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a b s t r a c t

We consider the computational complexity of spanning tree problems involving the
graphical function-index. This index was recently introduced by Li and Peng as a
unification of a long list of chemical and topological indices. We present a number
of unified approaches to determine the NP-completeness and APX -completeness
of maximum and minimum spanning tree problems involving this index. We give
many examples of well-studied topological indices for which the associated complexity
questions are covered by our results.
©2024 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Within the popular area of chemical graph theory, so-called graphical indices (also known as chemical indices or
opological indices) play an important role in capturing the structural properties of molecules. Our main focus here is on
raphical indices which are based on functions of the degrees of the vertices of the graphs that represent these molecules.
ere the degree of a vertex x of a graph G, denoted by dG(x), is the number of edges of G incident with x. Adopting the
erminology of Li and Peng [22], for a symmetric real function f (x, y), we use the unifying term graphical function-index of
graph G = (V , E) for the expression

∑
uv∈E f (dG(u), dG(v)). This definition captures many well-studied graphical indices,

ome of which we included with their commonly used name in Table 1.
The above term also captures graphical indices defined in [30,33] by a real function f (x) and the expression
u∈V f (dG(u)). This follows since

∑
uv∈E(

f (dG(u))
dG(u)

+
f (dG(v))
dG(v)

) =
∑

u∈V f (dG(u)) (i.e., by choosing f (x, y) = f (x)
x +

f (y)
y in the

bove expression).
A spanning subgraph of a graph G is obtained by only deleting edges of G. A spanning tree of G is a spanning subgraph

and a tree (i.e., a connected spanning subgraph without cycles). It is not difficult to figure out (and a folklore result) that
a spanning tree of a connected graph G (on n vertices) is a connected spanning subgraph of G with the minimum number
of (n− 1) edges. The following figure shows examples of a spanning subgraph and a spanning tree (see Fig. 1).

Spanning tree problems arise in many application areas. As one can see from the above, spanning trees offer the
cheapest way (in terms of the number of edges) to connect a number of objects (modelled by vertices of a graph) by
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Table 1
Some known graphical function-indices.

Name f (x, y) =

First Zagreb index x+ y
Second Zagreb index xy
First hyper-Zagreb index (x+ y)2

Second hyper-Zagreb index (xy)2

Modified first Zagreb index x−3 + y−3

Albertson index |x− y|
Extended index (x/y+ y/x)/2
Sigma index (x− y)2

Randić index 1/
√
xy

Reciprocal Randić index
√
xy

Sum-connectivity index 1/
√
x+ y

Reciprocal sum-connectivity index
√
x+ y

Harmonic index 2/(x+ y)
Atom-bond connectivity index

√
(x+ y− 2)/(xy)

Augmented Zagreb index x3y3/(x+ y− 2)3

Forgotten index x2 + y2

Inverse degree x−2 + y−2

Geometric-arithmetic index 2
√
xy/(x+ y)

Arithmetic-geometric index (x+ y)/2
√
xy

Inverse sum index xy/(x+ y)
First Gourava index x+ y+ xy
Second Gourava index (x+ y)xy
First hyper-Gourava index (x+ y+ xy)2

Second hyper-Gourava index x2y2(x+ y)2

Sum-connectivity Gourava index 1/
√
x+ y+ xy

Product-connectivity Gourava index
√
(x+ y)xy

Fig. 1. Some spanning subgraphs of G.

using links (modelled by edges in the graph) between pairs of objects. In more general situations, the links have associated
costs, lengths, etc. (modelled by assigning positive weights to the edges), and one is looking for a spanning tree which
minimizes the total weight of the edges. On the other hand, if the weights correspond to profits, gains, etc., one is looking
for a spanning tree which maximizes the total weight.

