penalizes large prediction errors which
makes MAE more suitable when the dataset contains several
outliers. In the case of aerial imagery-based SRR, a wise
strategy is to avoid high penalization on the reconstruction
error of entities whose distribution is a priori difficult to learn
(e.g., soil and trees) and to penalize large errors on easier-to-
learn reconstructions like cars and houses. Thus, we propose
the use of the Huber loss [42] instead of MAE or MSE because
it applies either of the two losses, depending on the error
magnitude. The proposed content loss is a Huber function with
a transition point � and a = fSR(xLR) − xHR defined as

Lcontent =

⎧⎪⎨
⎪⎩

1

2
(a)2, if |a| ≤ �

�(|a|) − 1

2
�, otherwise.

(3)

We propose this design choice after a series of observa-
tions made during trial-and-error experimentation with various
content losses. Using MAE or MSE, the SRR model tends
to predict tree and soil reconstructions with relatively low
errors, but reconstructions are overly smooth and blurry.
By not heavily penalizing errors of such depictions (trees,
soil, or other complicated structures), we shift the burden
of generating realistic reconstructions to the other losses
(i.e., the nDSM and the adversarial loss). Accordingly,
by greatly penalizing the reconstruction error of structures like
houses and cars, the influence of the nDSM and the adversarial
loss is reduced, and the model avoids the generation of
high-frequency artifacts. Meyer [43] proposed an alternative
probabilistic interpretation of the Huber loss which justifies its
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Fig. 2. Modified ESRGAN architecture is used in the proposed SR model. Several RRDBs process the image while maintaining its LR dimensions, and
upsampling is applied near the output of the model. We introduce two convolutional layers with PReLU activations between the upsampling units as well as
two additional convolutional layers with PReLU activations after the last upsampling unit. Furthermore, we use a hyperbolic tangent activation function at the
output and a rescaling layer just before the inferred SR image to adjust the values in the range [0,1]. Our modifications on the basic ESRGAN are shown
with an asterisk on the top-right area of the network components.

use on tasks dealing with aerial photography since these tasks
generally contain significant noise and often have low quality:
Huber loss minimization relates to minimizing an upper bound
on the Kullback–Leibler divergence between the Laplacian
distribution of noise in the ground-truth data and the Laplacian
distributed prediction noise. Meyer [43] further showed that
the optimal transition point of the Huber function is closely
related to the noise in the ground-truth data. Taking the above
into account, we train the proposed models for minimizing the
following combination of the three losses, as described above
(content, nDSM, and adversarial loss):

L = αLnDSM + Lcontent + βLadversarial (4)

with α and β being the weighting factors of the losses.

IV. EXPERIMENTS AND RESULTS

We evaluate our methodology with two datasets, one con-
taining images mainly of an urban area taken by an aircraft
equipped with image and ranging laser scanner (LiDAR)
sensors and one dataset containing aerial images mainly of
rural areas. Both datasets contain the corresponding DSMs
and DEMs. This variety in landscapes enables us to assess the
developed models’ performance in different imagery dataset

contexts and spatial resolutions. As mentioned before, the
training of the models requires the nDSM of the area used
in the training data while an nDSM is not required during
inference. Still, this limitation only allows the use of datasets
that include DSMs and DEMs such as the Data Fusion 2018
Contest (DFC2018) dataset [44], [45] and the dataset con-
taining the national LiDAR flyby of Luxembourg, conducted
in 2019 by the country’s administration for cadaster and
topography [46], [47]. The DFC2018 dataset is part of a set of
community data provided by the IEEE Geoscience and Remote
Sensing Society (GRSS). In this article, we specifically use the
multispectral LiDAR classification challenge data. The RGB
images of the DFC2018 dataset have a 5-cm/pixel spatial
resolution while the LiDAR resolution is 50 cm/pixel. The data
belong to a 4172 × 1202 m2 area and includes the University
of Houston, Houston, TX, USA, and its surroundings. The
Luxembourg dataset contains RGB images of 20-cm/pixel
spatial resolution, and the LiDAR resolution is 50 cm/pixel
with a density of 15 points/m2. The Luxembourg dataset
is in georeferenced raster format and uses the Luxembourg
Reference Frame (LUREF) (EPSG 2169) coordinate system
and projection. We use the datasets to train two models for the
SRR ×4 task (one model for each dataset) and the DFC2018
dataset to train a model for the SRR ×8 task. We do not use
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the Luxembourg dataset to train a model on the SRR ×8 task
because of the poor quality of the downscaled images.

