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Abstract—The belief propagation algorithm is one of the
preferred algorithms for a polar code based decoder that can
potentially achieve the lowest latency. Although belief prop-
agation polar code algorithms have the ability for a highly
parallelized implementation, they require more iterations to
achieve a comparable frame error rate and bit error rate
compared to the successive cancellation polar code algorithm.
The iterative nature of the belief propagation algorithms also
results in a higher computational complexity, i.e. O(N(2log2N-
1)) compared to the computational complexity O(Nlog2N) of
the successive cancellation decoder algorithm. In this paper we
propose several software implementations of belief propagation
polar code decoders using the computational complexity reduced
belief propagation algorithm and the enhanced loop-weakened
belief propagation algorithm, to increase the number of decoded
codes per second. Compared to a baseline belief propagation im-
plementation, our proposed radix-2 and radix-4 implementations
increase the throughput by approximately 15.4% and 22.04%
respectively. This gain is the result of a reduction of arithmetic
operations, i.e., additions, compares, and multiplications, which
is obtained without a loss in error-correcting performance.

Index Terms—Complexity, Belief Propagation, Polar Code,
Algorithm

I. INTRODUCTION

Wide spread use of codes that approach capacity, such as
low-density parity check (LDPC) [2] and Turbo Codes [1]
can be seen in applications such as data storage and wireless
communication, and the first provably capacity-achieving code
called polar code was introduced by Arikan [3]. Its provably
capacity-achieving error correction capability for any binary-
input discrete memoryless channel (B-DMC) [4] has given this
type of codes much attention in recent years. The industry’s
attention grew, when the 3rd generation partnership project
(3GPP) [5] had chosen polar codes as one of the encoding
schemes for the downlink and uplink control channels in 5th

generation wireless systems (5G).
For decoding polar codes, the low complexity decoding

algorithm successive cancellation (SC) was proposed, which
has a computational complexity O(N logN), where N is

the length of the codeword. With an increasing block length
N , the decoding latency and computational complexity is
becoming a bottleneck, therefore shorter block lengths are
preferred, especially for applications which are latency critical,
like vehicle-to-X communication (V2X), or applications with
constrained resources such as Internet of Things (IoT) devices.

In this paper, we focus on potential software implementation
improvements of the BP decoding algorithm in terms of arith-
metic complexity. In a similar fashion, the authors of [8] have
explored hardware implementation improvements. By using
simplified equations in the BP algorithm [9], a new algorithm
is obtained with a lower arithmetic complexity, i.e. with less
operations like additions and comparisons. The simplified
equations will use the enhanced loop-weakened method as
described in [10]. We present a radix-2, and radix-4 software
BP polar code decoder implementation that, compared to the
textbook BP algorithm for a P(1024, 512) polar code, has an
increase in the branch miss rate (BMR), yet decreases the
execution time and thus increases throughput in number of
decoded codes per second. Additionally, the FER and BER of
the proposed algorithm is not changed compared to the BP
algorithm.

The remainder of this paper is composed as follows. Sec-
tion II gives an overview of related work. In Section III a
general review of polar codes is given, and in particular the BP
decoding algorithm. Our proposed software implementation of
the computational complexity reduced BP decoding algorithm
is presented in Section V. In Section VI an evaluation of
the baseline and proposed software implementations is given.
Finally, in Section VII we state the conclusions.

II. RELATED WORK

Since the introduction of polar codes as a capacity achieving
code for any binary-input discrete memoryless channel (B-
DMC) [3], polar codes have garnered much interest in the
research community [14]–[16]. Although the proven capacity
achieving property is for infinite code length SC decoding,
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the error correcting performance is not assured for finite
length polar codes. The sequential decoding structure of the
SC algorithm is another hurdle to take, as it results in a
lower throughput for longer code lengths. The successive
cancellation list decoding algorithm [15] was proposed, to
reduce the error correcting performance degradation of the
successive cancellation algorithm. It explores multiple paths of
the decoding tree and chooses the best candidate as the decoder
output. This will increase the error correcting performance of
the decoder, but consequently also increases the computational
complexity of the decoder.