Such spanning tree problems turn up naturally in logistics and network applications, but also in less expected domains.
We give a few examples, starting with an application in cluster analysis. In [29], minimum spanning trees are used to find
gene clusters of various shapes. Similarly, in [6] the authors first construct a minimum spanning tree from local density
peaks, and then iteratively replace inconsistent edges until a predetermined number of clusters are obtained.

Our second example arises in remote sensing and space science. In a recent paper [25], the authors used minimum
spanning trees to connect peaks in radargrams, in order to analyse and interpret the subsurface structure of Mars.

For solving minimum spanning tree problems, there exist well-known polynomial algorithms, like Kruskal’s algorithm
and Prim’s algorithm, which can be found in any textbook on graph theory, including [3].

In the context of the graphical function-index
∑

uv∈E f (dG(u), dG(v)) we introduced before, it is natural to interpret
the weight of each edge uv ∈ E as f (dG(u), dG(v)), and consider the complexity of spanning tree problems within this
context. In particular, we aim to unify decision problems concerning lower and upper bounds on the value of the graphical
function-index of spanning trees, as well as the associated optimization problems, for different choices of the function
144
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f (x, y). For this reason, we assume that all graphs are finite, simple and connected. We refer to [3,13] for any undefined
notation and terminology related to graph theory and complexity, respectively.

2. Spanning tree problems and their complexity

In this section, we prove several NP-completeness results. In the first part, we focus on decision problems related
o the graphical function-index

∑
uv∈E f (dG(u), dG(v)). In the second part, we continue with some complexity results in

ase f (x, y) = f (x)
x +

f (y)
y for a real function f (x), in which case the above expression for the graphical function-index is

quivalent to
∑

u∈V f (dG(u)).

.1. Conditions on extremal trees

We use GFIf (G) to denote the graphical function-index of a graph G = (V , E), where GFIf (G) =
∑

uv∈E f (dG(u), dG(v)) for
suitable choice of the symmetric real function f (x, y). Since we deal with complexity questions, throughout the paper
e assume that the chosen function f (x, y) is computable in polynomial time, without explicitly mentioning it.
In the following, we are interested in the computational complexity of determining a spanning tree T of G that

aximizes (minimizes) GFIf (T ). For this purpose, we define the two associated decision problems as follows.

MAXST-GFIf
INSTANCE: A graph G, and a real number k.
QUESTION: Does G have a spanning tree T with GFIf (T ) ≥ k?

MINST-GFIf
INSTANCE: A graph G, and a real number k.
QUESTION: Does G have a spanning tree T with GFIf (T ) ≤ k?

Our first main contribution is that the above problems are NP-complete if paths are the unique extremal trees in
he following sense. Here a path on n vertices, denoted by Pn, is an alternating sequence of distinct vertices and edges
1e1v2e2 · · · vn−1en−1vn, such that the vertices vi−1 and vi are the ends of the edge ei−1 for all i ∈ {2, 3, . . . , n}.

heorem 1. Suppose Pn is the unique tree with the largest value of GFIf (T ) among all spanning trees T of G for every connected
raph G on n vertices. Then MAXST-GFIf is NP-complete.

heorem 2. Suppose Pn is the unique tree with the smallest value of GFIf (T ) among all spanning trees T of G for every
onnected graph G on n vertices. Then MINST-GFIf is NP-complete.

Since the proofs of both results are similar, we only present the proof of Theorem 1.

roof. MAXST-GFIf is clearly in NP , since it is straightforward to check in polynomial time whether GFIf (T ) ≥ k for
ny given spanning tree T of G and real number k. Note that here we implicitly use the assumption that GFIf (T ) can be
omputed in polynomial time.
To show the NP-completeness of MAXST-GFIf , we use a reduction from the well-known NP-complete problem

amilton path [13], which is defined as follows.

Hamilton path
INSTANCE: A graph G on n vertices.
QUESTION: Does G have a Hamilton path, i.e., a subgraph isomorphic to Pn?

