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Abstract

High-performing out-of-distribution (OOD) detection,
both anomaly and novel class, is an important prerequi-
site for the practical use of classification models. In this
paper, we focus on the species recognition task in images
concerned with large databases, a large number of fine-
grained hierarchical classes, severe class imbalance, and
varying image quality. We propose a framework for com-
bining individual OOD measures into one combined OOD
(COOD) measure using a supervised model. The individual
measures are several existing state-of-the-art measures and
several novel OOD measures developed with novel class
detection and hierarchical class structure in mind. COOD
was extensively evaluated on three large-scale (500k+ im-
ages) biodiversity datasets in the context of anomaly and
novel class detection. We show that COOD outperforms
individual, including state-of-the-art, OOD measures by
a large margin in terms of TPR@1% FPR in the major-
ity of experiments, e.g., improving detecting ImageNet im-
ages (OOD) from 54.3% to 85.4% for the iNaturalist 2018
dataset. SHAP (feature contribution) analysis shows that
different individual OOD measures are essential for various
tasks, indicating that multiple OOD measures and combina-
tions are needed to generalize. Additionally, we show that

explicitly considering ID images that are incorrectly classi-
fied for the original (species) recognition task is important
for constructing high-performing OOD detection methods
and for practical applicability. The framework can easily
be extended or adapted to other tasks and media modali-
ties.

1. Introduction

In recent years, the application of deep learning for im-
age classification tasks has yielded remarkable accuracies
across various domains. Many of these high-accuracy clas-
sification models might become unreliable due to the lack of
knowledge of open and changing environments when used
in real-world applications [2, 24]. For instance, in species
recognition [3], when an image of a new species that the
classification model has not been trained to classify is en-
countered, it is better to reject it as “unknown” or out-of-
distribution (OOD) than to (mis)classify it into one of the
known classes [24]. OOD detection is even more critical in
fields such as medicine [38] and autonomous driving [10].
In interactive applications, such as mobile apps for species
recognition, the OOD system can help the user take better
pictures and avoid the submission of unusable input such
as selfies, landscapes, etc. In (semi-) automated computer
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vision applications, rejecting OOD inputs while rejecting a
minimum amount of in-distribution (ID) samples is crucial.

As OOD detection is increasingly used as a prerequisite
for open-world computer vision applications, there has been
a growing interest in this domain in recent years [1, 20, 28].
Several new OOD measures (for instance [21, 23, 31]) have
been explored and have led to state-of-the-art OOD detec-
tion methods. However, most of the OOD detection meth-
ods are benchmarked on a limited set of small datasets with
OOD datasets from an entirely different domain [27, 33].
More importantly, different OOD measures might have
properties which make them perform well on selected OOD
datasets and perform less well in other OOD scenarios [33].

While developing individual state-of-the-art measures is
worthwhile, in many cases, individual methods will have
particular strengths and weaknesses. Therefore, the combi-
nation of several well-performing methods could very well
outperform the individual methods as a weakness of one
method is canceled by the strength of another. Many exam-
ples from machine learning literature show that a combina-
tion of methods outperforms individual ones [12, 22].

Here, we introduce the Combined OOD (COOD) mea-
sure framework: a learned combination of existing and
novel individual OOD measures which combines the
strengths of OOD measures to overcome the limitations of
others. We show that COOD significantly outperforms the
best individual OOD measures in different OOD scenarios,
which test various levels of OOD detection difficulty – near,
intermediate (mid), and far OOD. We also introduce sev-
eral novel OOD measures that exploit the hierarchical class
structure and the discrepancy between linear and kNN pre-
dictions. Our method is supervised and requires external
datasets to train. Although a slight disadvantage compared
to methods that only use ID data, the use of OOD data has
proven popular [15] and has advantages such as making op-
erating point calibration easier.

In terms of testing our framework, we focus on OOD de-
tection tasks for the biodiversity domain due to the many
challenges they pose. Specifically, we focus on large-scale
datasets (500k+ images) where ID classes have a hierarchi-
cal structure. Biodiversity datasets have challenging prop-
erties such as high-class imbalance (long-tailed), where cer-
tain species (classes) are much more abundant or better rep-
resented in the data than most. Encountering novel classes
is common in biodiversity classification applications due
to different geographic distributions, incomplete databases,
and other factors. Due to the species’ fine-grained (visually
similar) nature, expert knowledge is required to label new
classes accurately. The limited data can make it harder for
neural networks to generalize well and could classify OOD
data into one of the long-tailed classes with high confidence.

To summarise, we make the following contributions: (1)
COOD – a novel framework that combines existing and

novel OOD measures. Extensive evaluation shows im-
proved OOD detection on three biodiversity datasets. (2)
Several novel OOD measures focused on hierarchical labels
and novel class detection (3) show that explicitly defining
how to deal with ID but incorrect predictions is important
for consistent analysis and application in practice. These
improvements allow a more robust implementation of clas-
sification models in practical settings: rejecting unusable
inputs and finding novel classes, such as rare species or rare
diseases, more reliably.

2. Data
Two sources of data were used in this paper: (1) Multi-
Source-Model (MSM): a large-scale dataset from field ob-
servations of organisms in Europe (2) the iNaturalist 2018
large scale fine-grained dataset [18]. The MSM model aims
to identify field observations, typically from mobile phones,
of organisms from Europe at large scale [29]. It consists of
a top-level model for broad classification and sub-models
for fine-grained classification of species. Additionally, spe-
cialised models were trained per source of data (Norway,
Sweden, Denmark, UK, rest of Europe). This structure of
the models and the scale of the dataset (33M images in to-
tal) allows us to do large-scale novel class detection. Exist-
ing trained models to classify taxa (species) in the datasets
were used for the experiments. Three datasets were defined
for the paper.