To increase the throughput of a polar code decoder, the BP
algorithm [11] can be used, which allows a highly parallel
execution. To improve the error correcting performance, a list
variant of the BP decoder is proposed in [17]. To reduce
the number of iterations, several early stopping criteria are
proposed in [18]–[20]. For increasing the throughput, several
architectural optimizations are proposed in [21]. Reducing the
memory requirement of the BP decoder is proposed in [22].
The number of memory operations are reduced by a stage
combined BP decoder as proposed in [13]. A vectorized BP
decoder is proposed in [23], to address the memory bottleneck.
A reduced computational complexity BP algorithm is proposed
in [9]. An increase in error correction rate as well as a decrease
in latency is proposed in [10]. Finally, a hardware-centric
version of the proposed software solution in this paper was
implemented and evaluated in [8].

III. PRELIMINARY

A. Polar codes

Polar codes, with abbreviated parameter vector P(N,K), on
any symmetric binary-input discrete memoryless channel (B-
DMC), like the binary symmetric channel (BSC), are designed
as a linear, and capacity achieving block code. Using the
definition in [3], they are represented by a parameter vector
(N,K,A, uAc) with N = 2n ∀n > 1, with codeword length
N , K information bits, the set of information bits A, and uAc

represents the set of predetermined (frozen) bit values, called
frozen bits. The encoding and decoding of the source vector
of a polar code consists of the following steps:

1) The source vector uN
1 = (u1, · · · , uN ) is encoded using:

xN
1 = uN

1 GN = uN
1 BNF⊗n, (1)

with generator matrix GN , permutation matrix BN ,
also known as the bit-reversal matrix, and F⊗n is the
Kronecker power of F defined as:

F⊗n = F ⊗ F⊗(n−1), (2)

with n = log2 N , and F =

[
1 0
1 1

]
.

2) xN
1 is sent using the constructed virtual channels WN

of the polar code, feeding the channel output yN1 =
(y1, y2, · · · , yN ) into the decoder.

3) An estimation ûN
1 is made using the polar codes A, uAc

and output of the channelyN1 .
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Fig. 1. (a) computational unit used in Belief propagation algorithm; (b) 
Length N = 4 factor graph used for polar codes.

B. Belief propagation polar decoding
A belief propagation polar code decoder is created, using

the factor graph based BP polar code algorithm, as described
in [11]. A 2-bits factor graph of a radix-2 BP polar code
decoder is shown in Fig. 1a. A 4-bits polar code decoder,
where each stage is constructed with N/2 computational units
(CUs), is shown in Fig. 1b. Every CU consist of four terminals,
as shown in Fig. 1a. The terminals are mapped to:

L
(m+1)
s,i = h

(
L
(m)
s+1,i, L

(m)
s+1,i+2n−s +R

(m)
s,i+2n−s

)
, (3)

L
(m+1)
s,i+2n−s = h

(
R

(m)
s,i , L

(m)
s+1,i

)
+ L

(m)
s+1,i+2n−s , (4)

R
(m+1)
s+1,i = h

(
R

(m)
s,i , L

(m)
s+1,i+2n−s +R

(m)
s,i+2n−s

)
, (5)

R
(m+1)
s+1,i+2n−s = h

(
R

(m)
s,i , L

(m)
s+1,i

)
+R

(m)
s,i+2n−s , (6)

with 1 ≤ m ≤ M , where M is the maximum number of
iterations, and the approximation of the min-sum function h
is:

h(v, w) ≈ 0.9 · φ(v) · φ(w) ·min(|v|, |w|), (7)

with φ(x) returns the sign of x.
The iterative process of the BP algorithm, uses the con-

structed factor graph to process messages. Two message types
are involved in decoding: left bound messages L and right
bound messages R. Each node’ message in the factor graph is
assigned an initial log likelihood ratio (LLR) value, depending
on its index.