Suppose that Pn is the unique tree with the largest value of GFIf (T ) among all spanning trees T of G for every connected
raph G on n vertices. Since k is not fixed but part of the instances for MAXST-GFIf , we can consider k = GFIf (Pn). This
nables us to show that an arbitrary graph G is a YES-instance of Hamilton path if and only if G is connected and G has
spanning tree T with GFIf (T ) ≥ GFIf (Pn).
Suppose first that G has a Hamilton path. Then G is connected and has a spanning tree T (i.e., the Hamilton path) such

hat GIFf (T ) ≥ GIFf (Pn) = k.
We prove the reverse statement by contradiction. Suppose that G does not have a Hamilton path. Let T be a spanning

ree of G such that GIFf (T ) ≥ k = GIFf (Pn). Since Pn is the unique tree with the largest value of GFIf (T ), we have
IF (T ) < GIF (P ), a contradiction. □
f f n
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We note here that NP-completeness results similar to the statements in Theorem 1 or Theorem 2 hold for other
opological indices, as long as these indices are computable in polynomial time and similar extremal results are known
r can be proved. We come back to this in Section 5.
We first continue with some complexity results on GFIf (G) in case f (x, y) = f (x)

x +
f (y)
y for a real function f (x). Recall that

his implies GFIf (G) =
∑

u∈V f (dG(u)). We focus on the cases for which we know that f (x) is strictly concave or convex.
n these cases we can prove that the above problems MAXST-GFIf and MINST-GFIf remain NP-complete when restricted
o cubic graphs, i.e., instance graphs in which all vertices have degree 3.

.2. Conditions on convexity or concavity

In this subsection, throughout we assume GFIf (G) =
∑

u∈V f (dG(u)) for a real function f (x) which is computable in
olynomial time. We consider the below special cases of MAXST-GFIf and MINST-GFIf for such GFIf (G) and restricted to
ubic graphs. Clearly, if we can show that these special cases c-MINST-GFIf and c-MAXST-GFIf are NP-complete, then
nder the same conditions MINST-GFIf and MAXST-GFIf are also NP-complete.

c-MAXST-GFIf
INSTANCE: A cubic graph G, and a real number k.
QUESTION: Does G have a spanning tree T with GFIf (T ) ≥ k?

c-MINST-GFIf
INSTANCE: A cubic graph G, and a real number k.
QUESTION: Does G have a spanning tree T with GFIf (T ) ≤ k?

Before presenting our results and proofs, we introduce some additional terminology, notation and a useful lemma.
Given a graph G = (V , E), we let D(G) = [da11 , da22 , . . . , datt ] denote the degree sequence of G, where d1 > d2 > · · · > dt ,
a1 + a2 + · · · + at = |V |, and G has exactly ai vertices with degree di. We will frequently use the following concept of
majorization [26]. Let A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn] be non-increasing integer sequences of length n. Then
majorizes B, denoted by A ⪰ B, if

k∑
i=1

ai ≥
k∑

i=1

bi for k = 1, 2, . . . , n− 1, and
n∑

i=1

ai =
n∑

i=1

bi.

f at least one of the above inequalities is strict, we use A ≻ B, and we say that A strictly majorizes B. A function f (x) is
trictly convex (resp., concave) on an interval [a, b] if for any two points x1 and x2 in [a, b] and any λ with 0 < λ < 1,
(λx1 + (1− λ)x2) < λf (x1)+ (1− λ)f (x2) (resp., f (λx1 + (1− λ)x2) > λf (x1)+ (1− λ)f (x2)).
The following known result is a key ingredient in our later considerations.

emma 1 ([19]). Let G and G′ be two graphs with the same number of vertices and edges, and with D(G) ⪰ D(G′). If f (x) is
strictly concave (resp., convex) function, then GFIf (G) ≤ GFIf (G′) (resp., GFIf (G) ≥ GFIf (G′)), with equality holding in the

nequality if and only if D(G) = D(G′).