(1) The MSM top-level model categories field observa-
tions into 8 categories (plants, fungi, vertebrates, butterflies
& moths, flies, other insects, other arthropods, other inver-
tebrates) and has a top-1 accuracy of 93.7%. The dataset
consists of 507,904 images. For the OOD dataset we use
ImageNet [7] where we exclude images tagged as “organ-
ism” (OOD-far: ImageNet-Non-Organism; images outside
the domain of biodiversity, 28,801 images). To determine
the influence of domain overlap we used the cars from Ima-
geNet (OOD-far: ImageNet-Cars; 1,000 images) as a rela-
tively easy OOD dataset.

(2) The Norwegian vertebrates (birds, mammals, rep-
tiles, etc.) MSM sub-model classifies field observations
into 972 taxa (biological classes) occurring in Norway
and has a top-1 accuracy of 86.3%. The dataset consists
of 628,713 images. We use OOD-far: ImageNet-Non-
Organism for the OOD dataset. Two additional datasets
were used for novel class detection: (1) OOD-near: non-
Norwegian vertebrates (closely related in-domain classes;
1,123 images/novel classes) (2) OOD-mid: Norwegian non-
vertebrates (more distinct in-domain classes; 28,629 im-
ages/novel classes).

(3) iNaturalist 2018 [18] is a biodiversity dataset with
437,513 images for training and 24,426 images for vali-
dation. The dataset has 8,142 classes of fine-grained (vi-
sually similar) species spanning various taxonomic groups,
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including but not limited to plants, animals, fungi, and in-
sects. OOD-far: ImageNet-Non-Organism is used as the
OOD dataset.

3. Methods

3.1. OOD detection

Instead of aiming to develop a single state-of-the-art mea-
sure for performing OOD detection we present a framework
which combines multiple state-of-the-art OOD measures -
including several novel measures - into one Combined OOD
measure (“COOD”).

For every image a feature vector is computed by global
average pooling the output of the last convolutional block.
From the feature vector the logits were computed by multi-
plying with the classification weight matrix W and applying
the bias b (Table 6 for details). The linear probability vector
was computed by applying SoftMax. For all images the true
label is known.

A kNN model forms the basis for many of the OOD
measures. For every query point we calculate the k = 30
nearest neighbors (NN). The inner product was used as dis-
tance measure and PCA with 256 components was applied
as a pre-processing step. For the index we used Flat with
an inverted file structure (IVF256). The implementation by
FAISS was used [9]. The neighbors are samples from the
training set, and we have information about both the pre-
dictions and the true label. From the NN, we derive a kNN
class probability vector by counting the true classes among
the neighbors and normalising to 1.

When using hierarchical classes, such as biological taxa,
a measure can be defined of how conceptually different two
classes are by computing a distance between them. This
distance is defined as the weighted number of edges in the
shortest path between two class nodes in the hierarchical
tree (Figure 5). High class node (taxon) distances between
kNN and linear predictions indicate that their results are
completely different (e.g. one predicting a plant, the other a
bird) while low (non-zero) values indicate that the two pre-
dictions almost agree (e.g. confusing two species of bird
from the same taxonomical genus).

3.2. OOD Measures

Table 1 lists the 19 individual OOD measures that were used
in the method. Some of them are existing methods, includ-
ing state-of-the-art methods. Several of them are novel to
our knowledge. A few other are components of other mea-
sures (e.g. Avg. distance among neighbors) which might
contribute to OOD detection.

3.3. COOD: Supervised combination of individual
measures

The different OOD measures are combined into one com-
bined OOD score (COOD) (0 = ID, 1 = OOD) using a Ran-
domForest classifier. RandomForest is a popular method for
tabular data with good properties in terms of overfitting re-
sistance and limited sensitivity to class imbalance [17]. Us-
ing a classifier allows to exploit (non-linear) relationships
between OOD measures. The default setting of the scikit-
learn v0.24.2 implementation was used.

4. Experiments
4.1. Classification models

A standard neural network configuration was used where a
backbone computes a feature vector which is mapped into
prediction space using a dense classification layer - equiva-
lent to a applying a linear model. MSM models were trained
using an EfficientnetV2M [34] architecture, with a cosine
warmup strategy (startup phase of 2 epochs, a plateau of 4
epochs and a cosine phase of 30 epochs). Class balancing
was used during training to improve classification of mi-
nority classes. For the iNaturalist dataset, the InceptionV3
[32] model provided by the iNaturalist 2018 Competition
[4] was used, which is reported to have a top one accuracy
of 60.20% on the validation set.

4.2. Train/validation split

To compute many of the OOD measures (e.g. kNN-based
and FRE) a training set is needed. The training/validation
split of the original classification task was used for this
(90%/10% for MSM and for iNaturalist 2018 as published).
All subsequent OOD measure computation and experiments
are done on the original task’s validation subset. This sub-
set was split in training/validation (80%/20%) again, result-
ing in 8% of the original dataset used for training and 2%
for validation. Because no hyperparameter optimisation or
early stopping was involved in the OOD experiments we
report results on the OOD validation split directly.