A. Training Details

We train our models with the Adam optimizer and a learning
rate of 0.0001, scaling the nDSM and the adversarial losses
with factors α = 0.01 and β = 0.001, respectively, as shown
in (4). We also apply label smoothing of 0.2 to the GAN
training, and we pretrain the SRR models with MAE. This
puts the weights in an appropriate configuration to avoid local
minima and stabilize the GAN training [17]. The MAE of
the pretrained models also provides an indication of what
constitutes a suitable value for the transition point of the Huber
loss (content loss). Our experiments showed that a Huber
loss transition point that is twice the MAE of the pretrained
models gives better results. In our experiments, we use ×4 and
×8 upsampling factors. For the ×4 upsampling experiments,
we train the models with randomly cropped patches of size
520 × 520 pixels, which are downscaled with bicubic inter-
polation to LR inputs of size 130 × 130 (the models apply
×4 upsampling, and thus, the SR outputs match the size of
the original HR images). For the ×8 upsampling experiment
on the DFC2018 dataset, the 520 × 520 random patches are
downscaled via bicubic interpolation to LR inputs of size
65 × 65. The LR images in all experiments are created by
downscaling the HR images via bicubic interpolation.

B. Results

Figs. 3 and 4 show the results for the SRR ×4 mod-
els for the DFC2018 and the Luxembourg datasets, respec-
tively. Fig. 5 shows the results of the SRR ×8 model for
the DFC2018 dataset. The SRR ×4 model dealing with
the DFC2018 dataset reconstructs finer image details and
more high-frequency components in comparison to the model
trained on the Luxembourg dataset. This is not surprising
since the resolution of the images in the DFC2018 dataset
is four times higher than the resolution of the images in
the Luxembourg dataset, and thus, the model learns the data
distribution of a more detailed scenery. This is also reflected
in the performance metrics shown in Table I, i.e., the SRR
model trained with the DFC2018 dataset achieves a higher
structural similarity index measure (SSIM) [48] and a PSNR
than the model trained with the Luxembourg dataset for the
SRR ×4 task. The results also suggest that the effective-
ness of the proposed SRR approach depends on the quality
of the nDSM used. This is one of the reasons why our
approach works better on the DFC2018 dataset, as it has a
more accurate nDSM. Since the quality of the nDSM relates
to the quality of the images contained in the dataset, the
effectiveness of the proposed approach inherently relates to
the quality of the images in the dataset. Hence, the results of
the SSR ×4 model trained with the high-quality DFC2018
dataset are often indistinguishable from the ground-truth HR
images (a more detailed analysis of this is provided in
Section IV-D regarding the limitations of the model). Table I
also shows the values of PSNR and SSIM achieved by the
ESRGAN trained on the datasets and the corresponding values

TABLE I

PERFORMANCE OF THE PROPOSED APPROACH

achieved when bicubic interpolation is applied to the LR
images. The overall findings indicate that the proposed model
achieves higher scores on the PSNR and SSIM metrics than
when bicubic interpolation or the ESRGAN model is applied.
An analysis of the comparison between our model and the
ESRGAN model is held in Section IV-C. We must note the
difficulty in comparing the performance of our model with
the performance of previous studies on SRR models applied
to remote sensing imagery because the datasets involved in
the comparison must contain DSMs.