A star on n vertices, denoted by K1,n−1, is a tree with n − 1 vertices of degree 1 and a single vertex of degree n − 1.
f T is any tree on n vertices different from Pn (resp., K1,n−1), then clearly D(T ) ≻ D(Pn) (resp., D(T ) ≺ D(K1,n−1)). So, we
mmediately obtain the following result as a consequence of Lemma 1.

emma 2. Let T be a tree on n vertices. If f is a strictly concave (resp., convex) function, then

a) GFIf (T ) ≤ GFIf (Pn) (resp., GFIf (T ) ≥ GFIf (Pn)), with equality holding in the inequality if and only if T ∼= Pn;

b) GFIf (T ) ≥ GFIf (K1,n−1) (resp., GFIf (T ) ≤ GFIf (K1,n−1)), with equality holding in the inequality if and only if T ∼= K1,n−1.

Note that the statements in Lemma 2(a) can be considered as special cases of the statements in Theorems 1 and 2, for
he case that GFIf (G) =

∑
u∈V f (dG(u)). The following results show the stronger versions of the latter case when restricted

o cubic graphs.

heorem 3. If f is a strictly concave function, then c-MINST-GFIf is NP-complete.

heorem 4. If f is a strictly convex function, then c-MAXST-GFI is NP-complete.
f
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We show examples of known topological indices satisfying these conditions of results in Section 5. We only prove
heorem 3; the counterpart for strictly convex functions can be proved in a similar way. We show how we can use the
ollowing problem 1,3-ST to prove Theorem 3.

1,3-ST
INSTANCE: A cubic graph G.
QUESTION: Does G have a spanning tree with no vertices of degree 2?

The problem 1,3-ST is known to be NP-complete by a result of Lemke [21].
We complete this section with our proof of Theorem 3.

roof of Theorem 3. We assume that f is a strictly concave function, and our aim is to prove that the problem
-MINST-GFIf is NP-complete.
The problem is clearly in NP .
Let T ∗ be a tree on n vertices with degree sequence [3

n−2
2 , 1

n+2
2 ] (where n is even by the well-known fact that the

egree-sum is twice the number of edges). We consider the problem c-MINST-GFIf for k = GFIf (T ∗). We prove the required
P-completeness by a reduction from the 1,3-ST problem. Let G be a cubic graph with vertex set {v1, v2, . . . , vn}. It is

ufficient to prove that G has a spanning tree with no vertices of degree 2 if and only if G has a spanning tree T with
FIf (T ) ≤ GFIf (T ∗).
Suppose first that T ′ is a spanning tree of G with no vertices of degree 2. So the degree of each vertex of T ′ is either 3 or

. Suppose there are a vertices with degree 3, and b vertices with degree 1. Because T ′ has n vertices, we have a+ b = n.
ince T ′ is a spanning tree on n vertices, the number of edges of T ′ is n−1. Since the sum of the degrees is equal to twice
he number of edges, we have 3a+ b = 2(n− 1). Thus a+ b = n and 3a+ b = 2(n− 1). By straightforward calculations,
e obtain a = n−2

2 and b = n+2
2 . So we have D(T ′) = [3

n−2
2 , 1

n+2
2 ] = D(T ∗). Thus GFIf (T ′) = GFIf (T ∗), and hence G has a

panning tree T = T ′ with GFIf (T ) ≤ GFIf (T ∗).
For the other implication, suppose that all spanning trees of G have at least one vertex of degree 2. Let T be an arbitrary

panning tree of G. We complete the proof by showing that GFIf (T ) > GFIf (T ∗).
Set D(T ) = [3a1 , 2a2 , 1a3 ] = [d1, d2, . . . , dn]. So we have a2 ≥ 1. Then a1 + a2 + a3 = n and 3a1 + 2a2 + a3 = 2(n− 1).