4.3. Definition of reference

For each OOD detection experiment the ID and OOD ref-
erence needs to be defined. The OOD datasets are exter-
nal datasets which should be rejected by the OOD model.
The ID dataset is further refined into several categories (Ta-
ble 2). These extra ID categories are used to show that the
definition of positive and negative for both the OOD model
training and model evaluation is important and relevant for
practical applications.

4.4. Evaluation measures

True positives (TP) are defined as OOD images being cor-
rectly detected/rejected as OOD after applying a threshold
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OOD Measure Description Source

Avg. distance among
NN

If the average distance among NN is high the query point lies in a low-
density valley with NN scattered around it.

Component
from [37]

Avg. distance to NN If the average distance to the neighbors is high the query point lies far
away from training data

Component [37]

Distance to 1st NN The distance to the 1st neighbor is indicative how much a query feature
deviates from the training set.

[5]

Distance to k-th NN If the k-th neighbor is far away the query point is distinct from related
images, similar but potentially less sensitive to noise as previous

[31]

LDOF Local distance outlier factor = Avg. distance to NN / Avg. distance among
NN

[37]

Global FRE Reconstruction error of the feature after applying a PCA model trained
on all ID features

[23]

Class FRE Reconstruction error of the feature after applying a PCA model trained
on ID features for the predicted label of the query image

[23]

Max(linear) Maximum probability of the original linear prediction. In a calibrated
model low probabilities indicate uncertainty.

[14]

Max(knn) Idem as previous but computed from the kNN probability vector [36]
Max(linear-T-scaled) Probability computed using softmax with a temperature of 2.0 to reduce

over-confidence and improve OOD detection
[19]

Max(linear+kNN) The maximum probability of the average of linear and kNN probability
vectors, indicating agreement/disagreement (high/low values) between
the linear and kNN predictions.

Novel

TD(linear, kNN) Conceptual distance between linear and kNN predicted labels computed
using the taxon distance (Section 3.1).

Novel

Entropy of NN’s true
class

The variation among NN’s true class is calculated using entropy. Component [13]

EnWeDi(1st) Distance to 1st neighbor is weighted by 1 + Entropy of NN’s true class [13]
EnWeDi(average) Average distance to NN is weighted by 1 + Entropy of NN’s true class Novel, from [13]
Feature entropy For ID images feature values could be more concentrated relative to

OOD, indicating the presence of class-specific image features. Measured
by computing the entropy of the normalised feature vector.

[8]

Feature sum In OOD features there might be an absence of feature responses com-
pared to ID features, measured as the sum of the absolute feature values.

Novel

Feature magnitude OOD samples might have very low or very high feature values. Measured
by the length of the feature vector.

Component [35]

Avg. true probability
of NN

If many of the NN have low true probabilities for the true class, this im-
plies that similar images as the query image are hard to classify correctly.

Novel

Table 1. Overview of individual OOD measures. NN = nearest neighbors. FRE = feature reconstruction error [23], PCA = principal
component analysis. EnWeDi = Entropy Weighted Distance [13], TD = taxon distance (Section 3.1), mathematical definitions in Table 7

to the (C)OOD measure. False positives are defined as ID
samples being incorrectly rejected as OOD. The two main
evaluation measures are (1) TPR@1%FPR = % OOD de-
tected @ 1% ID rejected = % OOD detected @ 99% ID
accepted (2) AUROC = Area under the ROC curve. We
chose these definitions because we consider % ID rejected
(FPR) as the independent (control) variable in ROC analysis
and as most important for practical applications.

5. Results

5.1. Performance of individual OOD measures

Figure 1 shows the performance of individual OOD mea-
sures for the three datasets used. The measures are ranked
left to right by the average TPR@1%FPR across datasets.
The Norwegian vertebrates dataset has in general higher
scores than the MSM top-level model. Max(linear-T-
scaled) is the best performing individual measure, indicat-
ing the importance of temperature scaling for calibration
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ID-correct in-distribution (ID) image for which the
original classifier’s prediction is correct

ID-
incorrect-
high

ID image for which the original classi-
fier’s prediction is incorrect, Max(linear)
is >80% and the taxon distance (TD; Sec-
tion 3.1) between correct and incorrect
taxon is >4. TD >4 means correct and
incorrect taxa are not closely related, cor-
responding to the group of highly confi-
dent (very) wrong predictions [24]

ID-
incorrect

the remainder of the ID images for which
the original classifier’s prediction is in-
correct: Max(linear) <80% or TD <4

Table 2. Definition of ID-categories

and OOD detection [19]. Global FRE is the worst perform-
ing individual feature. Some of the measures have high
AUROC values but relatively low TPR@1%FPR (Feature
entropy and Max(kNN)).

Figure 1. Performance of individual OOD measures for different
datasets. The individual OOD measures are sorted by the average
TPR@1%FPR across datasets.

5.2. Performance of COOD

For these first analyses, the combined classifier was trained
with ID-correct vs rest (ID-incorrect-high, ID-incorrect,
OOD-*), preventing the classifier from getting confused
by noisy labels from ID-incorrect images when they would
have been included as negative (ID) cases. Figure 2a shows
the ROC analysis for the MSM top-level model. COOD
outperforms both the baseline (Max(linear)) and the best in-
dividual measure (Max(linear-T-scaled)) by a large margin.
When the ID-incorrect* images are excluded from the anal-
ysis (Section 4.3) COOD detects 85.8% of the OOD images.
Table 3 shows per ID/OOD category how many images are
rejected by COOD and by Max(linear). Note that where
Max(linear) detects 0% of the ID-incorrect-high category,
COOD detects 22.1%. Also note that COOD score statis-
tics (mean, stdev, and median) differ between different ID
categories.