The proposed SRR model performing ×4 upsampling
recovers significant information content which was lost during
the downscaling of the images (Figs. 3 and 4). Various objects
like cars and street poles are properly reconstructed, and
in many cases, some fine details like shadows and street
lines are almost identical to their HR counterparts. Buildings
are also properly reconstructed with high-level details, and
large surfaces like rooftops are depicted with their original
texture which was severely degraded during downscaling.
The reconstructions with the least fidelity are those of trees
and soil, which is something expected given the distribution
complexity of their surfaces and their extreme diversity in
visual representations. As expected, the results of the SRR
model performing ×8 upsampling show lower fidelity because
of the high information loss during the downsampling of
the ground-truth images. Regardless of the lower quality,
the resulting images (Fig. 5) recover a lot of details like
difficult-to-identify train rails, rooftop textures, car shapes,
road details, street poles, and shadows. The significant image
quality improvement observed at the output of the model in
comparison to the LR input image reflects the quality metrics’
improvement shown in Table I.

The results shown in Figs. 3–5 may encourage the use of
the proposed model for upsampling LR images to feed other
remote sensing models performing challenging tasks that may
require inputs of a higher level of detail. Some examples
of such tasks are humans counting, tree identification, car
type identification, dumping detection, chimney detection,
detection of parking spots for disabled people, power cable
identification, etc. Such tasks are supported by our results as
shown in Figs. 3–5, i.e., the objects involved in these tasks are
enhanced by our model and they become more evident (their
detailed level is enhanced).
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Fig. 3. SRR ×4 results for the DFC2018 dataset. (Columns from left to
right) LR, HR (ground truth), and SR images (inferred by our model).

Fig. 3. (Continued.) SRR ×4 results for the DFC2018 dataset. (Columns
from left to right) LR, HR (ground truth), and SR images (inferred by our
model).

C. Comparison With the ESRGAN

We give special importance to comparing our model with
the ESRGAN model because the ESRGAN outperforms most
SRR methods including the SRGAN (of which it is an
improvement). The ESRGAN model is very popular and
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Fig. 4. SRR ×4 results for the Luxembourg dataset. (Columns from left to
right) LR, HR (ground truth), and SR images (inferred by our model).

Fig. 4. (Continued.) SRR ×4 results for the Luxembourg dataset. (Columns
from left to right) LR, HR (ground truth), and SR images (inferred by our
model).

constitutes a suitable and established model for applying the
SRR task to various applications. Furthermore, our model is
developed based on similar concepts used by the ESRGAN
(architecture and loss functions) while introducing important
and necessary modifications to make it suitable for applying
the SRR task on remote sensing imagery.
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Fig. 5. SRR ×8 results for the DFC2018 dataset. Columns from left to right:
LR, HR (ground truth), and SR images (inferred by our model).

Fig. 5. (Continued.) SRR ×8 results for the DFC2018 dataset. Columns
from left to right: LR, HR (ground truth), and SR images (inferred by our
model).