y straightforward calculations, we have a1 =
n−a2−2

2 and a3 =
n−a2+2

2 . Since a2 ≥ 1, we have a1 < n−2
2 and a3 < n+2

2 .
ecall that D(T ∗) = [3

n−2
2 , 1

n+2
2 ] = [d′1, d

′

2, . . . , d
′
n]. It is easy to check the validity of the following inequalities.

k∑
i=1

di = 3k =
k∑

i=1

d′i for k = 1, 2, . . . , a1;

k∑
i=1

di = 3a1 + 2(k− a1) < 3k =
k∑

i=1

d′i for k = a1 + 1, a1 + 2, . . . ,
n− 2
2
;

k∑
i=1

di = 2n− 2− 2t − a3 ≤ 2n− 2− t − a3 =
k∑

i=1

d′i

for t = n− a3 − k and k =
n
2
,
n
2
+ 1, . . . , a1 + a2;

k∑
i=1

di = 2n− 2− ℓ =

k∑
i=1

d′i

for ℓ = n− k and k = a1 + a2 + 1, a1 + a2 + 2, . . . , n.

ence D(T ∗) ≻ D(T ). Since we assume f is strictly concave, using Lemma 1, we conclude that GFIf (T ) > GFIf (T ∗). This
ompletes the proof of Theorem 3. □

. APX -completeness

In this and the next section, we continue to consider GFIf (G) =
∑

u∈V f (dG(u)) for a real function f (x) which is
omputable in polynomial time.
However, we will turn our attention to the optimization problems associated with the decision problems we considered

n the previous sections.
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Adopting the way optimization problems are presented in a classic paper by Johnson [18], we list the optimization
ersions of c-MINST-GFIf and c-MAXST-GFIf as follows.

c-MINST-GFIf
INSTANCE: A cubic graph G.
FEASIBLE SOLUTION: A spanning tree T of G.
OBJECTIVE FUNCTION: GFIf (T ).
OPT: Min.

c-MAXST-GFIf
INSTANCE: A cubic graph G.
FEASIBLE SOLUTION: A spanning tree T of G.
OBJECTIVE FUNCTION: GFIf (T ).
OPT: Max.

The following results deal with the APX -completeness of the above optimization versions of c-MINST-GFIf and c-
MAXST-GFIf . These results imply that there exists an ϵ > 0 such that no polynomial time (1+ϵ)-approximation algorithm
is possible for these two problems, unless P = NP [2].

Theorem 5. If f is a strictly concave function, then the optimization version of c-MINST-GFIf is APX -complete.

heorem 6. If f is a strictly convex function, then the optimization version of c-MAXST-GFIf is APX -complete.

We only prove Theorem 5, since the proof of Theorem 6 is similar. We first give some remarks. The above results
irectly imply that the optimization version of MINST-GFIf (resp., MAXST-GFIf ) is APX -complete if f is a strictly concave
resp., convex) function and GFIf (G) =

∑
u∈V f (dG(u)) for a real function f (x) which is computable in polynomial time.

There exists an extensive literature on proofs for APX -completeness of optimization problems by L-reductions (see,
.g., [1,8,27,28]). Given two optimization problems F and G, and a polynomial time transformation h from instances of F
o instances of G, we say that h is an L-reduction if there are positive constants α and β such that for every instance x of
,

1. optG(h(x)) ≤ α · optF (x);
2. for every feasible solution y of h(x) with objective value gG(h(x), y) = c2, we can in polynomial time find a solution

y′ of x with gF (x, y′) = c1 such that |optF (x)− c1| ≤ β · |optG(h(x))− c2|.

e next prove Theorem 5 by an L-reduction; the counterpart for strictly convex functions can be proved in a similar way.
or the full proof of Theorem 5 we also need to show that c-MINST-GFIf ∈ APX . This will be done in Section 4.

roof of Theorem 5. Next we prove the APX -hardness by an L-reduction from the optimization problem c-MLST to
-MINST-GFIf . The c-MLST problem is defined as follows; it is known to be APX -complete by a result due to Bonsma [4].

c-MLST
INSTANCE: A cubic graph G.
FEASIBLE SOLUTION: A spanning tree T of G.
OBJECTIVE FUNCTION: The number of leaves of T .
OPT: Max.