Figure 2b shows ROC analysis for the Norwegian ver-
tebrates dataset. COOD again outperforms both baseline
Max(linear) and the best individual measure Max(linear-T-
scaled) by a large margin. When the ID-incorrect* images
are excluded from the analysis COOD detects 94.6% of the
OOD images. Table 3 shows per ID/OOD category how
many images are rejected by COOD and by Max(linear).
COOD has significantly higher OOD detection percentages
than the baseline for both anomaly detection (OOD-far) and
novel class detection (OOD-mid and OOD-near).

Figure 2c shows ROC analysis for the iNaturalist 2018
OOD model. COOD again outperforms both baseline
Max(linear) and the best individual measure Max(linear-T-
scaled) by a large margin, but performance is lower than
MSM top-level and Norwegian vertebrates overall. Ta-
ble 3 shows that for this model the ID-incorrect* category
is barely detected by any of the measures. This is a combi-
nation of the relatively low classifier accuracy and the effect
of reference (Section 4.3, Table 10), see also the discussion.

5.3. Effect of reference

Classification of taxa on the (sub)species level is a fine-
grained task, and it can be difficult to distinguish highly
related species. Often there are other reasons why images
are incorrectly classified such as poor image quality (out-of-
focus, subject too small, presence of other subjects, etc.).
In those ID-incorrect cases, it can be expected that their
COOD scores differ from ID-correct images. In this sec-
tion, we evaluate the explicit categorisation of ID-incorrect
images both on the definition of the OOD model and the
evaluation of the results. We defined 4 different settings
(Table 4) and evaluated its combinations, excluding the log-
ically incompatible (Classifier definition=Multi-class, Mul-
ticlass score=ID-correct) pair, giving 16 combinations in to-
tal.

Table 5 shows the results for selected combinations of
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(a) MSM top-level (b) Norwegian vertebrates (c) iNaturalist 2018

Figure 2. ROC analysis for OOD detection. The 1% FPR operating point is indicated by the vertical dot-dashed line. ROC curves are
shown for ID-correct vs rest (solid line) and for true OOD (ID-incorrect* excluded; dashed). At the 1% FPR operating point COOD
significantly outperforms both the best single individual measurement Max(linear-T-scaled) and the baseline Max(linear) for all datasets.
Note that the ROC plot is adapted to show the 0-5% FPR range.

Dataset, category Number
of images

% OOD de-
tected - COOD

% OOD detected -
Max(linear)

COOD - mean,
stdev, median

MSM top-level
ID-correct 10187 1 1 0.082, 0.162, 0.010
ID-incorrect-high: >80% & TD>4 276 22.5 0 0.514, 0.291, 0.550
ID-incorrect: <80% | TD<=4 411 30.2 32.8 0.664, 0.206, 0.690
OOD-far: ImageNet-Non-Organism 5792 85.8 19.3 0.908, 0.191, 0.990
OOD-far: ImageNet-Cars 199 97 12.1 0.980, 0.079, 1.000
Norwegian vertebrates
ID-correct 11153 1 1 0.107, 0.194, 0.020
ID-incorrect-high: >80% & TD>4 941 15.1 8.1 0.487, 0.309, 0.460
ID-incorrect: <80% | TD<=4 833 36.3 35.3 0.718, 0.266, 0.800
OOD-far: ImageNet-Non-Organism 5706 94.6 55.3 0.976, 0.073, 1.000
OOD-mid: Norwegian non-vertebrates 5617 91.3 57.7 0.965, 0.093, 1.000
OOD-near: Non-Norwegian vertebrates 230 65.7 28.7 0.820, 0.281, 0.960
iNaturalist 2018
ID-correct 2928 0.9† 1 0.285, 0.255, 0.210
ID-incorrect-high: >80% & TD>4 193 0 0 0.348, 0.216, 0.330
ID-incorrect: <80% | TD<=4 1787 11.9 12.2 0.714, 0.206, 0.750
OOD-far: ImageNet-Non-Organism 5738 83.3 54.3 0.965, 0.096, 1.000

Table 3. Results on validation set in terms of % OOD detected at the 1%FPR operating point. COOD outperforms Max(linear) for most of
the categories. † not exactly 1.0 due to the ROC curve being discrete

the different settings (see Section 9.3 for all results for all
datasets). The table is sorted by ascending TPR@1%FPR.
Next to the two main evaluation measures we also include %
ID-incorrect* rejected, indicating how many of the images
incorrectly classified by the original task were rejected.

The best performing combination of settings were all
with Exclude incorrect from ROC=yes indicating that the

ID-incorrect samples have overlap with OOD samples, and
considering them is important for setting a good operating
(decision) threshold. While using Classifier definition=ID
vs OOD results in higher TPR@1%FPR, the percentage of
ID-incorrect* rejected is lower. Therefore, we choose as
optimal setting (Classifier definition=Multi-class, Exclude
incorrect from ROC=yes, ROC truth=not(ID-correct), Mul-
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Classifier definition (1) Multi-class: use 4 categories: ID-correct, ID-incorrect-high, ID-incorrect, OOD*, (2) Cor-
rect vs rest: use 2 categories (ID-correct) vs (ID-incorrect-high, ID-incorrect, OOD*), (3) ID vs
OOD: 2 categories (ID-correct, ID-incorrect-high, ID-incorrect) vs (OOD*)