The R messages on the left are assigned a value using (8).

R1,i =

{
0, if j ∈ A;
∞, if j ∈ Ac,

(8)

with Ac the set of predetermined bits and A the information
bits set.

The L messages on the right are assigned an LLR using
(9).

Ln+1,i = ln

(
Pr[yi | xi = 0]

Pr[yi | xi = 1]

)
. (9)

All other node messages are initially set to zero.
After M iterations, the decoder’s output ûN

1 is estimated
using threshold detection at the left most terminals using (10).

ûi =

{
0, if L1,i +R1,i ≥ 0;

1, otherwise.
(10)
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Fig. 2. Several size 12 cycles in a N = 8 polar code Tanner graph, 
indicating the girth of this graph. Check nodes are shown as squares, 
variable nodes as circles.
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Fig. 3. A length N = 4 Radix-4 polar code factor graph.

C. Girth of a graph

The girth of a graph is the length of the shortest cycle. In an
iterative algorithm like BP, up to the point where the iteration
reaches the graph’s girth, every variable node’s information
remains uncorrelated. The higher the girth of the BP algorithm
is, the better decoding performance the code has. In [12]
(and references in the publication), the proposed technique
is to guarantee a girth equal or larger then 12, as this girth
is considered desirable for any code constructions, like polar
codes.

In Fig.2, some of the shortest cycles in a polar code of
N = 8 are shown, which are of length 12 in this case. Due to
the recursive nature of the code construction, a polar code of
larger code length will also have a girth of 12.

D. Stage-Combined Belief Propagation Decoding

While the standard BP algorithm is using CUs of type
radix-2, a radix-4, stage-combined BP decoder was proposed
in [13]. The proposed radix-4 BP algorithm has two benefits,
without any performance degradation. First, decoder latency is
reduced by reducing the number of stages in the graph from
2 log2(N) − 1 to log2(N) − 1. Second, a radix-4 decoder is
more efficient at decoding larger codewords than a radix-2
decoder because the number of messages/operation is reduced
from N log2(N)− 1 to N log4(N)− 1.

In Fig.3 the proposed radix-4 factor graph is shown. The

terminals a through h are mapped to:

La = h(Le, h(Lg, Rb) + h(Rc, Lf )

+ h(Lh +Rd, h(Rc, Rb) + h(Lg, Lf ))), (11)
Lb = h(Lf , h(Lg, Rc) + Lh +Rd)

+ h(Le, h(Ra, Lg + h(Lh +Rd, Rc))), (12)
Lc = h(Lg, h(Lf , Rb) + Lh +Rd)

+ h(Le, h(Ra, Lf + h(Rb, Lh +Rd))), (13)
Ld = Lh + h(Lg, Rc) + h(Lf , Rb)

+ h(Le, h(Ra, h(Rc, Rb) + h(Lg, Lf ))), (14)

Re = h(Ra, h(Lg, Rb) + h(Rc, Lf )

+ h(Lh +Rd, h(Rc, Rb) + h(Lg, Lf ))), (15)
Rf = h(Rb, h(Lg, Rc) + Lh +Rd)

+ h(Ra, h(Le, Rc + h(Lh +Rd, Lg))), (16)
Rg = h(Rc, h(Lf , Rb) + Lh +Rd)

+ h(Ra, h(Le, Rb + h(Lf , Lh +Rd))), (17)
Rh = Rd + h(Lg, Rc) + h(Lf , Rb)

+ h(Ra, h(Le, h(Rc, Rb) + h(Lg, Lf ))). (18)

IV. BASIC IDEA

The output’s LLRs of the nodes in a polar code factor graph
are dictated by their input values and their position in the
factor graph [9], where the cycle-12 count is reduced. The BP
algorithm can also converge faster, hence reducing the number
of required iterations as described in [10].