Let G = (V , E) be a cubic graph on n vertices. Let T1 and T2 be two spanning trees of G on distinct numbers of
leaves ℓ1 and ℓ2, respectively. It is easy to see that D(Ti) = [3ℓi−2, 2n+2−2ℓi , 1ℓi ] for i = 1, 2. Under the majorization
relation, any pair of degree sequences of two spanning trees of G are comparable. This implies either D(T1) ≻ D(T2)
or D(T1) ≺ D(T2). By straightforward calculations, ℓ1 > ℓ2 if and only if D(T1) ≻ D(T2). By Lemma 1, we have
GFIf (T1) < GFIf (T2) if and only if ℓ1 > ℓ2. This implies that a spanning tree T ∗ of G has the maximum number ℓ∗ of
leaves if and only if GFIf (T ∗) attains the minimum value among all spanning trees of G. Let T be a spanning tree of G with
GFIf (T ) = (ℓ− 2)f (3)+ (n+ 2− 2ℓ)f (2)+ ℓf (1). This implies that T has ℓ leaves. Since f (x) is strictly concave, we have⏐⏐⏐⏐ (ℓ∗ − 2)f (3)+ (n+ 2− 2ℓ∗)f (2)+ ℓ∗f (1)

ℓ∗

⏐⏐⏐⏐
≤

⏐⏐⏐⏐ℓ∗(f (3)− 2f (2)+ f (1))
ℓ∗

⏐⏐⏐⏐+ ⏐⏐⏐⏐ (n+ 2)f (2)
ℓ∗

⏐⏐⏐⏐+ ⏐⏐⏐⏐2f (3)ℓ∗

⏐⏐⏐⏐
≤ 2f (2)− f (3)− f (1)+

(n+ 2)|f (2)|
2

+ |f (3)|

≤ 2|f (3)| +
(n+ 6)|f (2)|

− f (1)

2
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and ⏐⏐⏐⏐ ℓ∗ − ℓ

(ℓ∗ − ℓ)f (3)− 2(ℓ∗ − ℓ)f (2)+ (ℓ∗ − ℓ)f (1)

⏐⏐⏐⏐
=

1
2f (2)− f (3)− f (1)

.

herefore,⏐⏐(ℓ∗ − 2)f (3)+ (n+ 2− 2ℓ∗)f (2)+ ℓ∗f (1)
⏐⏐ ≤ α · |ℓ∗|

nd

|ℓ∗ − ℓ| ≤ β ·
⏐⏐(ℓ∗ − ℓ)f (3)− 2(ℓ∗ − ℓ)f (2)+ (ℓ∗ − ℓ)f (1)

⏐⏐ ,
here α = 2|f (3)| + (n+6)|f (2)|

2 − f (1) and β = 1
2f (2)−f (3)−f (1) . □

. Approximation algorithm

In this section, we prove the following results for the optimization problems we introduced in the previous section.
s before, we only give the details for the minimization version.

heorem 7. If f is a strictly concave function, then c-MINST-GFIf ∈ APX .

heorem 8. If f is a strictly convex function, then c-MAXST-GFIf ∈ APX .

We prove Theorem 7 by showing that the next algorithm is a polynomial-time approximation algorithm for the
ptimization version of c-MINST-GFIf . An explanation of the notation and rationale of the algorithm follows.

Algorithm 1: Local Search-c-MINST-GFIf
Input: a cubic graph G.
Output: a spanning tree T ′ and GFIf (T ′).