Exclude incorrect
from ROC

Exclude ID-incorrect-* when evaluating ROC Yes / No

ROC truth Reference when computing ROC (1) ID vs OOD: idem as classifier definition (2) not(ID-
correct): (ID-correct) vs (ID-incorrect-high, ID-incorrect, OOD*)

Multiclass score when Classifier definition=Multi-class how the combined OD measure is computed (1) ID-
correct: take 1 - probability of ID-correct (2) ID: take 1 – (sum of probabilities of ID-*)

Table 4. Definitions used to determine the influence of several settings on OOD model performance and practical applicability

Classifier defini-
tion

Exclude
incorrect
from ROC

ROC truth Multiclass
score

AUROC TPR
@1%FPR

% ID-
incorrect*
rejected

% ID-
incorrect*
rejected - min

ID-correct vs rest no ID vs OOD ID 98.2 78 9.8 9.8
ID-correct vs rest no not(ID-correct) ID 98.4 80.6 27.4 27.4
ID vs OOD no ID vs OOD ID 98.7 84.4 5.4 5.4
Multiclass no ID vs OOD ID 98.7 84.6 5.8 5.8
ID-correct vs rest yes not(ID-correct) ID 98.8 86.5 27.4 27.4
Multiclass yes not(ID-correct) ID-correct 98.8 87 26.6 7.3
Multiclass yes not(ID-correct) ID 98.9 87 8 8
ID vs OOD yes not(ID-correct) ID 98.9 87.4 7.6 7.6

Table 5. MSM top-level: selected results for combination of different settings

ticlass score=ID-correct). The multi-class classifier allows
not only to distinguish between ID and OD but also between
different OOD and ID-incorrect* categories. By reclassify-
ing rejected images based on their Multiclass OOD label
the % ID-incorrect* rejected can be changed from 26.6% to
7.3% (% ID-incorrect* rejected - min), depending on e.g.
the requirements of an (end-user) application.

5.4. SHAP analysis of OOD models

The Multi-class OOD classifiers were analysed using SHAP
analysis [30] to determine which individual OOD measures
are important contributors – alone or in the context of others
– to the COOD model.

Figure 3 shows the SHAP analysis of the MSM top-
level OOD model. For MSM top-level (Figure 3) the
two EnWeDi measures are most contributing, followed by
the Entropy of NN’s true class and Feature entropy. Fig-
ure 6b shows that for the Norwegian vertebrates dataset
Max(linear-T-scaled) is the most contributing, followed by
Max(linear+knn), Max(linear) and the two EnWeDi mea-
sures. Figure 6c shows that for iNaturalist 2018 Max(linear-
T-scaled) is the most contributing, followed by Max(linear)
and the Avg. true probability of NN. The SHAP plots of the
contributing measures per OOD class (Section 9.4.1) show

that different measures are important for each class. For ex-
ample, to detect ID-incorrect-high cases Average true prob-
ability of NN is an important contributor.

6. Discussion
Comparing the results of individual OOD measures and
their SHAP contributions shows that OOD measures that
individually perform relatively weak can still be important
features when used in a combination through a classifier.
These effects are well known from machine learning clas-
sification literature [22]. It shows that it could be a better
strategy to develop a diverse set of relatively weak OOD
measures which cancel out each other’s weaknesses than to
try to develop a single state-of-the-art OOD measure. The
presented framework for combining OOD measures is eas-
ily extendable with others, either existing ones or newly de-
veloped ones that tackle specific weaknesses of other mea-
sures.

A consideration when developing OOD measures is their
computation time. Many of the most contributing mea-
sures presented in this paper were based on a kNN model.
Although kNN models are relatively expensive, they are
very powerful, public efficient implementations are avail-
able, and they allow visual inspection of the neighbours
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Figure 3. SHAP analysis of MSM top-level showing OOD features
most contributing to COOD

which can give insight into (apparent) errors [26]. A benefit
of using a relatively large number of, possibly weak, indi-
vidual OOD measures is that it might be possible to omit
measures that have prohibitively large computation require-
ments (time and/or memory) during training and inference.
It should be well tested then that omitting a specific OOD
feature does not decrease the performance for a specific
OOD class.

In this work we present two novel OOD measures based
on the discrepancy between linear and kNN predictions.
According to SHAP analyses both are important contribut-
ing features for the novel class detection task. We hypoth-
esise that these features work because in the OOD part of
the feature space decision boundaries are not well defined
and the linear and kNN decision boundary disagree more
often. It is known that applying a non-linear classifier, such
as kNN, to the feature space of a deep neural network can
improve over the standard linear classification model [25]
indicating that the linear model contains different and some-
times sub-optimal information.

As far as we are aware previous literature does not ex-
plicitly deal with images that were incorrectly identified by
the original task’s – non-OOD – classifier. We found that
using an explicit categorisation is important both for train-
ing the combined OOD classifier and for interpreting the
results. For detecting ID-incorrect* cases, it is helpful if

(a) Norwegian vertebrates: suc-
cessful detection of closely related
novel class

(b) Norwegian vertebrates: suc-
cessful detection of highly confi-
dent wrong prediction

(c) MSM top-level: ’false positive’.
Could also be seen as low quality
image for species recognition

(d) MSM top-level: ’false nega-
tive’. Result of ImageNet’s label
being ’furniture’ and not ’organ-
ism’

Figure 4. Example images

the original classifier’s accuracy is high, but for less accu-
rate original models the method still works when the correct
reference settings are chosen. Many of the ID-incorrect im-
ages are incorrectly classified because they are poor quality
or deviate from other samples and could be considered as ID
anomalies and could share similarities with OOD anoma-
lies (out-of-domain; Figure 4c). In interactive applications,
it could be very useful to not only flag true OOD images to
the user but also ID images which the OOD model thinks
are incorrectly classified by the original model (Figure 4b).