In our proposal we implemented these proposed enhance-
ments for both radix-2 and radix-4 BP algorithm on an ARM
Cortex R4 processor.

V. PROPOSED BELIEF PROPAGATION ALGORITHMS

As a baseline, we created a radix-2 BP C implementation,
using (3)-(6), and an equal baseline C implementation for
a radix4 BP, using the (11)-(18), which are described in
section V-A.

For the comparison, we then implemented the computa-
tional complexity reduced BP algorithm [9], using the en-
hanced loop-weakened BP algorithm [10], for both the radix-
2 and radix-4 polar code decoders, which is described in
section V-B.

A. Radix-2 and radix-4 baseline implementations

The baseline implementation of the radix-2 BP decoder is
described in Alg. 1, and the baseline implementation of the
radix-4 BP decoder is described in Alg. 2, where in both
algorithms N is the code word length, and n = log2(N).
The ComputeLLR function is equal to (3)-(6) and (11)-(18)
for radix-2 and radix-4 respectively, where the scaling factor
of 0.9 in (7) is replaced by 0.9375. This value is often used
in hardware implementations and does not affect the decoding
performance in any significant way.

Algorithm 1: Baseline radix-2BP decoder
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1: Initialize Mem ▷ Message memory

2: while not Iterationmax do
3: for Stage ∈ 0, · · · , n− 1 do ▷ Compute right bound
4: for CU ∈ 0, · · · , N

2 − 1 do
5: Ra, Rb ←Mem(CU, Stage)
6: Lc, Ld ←Mem(CU, Stage+ 1)

7: Rc ← ComputeLLR(Ra, Rb, Ld) ▷ (5)
8: Rd ← ComputeLLR(Ra, Rb, Lc) ▷ (6)

9: Mem(CU, Stage+ 1)← Rc, Rd

10: end for
11: end for
12: for Stage ∈ n− 1, · · · , 1 do ▷ Compute left bound
13: for CU ∈ 0, · · · , N

2 − 1 do
14: Ra, Rb ←Mem(CU, Stage)
15: Lc, Ld ←Mem(CU, Stage+ 1)

16: La ← ComputeLLR(Rb, Lc, Ld) ▷ (3)
17: Lb ← ComputeLLR(Ra, Lc, Ld) ▷ (4)

18: Mem(CU, Stage)← La, Lb

19: end for
20: end for
21: for CU ∈ 0, · · · , N

2 − 1 do ▷ Compute final stage
22: Ra, Rb ←Mem(CU, Stage = 0)
23: Lc, Ld ←Mem(CU, Stage = 1)

24: La ← ComputeLLR(Rb, Lc, Ld) ▷ (3)
25: Lb ← ComputeLLR(Ra, Lc, Ld) ▷ (4)

26: Mem(CU, Stage = 0)← La, Lb

27: end for
28: end while

Algorithm 2: Baseline radix-4BP decoder
1: Initialize Mem ▷ Message memory

2: while not Iterationmax do
3: for Stage ∈ 0, · · · , n

2 − 1 do ▷ Compute right bound
4: for CU ∈ 0, · · · , N

4 − 1 do
5: Ra, Rb, Rc, Rd ←Mem(CU, Stage)
6: Le, Lf , Lg, Lh ←Mem(CU, Stage+ 1)

7: Re ← ComputeLLR(R∗, L∗) ▷ (15)
8: Rf ← ComputeLLR(R∗, L∗) ▷ (16)
9: Rg ← ComputeLLR(R∗, L∗) ▷ (17)

10: Rh ← ComputeLLR(R∗, L∗) ▷ (18)

11: Mem(CU, Stage+ 1)← Re, Rf , Rg, Rh

12: end for
13: end for
14: for Stage ∈ n

2 − 1, · · · , 1 do ▷ Compute left bound
15: for CU ∈ 0, · · · , N

4 − 1 do
16: Ra, Rb ←Mem(CU, Stage)