Despite being one of the best performing models for apply-
ing the SR task on natural images, ESRGAN’s performance
on aerial and remotely sensed imagery has a significant draw-
back: ESRGAN creates artifacts, especially on large textured
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surfaces that are very common in remotely sensed
imagery [31]. We trained the ESRGAN model [49] on our
datasets to compare its results with ours and assess the perfor-
mance of our approach. We specifically used SSIM and PSNR
as the comparison metrics. The resulting metrics’ values are
shown in Table I. Our approach achieves better performance
on both metrics for both datasets and upsampling factors
(×4 DFC2018, ×4 Luxembourg, and ×8 DFC2018). Visual
inspection of our approach and ESRGAN’s results reveals no
significant differences in the quality of the generated images
except for some annoying artifacts created by the ESRGAN,
especially on large flat surfaces. Some examples of these
artifacts when applying the ×4 SR task on remote sensing
imagery with the ESRGAN are shown in Fig. 6. Occasionally
(on about 5% of the images produced by the ESRGAN),
these artifacts are so acute that distort a portion of the SR
image significantly. The images produced by the ESRGAN
reveal its eagerness to reconstruct high-frequency components,
a property that proves to be productive when working with
natural images, but it is problematic when working with
remotely sensed imagery. The main reason ESRGAN achieves
lower scores on the PSNR and SSIM evaluation metric values
than our model is the artifacts it produces. We confirmed
this by calculating the evaluation metric values only for the
images produced by ESRGAN that do not contain artifacts (the
screening was conducted with visual examination). The metric
values scored by the ESRGAN’s results after excluding the
images containing artifacts were closer to the scores achieved
by our method than when including the distorted images. The
generated artifacts are even more evident when we use the
ESRGAN for the ×8 SR task. Fig. 7 shows some comparative
examples of using the ESRGAN and our method for the ×8
SR task.

Fig. 7 shows that there are more artifacts (both in number
and intensity) and more distortion on large surfaces like
building roofs and roads compared to the artifacts observed
in the application of the ×4 SR task with the ESRGAN as
shown in Fig. 6.

We believe that ESRGAN produces these artifacts because
of the nature of its perceptual loss: the pretrained VGG19
model that is used for obtaining the perceptual loss of the
inferred SR images is not a good option for remotely sensed
imagery. VGG19 is pretrained on the ImageNet dataset that
has a very different data distribution than remotely sensed
imagery.

This difference in data distribution renders the feature
mapping layer used for the perceptual loss incapable of
calculating appropriate remotely sensed image representa-
tions. Therefore, the essence of what constitutes a high-
quality remotely sensed image cannot be captured by the
perceptual loss calculated with a model pretrained on a
different data distribution, e.g., the VGG19 used by the
ESRGAN model. Our approach proposes a solution to this
problem by replacing the ImageNet classifier with a pretrained
nDSM prediction model. The nDSM is trained on predict-
ing the height maps of remotely sensed images, and thus,
it is domain-specific and relevant to the images used in the
SR task.

Fig. 6. Examples of the artifacts created by the ESRGAN on large surfaces
depicted in remotely sensed imagery for ×4 SR. (From left to right) LR
images, the original HR images, the SR images generated by the ESRGAN,
and the SR images generated with our approach. Besides its occasional
difficulty to reconstruct some objects (e.g., cars), ESRGAN adds artifacts
on large surfaces (e.g., roads and roofs). On the contrary, our model does not.

D. Limitations

The main limitations of our work have to do with the upsam-
pling factor targeted, e.g., ×4 and ×8, the spatial resolution
of the HR images (training images) and the proper alignment
between the HR images and their DSMs. We tested our model
on up to an ×8 upsampling factor, and the results are decent
(Fig. 5). We do not show the results from experiments with
larger upsampling factors because beyond ×8 upsampling, the
SR task becomes overwhelmingly ill-posed [29], [37], [38]: it
is extremely difficult for LR images (downscaled images) to
contain information regarding fine details of the original HR
images. Similarly, SRGAN and ESRGAN focus solely on a
×4 resolution upsampling factor [17], [28]. In contrast to the
case of natural images, the benefits of applying the SR task on
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Fig. 7. Examples of the artifacts created by the ESRGAN on large surfaces
depicted in remotely sensed imagery for ×8 SR. (From left to right) LR
images, the original HR images, the SR images generated by the ESRGAN,
and the SR images generated with our approach. The ESRGAN tends to add
a significant amount of texture and lines to the roads and building roofs.

remotely sensed imagery for ×8 upsampling are de facto more
profound because of the high cost of HR imagery. This makes
our approach more suitable for remotely sensed imagery since
SRGAN and ESRGAN are optimized for ×4 spatial resolution
upsampling. However, the experiments we conducted revealed
that our model does not perform well for upsampling factors
greater than ×8.