ID-correct images can look similar to OOD (ImageNet)
images as well (Figure 4c). Vice-versa OOD images can
look like ID images (Figure 4d), in this case due to a label
inconsistency in ImageNet. While we could have further
refined the definition of OOD for ImageNet, label inconsis-
tencies and multi-subject images make this a problematic
endeavour. Choosing datasets that have no domain over-
lap with biodiversity (OOD-far: ImageNet-Cars) is an op-
tion, but leads to very high OOD performances. We pre-
fer the insight that can be gained from the examples of FP
and FN cases in harder problems (Section 9.5). We conjec-
ture that class overlap is a reason that the Norwegian ver-
tebrates model detects OOD-far: ImageNet-Non-Organism
images better than MSM top-level. The MSM top-level has
broad classes and relatively many images look similar to

8



ImageNet, while the Norwegian vertebrates model is spe-
cific for vertebrates and has less variation.

Extending the list of individual metrics with other ex-
isting and novel individual measures could further improve
performance, the same for trying different classifiers for the
COOD model (MLP, SVM, etc.). Ablation and optimisa-
tion studies to investigate the influence of parameters such
as k (used in kNN search), the effect of the kNN distance
metric, etc. are helpful and will be included in an extended
version of this work. We evaluated on biodiversity datasets,
but expect that a modified version will work well on other
datasets (e.g. non-hierarchical) too. Better dealing with
class/domain overlap in OOD evaluation is an important
topic raised by others too [6, 16]. Finally, we expect that
feature spaces with improved properties, as a result of alter-
native training methods such as supervised contrastive loss
[31], deeper features [26], or different neural architectures
such as Vision Transformers [11] can improve the perfor-
mance further.

7. Conclusion
Our paper presents three contributions to the topic of
anomaly and novel class (Figure 4a) detection: (1) a learned
combination of existing and novel individual OOD mea-
sures outperforms significantly the best individual OOD
measures (2) the discrepancy between linear and kNN pre-
dictions forms an important novel individual OOD measure
for novel class detection, specifically we exploit the hier-
archical class structure, (3) explicitly defining how to deal
with in-distribution but incorrect predictions is important
for consistent analysis and application in practice.
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COOD: Combined out-of-distribution detection using multiple measures for
anomaly & novel class detection in large-scale hierarchical classification

Supplementary Material

9. Appendix
9.1. Taxon distance

Figure 5. Taxon distance. Shows a part of a hierarchical class tree where taxa (biological classes) make up the nodes. The taxon distance
(TD) is defined as the sum of the number of weighted edges between two nodes in the tree (the first node in the example is Larus argentatus).
The weights are used to ensure that distances higher in the tree are larger, matching with the concept of broader groups. Per definition the
distance between to species in the same genus = 1.0, e.g. TD(Larus argentatus, Larus fuscus) = 1

1



9.2. Mathematical definitions

Name Definition Symbol

Data point xi from dataset D x

Feature f(x), (image) feature for x f

Logits g = W ∗ f + b, where W is the classification weight matrix, b the
classification bias, and gc is the linear output for the cth class

gc

Temperature scaled linear
class probability

pT (x, T ) =
egc(x)/T∑|C|
c=1 e

gc(x)/T
, also known as SoftMax, where C indi-

cates set of classes and T is the temperature scale factor

pT

Linear class probability pc(x) = pT (x, 1.0) p

Feature distance d(fi, fj), without loss of generality we assume low d means more
similar features

d

n-th nearest neighbor Nn(x), as found by kNN search,
per definition N1 = argminxj∈Xd(x, xj), assuming x /∈ X

Nn

True class T (x), gives true class for x T (x)

kNN class histogram hc,N (x) = Σk
n=11[T (Nn) = c], for all c ∈ C where 1[·] is the indi-

cator function
hN

kNN class probability vector 1
khN pN

Entropy H(p) = −
∑n

i=1 pi log2(pi), where p is an arbitrary probability vec-
tor

H

Table 6. Basic mathematical definitions
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OOD Measure Definition Symbol

Avg. distance among
NN

1
k(k−1)Σ

k
nΣ

k
n ̸=md(f(Nm), f(Nn)) D̄

Avg. distance to NN 1
kΣ

k
nd(f, f(Nn)) d̄

Distance to 1st NN d(f, f(N1)) d1

Distance to k-th NN d(f, f(Nk)) dk

LDOF
d̄

D̄

Global FRE ∥ f − τ̂(τ(f)) ∥2, where τ , is the forward PCA transformation, and τ̂ is
its Moore-Penrose pseudo-inverse

Class FRE ∥ f − τ̂c(τc(f)) ∥2 where τc is the PCA model for the class predicted by
p

Max(linear) max(p)

Max(knn) max(pN )

Max(linear-T-scaled) max(p2.0)

Max(linear+kNN) max((p+ pN )/2)

TD(linear, kNN) See Figure 5 TD

Entropy of NN’s true
class

H(pN ) HN

EnWeDi(1st) d1 · (1 +HN )

EnWeDi(average) d̄ · (1 +HN )