17: Lc, Ld ←Mem(CU, Stage+ 1)

18: La ← ComputeLLR(R∗, L∗) ▷ (11)
19: Lb ← ComputeLLR(R∗, L∗) ▷ (12)
20: Lc ← ComputeLLR(R∗, L∗) ▷ (13)
21: Ld ← ComputeLLR(R∗, L∗) ▷ (14)

22: Mem(CU, Stage)← La, Lb, Lc, Ld

23: end for
24: end for
25: for CU ∈ 0, · · · , N

4 − 1 do
26: Ra, Rb ←Mem(CU, Stage = 0)
27: Lc, Ld ←Mem(CU, Stage = 1)

28: La ← ComputeLLR(R∗, L∗) ▷ (11)
29: Lb ← ComputeLLR(R∗, L∗) ▷ (12)
30: Lc ← ComputeLLR(R∗, L∗) ▷ (13)
31: Ld ← ComputeLLR(R∗, L∗) ▷ (14)

32: Mem(CU, Stage = 0)← La, Lb, Lc, Ld

33: end for
34: end while

B. Proposed radix-2 and radix-4 implementations

In [9], it was shown that while performing BP decoding,
the input LLRs with the values 0 and +Umax (predefined
maximum LLR value) appear in combinations that result in
simplified decoding equations, which consist of addition and
the h-function of (7). If one of the variables of the h operation
is equal to 0, the result is also 0, so this operation can be
dropped. Since adding 0 does not change the result, the same
applies to this operation. If, however, one of the inputs of the
h or addition operation is equal to +Umax, then only the h
operation can be partially simplified, since the min(|x|, |y|)
part always returns the scaled version of the variable that is
not equal to +Umax, resulting in the removal of a compare
operation. The result of adding +Umax to a variable is not
predefined and therefore this operation cannot be dropped. It
is therefore preferable to find a condition where the input LLRs
is 0 as this may simplify the equations used during decoding
more efficiently as opposed to an input LLRs with a value of
+Umax.

Although only radix-2 BP decoding was used in [9], radix-4
BP decoding follows the same principle, as this property of BP
decoding is independent of the radix used. Nonetheless, these
simplifications will effect the radix-4 BP algorithm more than
the radix-2 BP algorithm, since the equations for the radix-4
algorithm are greater in number as in complexity. This can
potentially result in a bigger simplification of the radix-4 BP
algorithm, with the disadvantage that there are many more
combinations with specific input LLRs that can be skipped,
and thus has a huge optimization space.

To explore the optimization space, a Matlab implementation
was made of a radix-4 BP decoder. The frequency of occur-
rence was analyzed for any combination of input values 0,
+Umax or any other value for any CU in the signal to noise
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TABLE I. Frequency of input values of +Umax or 0 for all CUs in a 
P(1024, 512) radix-4 BP polar code decoder using 10000 random code 

words and 15 iterations.

Left-bound Right-bound
0 +Umax 0 +Umax

SNR (dB) 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.0
Le 5.3% 0.1% 0.8% 43.8% 12.9% 6.8% 0.8% 46.2%
Lf 5.3% 0.1% 0.7% 44.7% 12.9% 6.8% 0.7% 47.3%
Lg 5.2% 0.1% 0.8% 44.8% 12.8% 6.8% 0.8% 47.3%
Lh 5.3% 0.1% 0.7% 44.9% 12.8% 6.8% 0.8% 47.5%
Ra 25.5% 20.1% 16.8% 51.9% 29.5% 23.4% 20.1% 50.1%
Rb 39.3% 33.1% 14.0% 46.1% 44.4% 39.6% 17.5% 42.4%
Rc 35.8% 27.7% 14.7% 47.3% 40.9% 32.9% 18.2% 43.6%
Rd 51.5% 39.7% 12.1% 22.1% 55.5% 47.6% 15.2% 27.6%

TABLE II. Frequency of value 0 combinations for R inputs of all CUs 
for a P(1024, 512) radix-4 BP polar code decoder using 10000 random code 

words and 15 iterations.