We also experimented with the spatial resolution of the
HR images used for training the model. We used a dataset
available from the national Open Government Data (OGD)
initiative of Austria [50]. The dataset contains RGB images
of 40-cm/pixel spatial resolution, and the LiDAR resolution is
40 cm/pixel (the acquired RGB images were of 20-cm/pixel
resolution, but the publicly available data are downscaled to
40-cm/pixel resolution). At this lower spatial resolution, the

nDSM that provides the perceptual loss does not generalize
well, probably because it loses its ability to detect low-level
features like corners, lines, shadow edges, or other features
that allow it to predict the heights of the objects in the image.
Thus, the advantages of using an nDSM-based perceptual loss
are lost which explains why our model operating on images of
lower spatial resolution performs similar to the case of using
a combination of an MAE and a GAN loss alone, i.e., without
the nDSM-based perceptual loss. In other words, while the
nDSM-based perceptual loss has a significant contribution to
the performance of the model when the spatial resolution
of the HR images is adequate for the nDSM to learn how to
infer the height maps of the images, this contribution ceases
to exist when the resolution of the HR images (and the quality
of the data) prevents the nDSM from generalizing well.

Another limitation of our model related to the nDSMs of
the HR images is the proper alignment between them. For
example, the nDSMs of the DFC2018 dataset are properly
aligned with the RGB images and this allows the model
to achieve very good results for both upsampling factors
(×4 and ×8). The nDSMs of the Luxembourg dataset are not
perfectly aligned, and we suspect that this plays a significant
role in the model’s inability to perform well on the ×8 SR
task for the specific dataset (the results are not better than
using an MAE and a GAN loss only). The nDSM trained
on the Luxembourg dataset is performing much worse than
the nDSM trained for the DFC2018 dataset. Specifically, the
nDSM for the DFC2018 dataset has an MAE of 0.54 m
on its test set while the nDSM for the Luxembourg dataset
has an MAE of 0.83 m. This great difference is attributed
partly to the lower resolution of the Luxembourg dataset and
mostly to the misalignment between its nDSMs and RGB
images. To investigate the effects of the misalignment problem,
we trained the model on the DFC2018 dataset with the nDSMs
shifted by a constant value of two pixels in random directions
(up, down, left, and right) for each image and the nDSMs
distorted with a random transformation (small rotation and
slight skew). In the case of the constant shifting of the
nDSMs, the results were very similar to the unaltered nDSMs.
On the contrary, in the case of random small transformations,
we observed a significant reduction in the performance metrics
(in the range of 5%–10%). This suggests that the quality of
the nDSMs is also important for our method to achieve its
potential.

V. CONCLUSION

This article proposes an SRR model that works with
remotely sensed images, addressing the limitations of exist-
ing state-of-the-art models by including auxiliary information
that is important during the model’s training phase, i.e.,
including the corresponding nDSM of the remote sensing
imagery dataset. In other words, the proposed SRR model,
during training, considers the difference between the nDSM
inferred by the calculated SR image and the ground-truth HR
image, instead of using a perceptual loss. Furthermore, the
contribution of this article includes applying some architectural
changes to the ESRGAN model and employing a Huber
loss as a content loss to mitigate the difficulties imposed by
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remotely sensed images. Visual inspection, together with the
significant improvement of the SSIM and PSNR metrics of
the inferred SR images obtained, suggests that the proposed
model is suitable for the SRR task and can cope with popular
and notorious remote sensing imagery limitations such as
big surface textures and lower spatial resolution. Summing
up, this article shows that an nDSM-based loss seems to
be suitable for the SRR task on remote sensing imagery,
supplying the model with enriched pixel-level information.
This approach allows us to detect objects of interest that were
otherwise impossible to identify such as car types, powerlines,
parking spots, chimneys, and tree types. This information
could be very useful to city planners, policymakers, operators
of municipalities, and local communities.
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