Feature entropy H(f/|f |), where |f | defines the number of elements in f

Feature sum Σa(fa), where a indexes the feature elements

Feature magnitude ∥ f ∥2

Avg. true probability
of NN

1

k
Σk

npc=T (Nn), where pc=T (Nn) is the true class probability for Nn

Table 7. Mathematical definitions of OOD measures. See Table 6 for basic definitions
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9.3. Effect of reference

Classifier
definition

Exclude
incor-
rect
from
ROC

ROC truth Multi-
class
score

AUROC TPR
@1%FPR

% ID-
incorrect*
rejected

% ID-
incorrect*
rejected
- min

OOD
vs ID-
incorrect*
accuracy

OOD
vs ID-
incorrect*
F1

ID-correct
vs rest

no ID vs
OOD

ID 98.2 78 9.8 9.8 - -

Multi-class no not(ID-
correct)

ID 97 78.9 8 8 - -

ID vs OOD no not(ID-
correct)

ID 96.9 79.6 7.7 7.7 - -

Multi-class no ID vs
OOD

ID-
correct

98.2 79.7 9.9 3.2 99.3 83.8

ID-correct
vs rest

no not(ID-
correct)

ID 98.4 80.6 27.4 27.4 - -

Multi-class no not(ID-
correct)

ID-
correct

98.4 81 26.6 7.3 98.4 85.8

ID vs OOD no ID vs
OOD

ID 98.7 84.4 5.4 5.4 - -

Multi-class no ID vs
OOD

ID 98.7 84.6 5.8 5.8 - -

ID-correct
vs rest

yes not(ID-
correct)

ID 98.8 86.5 27.4 27.4 - -

ID-correct
vs rest

yes ID vs
OOD

ID 98.8 86.5 27.4 27.4 - -

Multi-class yes not(ID-
correct)

ID-
correct

98.8 87 26.6 7.3 98.4 85.8

Multi-class yes ID vs
OOD

ID-
correct

98.8 87 26.6 7.3 98.4 85.8

Multi-class yes not(ID-
correct)

ID 98.9 87 8 8 - -

Multi-class yes ID vs
OOD

ID 98.9 87 8 8 - -

ID vs OOD yes not(ID-
correct)

ID 98.9 87.4 7.6 7.6 - -

ID vs OOD yes ID vs
OOD

ID 98.9 87.4 7.6 7.6 - -

Table 8. Effect of reference: MSM top-level
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Classifier
definition

Exclude
incor-
rect
from
ROC

ROC truth Multi-
class
score

AUROC TPR
@1%FPR

% ID-
incorrect*
rejected

% ID-
incorrect*
rejected
- min

OOD
vs ID-
incorrect*
accuracy

OOD
vs ID-
incorrect*
F1

Multi-class no ID vs
OOD

ID 98.8 67.4 5.6 5.6 - -

ID vs OOD no ID vs
OOD

ID 98.7 68 6 6 - -

Multi-class no ID vs
OOD

ID-
correct

98.4 70.6 5.4 4.9 98.5 53.7

ID-correct
vs rest

no ID vs
OOD

ID 98.3 70.6 6 6 - -

ID-correct
vs rest

no not(ID-
correct)

ID 98.4 83.6 24.2 24.2 - -

Multi-class no not(ID-
correct)

ID 97.5 83.7 20.7 20.7 - -

ID vs OOD no not(ID-
correct)

ID 97.3 84 20.7 20.7 - -

Multi-class no not(ID-
correct)

ID-
correct

98.4 84.1 24.1 21.5 96.2 54.4

ID-correct
vs rest

yes not(ID-
correct)

ID 99.5 92.6 24.2 24.2 - -

ID-correct
vs rest

yes ID vs
OOD

ID 99.5 92.6 24.2 24.2 - -

Multi-class yes not(ID-
correct)

ID-
correct

99.5 93.2 24.1 21.5 96.2 54.4

Multi-class yes ID vs
OOD

ID-
correct

99.5 93.2 24.1 21.5 96.2 54.4

Multi-class yes not(ID-
correct)

ID 99.6 93.3 20.7 20.7 - -

Multi-class yes ID vs
OOD

ID 99.6 93.3 20.7 20.7 - -

ID vs OOD yes not(ID-
correct)

ID 99.6 93.6 20.7 20.7 - -

ID vs OOD yes ID vs
OOD

ID 99.6 93.6 20.7 20.7 - -

Table 9. Effect of reference: MSM Norwegian vertebrates
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Classifier
definition

Exclude
incor-
rect
from
ROC

ROC truth Multi-
class
score

AUROC TPR
@1%FPR

% ID-
incorrect*
rejected

% ID-
incorrect*
rejected
- min

OOD
vs ID-
incorrect*
accuracy

OOD
vs ID-
incorrect*
F1

ID-correct
vs rest

no ID vs
OOD

ID 96.3 58.5 0 0 - -

Multi-class no ID vs
OOD

ID-
correct

96.4 58.6 0 0 - -

ID-correct
vs rest

no not(ID-
correct)

ID 95.5 66.7 10.7 10.7 - -

ID vs OOD no not(ID-
correct)

ID 92.3 67.3 7.8 7.8 - -

Multi-class no not(ID-
correct)

ID 92.9 68.2 8.8 8.8 - -

ID vs OOD no ID vs
OOD

ID 98 68.9 2 2 - -

Multi-class no not(ID-
correct)

ID-
correct

95.5 69.1 12.7 8.9 95.9 64.1

Multi-class no ID vs
OOD

ID 98 70.3 2.2 2.2 - -

ID-correct
vs rest

yes not(ID-
correct)