Right-bound
0 +Umax

SNR (dB) 0.0 4.0 0.0 4.0
Ra 29.5% 23.4% 25.5% 20.1%

Ra ∩Rb 28.9% 23.4% 24.6% 20.0%
Ra ∩Rc 28.4% 23.3% 24.1% 20.0%
Ra ∩Rd 29.3% 23.4% 25.0% 20.1%

Ra ∩Rb ∩Rc 28.3% 47.6% 51.5% 39.7%
Rb ∩Rc ∩Rd 38.3% 32.7% 32.1% 27.5%

Ra ∩Rb ∩Rc ∩Rd 28.3% 23.3% 24.0% 20.0%

ratio (SNR) range between 0.0 and 4.0 dB. For the sake of
clarity, Table I only shows the result of the SNR 0.0 and 4.0.
The results of the other SNRs are in between these reported
extremes.

A condition for an efficient reduction, which also simplifies
the decoding equations as much as possible, must occur often.
When emphasis is placed on input values equal to 0, the results
in Table I indicate that this is less common for L inputs than
for R inputs. Combinations of multiple R entries equal to 0
simplify the decoding equations more than just a single R
that is 0. An analysis of these combinations is presented in
Table II. The Rb ∩ Rc ∩ Rd = 0 condition is on average the
most common of all SNRs tested, resulting in the following
equations:

La = h(Le, h(Lh, f(Lg, Lf ))), (19)
Lb = h(Lh, Lf ) + h(Le, h(Lg, Ra)), (20)
Lc = h(Lh, Lg) + h(Le, h(Lf , Ra)), (21)
Ld = Lh + h(Le, h(Ra, h(Lg, Lf ))), (22)
Re = h(Ra, h(Lh, h(Lg, Lf ))), (23)
Rf = h(Ra, h(Le, h(Lh, Lg))), (24)
Rg = h(Ra, h(Le, h(Lh, Lf ))), (25)
Rh = h(Ra, h(Le, h(Lg, Lf ))). (26)

The results also show that the condition Ra∩Rb∩Rc∩Rd = 0
is a preferable choice over Ra∩Rb∩Rc = 0, as the first highly
simplifies the decoding equations to the following:

La = f(Le, f(Lh, f(Lg, Lf ))), (27)
Lb = f(Lh, Lf ), (28)
Lc = f(Lh, Lg), (29)
Ld = Lh, (30)
Re = Rf = Rg = Rh = 0. (31)

Although the chosen condition Ra∩Rb∩Rc∩Rd = 0 occurs
less often (between 7.5% and 10% less), this condition is
preferred due to the highly simplified decoding equations.

A similar condition is used for the radix-2 BP decoding
equations. Here we use the condition Ra ∩ Rb = 0, which
results in the following simplified decoding equations:

La = f(Lc, Ld), (32)
Lb = Ld, (33)
Rc = Rd = 0. (34)

The chosen conditions and the simplified equations are then
incorporated into radix-2 and radix-4 BP decoders, where the
algorithms are similar to the baseline algorithms Alg. 1 and
Alg. 2 respectively.

VI. PERFORMANCE ANALYSIS AND COMPARISON

A. Methodology

An implementation of the proposed algorithm is validated
and compared against a textbook BP [11] baseline algorithm.
For the proposed algorithm, the simplified equations, as given
in Sec. V, are implemented. If the condition is true, the
accompanying simplified equation is executed and no further
actions are taken for this node.

To evaluate the performance of the baseline and proposed
decoders, a Monte Carlo simulation is performed with 10000
random vectors u which are encoded into P(1024, 512) polar
code codewords using a systematic polar code encoder. Before
transmission, the codewords are modulated with binary phase-
shift keying (BPSK) and transmitted over an additive white
Gaussian noise (AWGN) channel at different noise levels
(SNR).

For this evaluation, we are using Texas Instruments
HerculesTM RM46x LaunchPad Development Kit, fitted with
an ARM Cortex-R4 processor. It incorporates performance
counters, e.g. cycle count and branch misses, which have been
used to gather the results. As the compiler, we have used Texas
Instruments Code Composer Studio Version 12.1.0.00007 with
compiler version TI v20.2.7.LTS. The compiler settings are:

-mv7R4 --code_state=32 -me -O4
--float_support=VFPv3D16 -g
--opt_for_speed=5 --fp_mode=strict
--symdebug:dwarf_version=4 --c99
--printf_support=nofloat
--diag_warning=225 --diag_wrap=off
--display_error_number
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Fig. 4. BER and FER results for the radix-2 BP and proposed algorithms. A 
P(1024, 512) polar code is used.

--enum_type=packed --abi=eabi

The linker settings are the same as the compiler settings, but
with the addition of:

-z -m"BP.map" --heap_size=0xA000
--stack_size=0x800 --reread_libs
--diag_wrap=off --display_error_number
--warn_sections --rom_model
--xml_link_info="BP_linkInfo.xml"

Finally, the received signal is demodulated and the LLRs
are computed. The LLRs are processed by the baseline and
proposed BP decoders using 15 iterations. After decoding
the received signal, the estimated vector û is compared with
the sent vector u, which finally results in frame error rate
(FER) and bit error rate (BER) plots. At the same time several
other statistics are gathered, like average cycle count, average
number of branch misses and average code execution time.

B. Proposed algorithm compared to the baseline algorithm

In terms of BER and FER, we see in Fig. 4 and Fig. 5 that
the baseline and proposed radix-2 and radix-4 BP decoders
have equal performance.

When looking at the additional information gathered during
the decoding of the given SNR range, we see that the proposed
algorithms with the simplified equations are performing better
than the baseline algorithms. In Tab. III, a breakdown of the
cycle count, the number of branch misses, and the computed
execution time is given, showing that the proposed algorithms
perform approximately 15.4% and 22.04% faster for the radix-
2 and radix-4 decoders respectively. The increased decoding
throughput comes at the cost of approximately 2893% and
1277% more branch misses for the radix-2 and radix-4 de-
coders respectively, because branches are introduced in order
to choose between the simplified and the full equations.

VII. CONCLUSION AND FUTURE WORK

The preliminary results in [9], using the instruction set and
cycle timings of an ARM Cortex-R4 processor, had shown
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Fig. 5. BER and FER results for the radix-4 BP and proposed algorithms. A 
P(1024, 512) polar code is used.

TABLE III. Breakdown of the average cycle count, number of branch misses 
(B.M.) and execution time (E.T.) for the radix-2 and radix-4 baseline BP and 

the proposed algorithms.

Radix-2 Radix-4
Algorithm baseline proposed ∆ baseline proposed ∆
Iterations 15 0% 15 0%
Cycles (≈) 6317918 5345910 −15.4% 10024194 7814510 −22.04%
B.M. (≈) 310 9281 2893% 158 2175 1277%

E.T. (≈ms) 114.87 97.20 −15.4% 182.26 142.08 −22.04%

that a throughput gain of ≈ 13% could be expected for a
radix-2 BP decoder using the simplified equations. In this
paper we have implemented and compared radix-2 and radix-4
simplifications for the equations used in the belief propagation
(BP) algorithm. The proposed simplified algorithms increase
throughput by 15.4% and 22.04% for a radix-2 and radix-4 BP
decoder respectively compared to the baseline BP algorithm,
with equal bit and frame error rate.

As future work we would like to explore the net benefits of
the reduced number of operations on energy consumption on
the used processor and other processors.
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