ID 98.9 85.4 10.7 10.7 - -

ID-correct
vs rest

yes ID vs
OOD

ID 98.9 85.4 10.7 10.7 - -

ID vs OOD yes not(ID-
correct)

ID 99.2 87.7 7.8 7.8 - -

ID vs OOD yes ID vs
OOD

ID 99.2 87.7 7.8 7.8 - -

Multi-class yes not(ID-
correct)

ID-
correct

98.8 87.9 12.7 8.9 95.9 64.1

Multi-class yes ID vs
OOD

ID-
correct

98.8 87.9 12.7 8.9 95.9 64.1

Multi-class yes not(ID-
correct)

ID 99.2 88.5 8.8 8.8 - -

Multi-class yes ID vs
OOD

ID 99.2 88.5 8.8 8.8 - -

Table 10. Effect of reference: : iNaturalist 2018
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9.4. SHAP analysis

(a) MSM top-level (b) Norwegian vertebrates

(c) iNaturalist 2018

Figure 6. SHAP analysis showing individual OOD measures most contributing to the COOD model
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9.4.1 SHAP analysis per output category

Figure 7. SHAP analysis per output category: MSM top-level
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Figure 7. SHAP analysis per output category: MSM top-level (cont.)
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Figure 8. SHAP analysis per output category: Norwegian vertebrates
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Figure 8. SHAP analysis per output category: Norwegian vertebrates (cont.)
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Figure 9. SHAP analysis per output category: iNaturalist 2018
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9.5. COOD score distribution and ROC analysis

Figure 10. COOD score distribution and ROC analysis for MSM top-level
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Figure 11. COOD score distribution and ROC analysis for Norwegian vertebrates
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Figure 12. COOD score distribution and ROC analysis for iNaturalist 2018
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9.6. Example images

(a) False positives (high COOD score for ID images)

(b) False negatives (low COOD score for OOD images)

Figure 13. Selected examples of MSM top-level
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(a) False positives (high COOD score for ID images)

(b) False negatives (low COOD score for OOD images)

Figure 14. Selected examples of Norwegian vertebrates
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9.7. Visual example licences

uid author date license image url

WRN:7439167 Ted van der Knaap 2014-09-18 CC BY-NC-ND waarneming.nl/photos/7439167
WRN:60131344 Jona Haasnoot 2022-10-24 CC BY-NC-ND waarneming.nl/photos/60131344
WRN:24936019 Theo Ruppert 2020-02-20 CC BY-NC-ND waarneming.nl/photos/24936019
WRN:40697509 KJ Hijlkema 2018-03-12 CC BY-NC-ND waarneming.nl/photos/40697509
WRN:4092017 Harm Alberts 2012-10-01 CC BY-NC-ND waarneming.nl/photos/4092017
WRN:3591189 Veerle De Saedeleer 2012-07-07 CC BY-NC-ND waarneming.nl/photos/3591189
WRN:5288335 Ruben Vernieuwe 2013-08-09 CC BY-NC-ND waarneming.nl/photos/5288335
WRN:34847585 Jeroen Hoek 2021-04-28 CC BY-NC-ND waarneming.nl/photos/34847585
AO:75324 Magne Flåten 2008-06-17 CC BY-SA artsobservasjoner.no/Image/75324
WRN:52462220 Cor de Jong 2022-06-20 CC BY-NC-ND waarneming.nl/photos/52462220

Table 11. MSM top-level: License information for visual examples

uid author date license image url

AO:301951 Magne Flåten 2012-02-09 CC BY-SA artsobservasjoner.no/Image/301951
AO:1408315 Karel Samyn 2020-07-13 CC BY-NC-SA artsobservasjoner.no/Image/1408315
WRN:1587318 Frans Rosmalen 2010-09-24 CC BY-NC-ND waarneming.nl/photos/1587318
WRN:8530324 Paul Schrijvershof 2015-03-22 CC BY-NC waarneming.nl/photos/8530324
WRN:41208597 Jos Cuppens 2021-08-14 CC BY-NC-ND waarneming.nl/photos/41208597
WRN:22944939 David Tempelman 2019-08-25 CC0 waarneming.nl/photos/22944939
WRN:20030511 Frens Westenbrink 2019-03-31 CC BY-NC-ND waarneming.nl/photos/20030511
AO:1283300 Johan Sirnes 2020-01-17 CC BY artsobservasjoner.no/Image/1283300
WRN:16133685 Hans Verdaat 2018-01-21 CC BY-NC-ND waarneming.nl/photos/16133685
AO:1714657 Eric Francois Roualet 2021-06-08 CC BY-NC-SA artsobservasjoner.no/Image/1714657
AO:395769 Kristoffer Bøhn 2014-01-03 CC BY-NC-SA artsobservasjoner.no/Image/395769
AO:1781605 Magne Flåten 2013-12-09 CC BY-SA artsobservasjoner.no/Image/1781605
AO:1533054 Ole Meldahl 2020-12-26 CC BY-SA artsobservasjoner.no/Image/1533054
AO:706319 Magne Flåten 2016-11-29 CC BY-SA artsobservasjoner.no/Image/706319
AO:786841 Anders Breili 2017-06-17 CC BY-NC-SA artsobservasjoner.no/Image/786841
AO:758827 Johan Sirnes 2017-04-29 CC BY artsobservasjoner.no/Image/758827

Table 12. Norwegian vertebrates: License information for visual examples
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