1 Initialize a spanning tree T of G;
2 Ê ← E(G) \ E(T );
3 while Ê ̸= ∅ do
4 randomly choose an edge e ∈ Ê;
5 if e ∈ E∗(T + e) then
6 Ê ← Ê \ {e};
7 else
8 randomly choose an edge e∗ ∈ E∗(T + e);
9 T ← T + e− e∗;
0 Ê ← E(G) \ E(T );
1 end
2 end
3 Return T ′ ← T and GFIf (T ′)← GFIf (T ).

Let G = (V , E) be a graph. Define hG(w) = f (dG(w)) − f (dG(w) − 1) for w ∈ V (G). Suppose that e ∈ E(G) is an edge
oining vertices u ∈ V (G) and v ∈ V (G). Define ∆G(e) = hG(u)+ hG(v). Let ∆∗G = maxe∈E(G){∆G(e) | G− e is connected} and
∗(G) = {e | ∆G(e) = ∆∗G and G − e is connected}. Our local search algorithm is based on the following observation: if
∗
∈ E∗(G), then GFIf (G− e∗) attains the minimum value among all connected spanning subgraphs with |E(G)| − 1 edges.

f we add a new edge e to a tree T , then we obtain a unicyclic graph. Deleting an edge e∗ ∈ E∗(T + e) gives us a new tree
+ e− e∗ with GFIf (T + e− e∗) ≤ GFIf (T ). This is the rationale behind the algorithm Local Search-c-MINST-GFIf .
In what follows, we first give an example of the execution of the algorithm, referring to Fig. 2 and supposing that

f (x) =
√
x.

• Input: a cubic graph G and an initial spanning tree T of G.
• Ê = E(G) \ E(T ) = {e1, e5, e7, e8} (i.e., the set of deleted edges).
• Choose e8 ∈ Ê. Calculate ∆T+e8 (e3) =

√
3−
√
2+
√
3−
√
2 ≈ 0.635, ∆T+e8 (e2) = ∆T+e8 (e8) =

√
3−
√
2+
√
2−
√
1 ≈

0.732. Thus E∗(T + e8) = {e2, e8}.
• T → T (e ∈ E∗(T + e )) and Ê \ {e } = {e , e , e } → Ê (Ê ̸= ∅).
8 8 8 1 5 7
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Fig. 2. An example of the algorithm execution.

• Choose e5 ∈ Ê = {e1, e5, e7}. Calculate ∆T+e5 (e3) = ∆T+e5 (e5) =
√
3 −
√
2 +
√
2 −
√
1 ≈ 0.732, ∆T+e5 (e4) =√

2−
√
1+
√
2−
√
1 ≈ 0.828, ∆T+e5 (e9) =

√
3−
√
2+
√
3−
√
2 ≈ 0.635. Thus E∗(T + e5) = {e4}.

• T + e5 − e4 → T (e5 /∈ E∗(T + e5)) and E(G) \ E(T ) = {e1, e4, e7, e8} → Ê (Ê ̸= ∅).
• Choose e4 ∈ Ê. Calculate ∆T+e4 (e4) =

√
2−
√
1+
√
2−
√
1 ≈ 0.828, ∆T+e4 (e3) = ∆T+e4 (e5) =

√
3−
√
2+
√
2−
√
1 ≈

0.732, ∆T+e4 (e9) =
√
3−
√
2+
√
3−
√
2 ≈ 0.635. Thus E∗(T + e4) = {e4}.

• T → T (e4 ∈ E∗(T + e4)) and Ê \ {e4} = {e1, e7, e8} → Ê (Ê ̸= ∅).
• Choose e1 ∈ Ê. Calculate ∆T+e1 (e1) =

√
2−
√
1+
√
2−
√
1 ≈ 0.828, ∆T+e1 (e2) = ∆T+e1 (e6) =

√
3−
√
2+
√
2−
√
1 ≈

0.732, ∆T+e1 (e9) =
√
3−
√
2+
√
3−
√
2 ≈ 0.635. Thus E∗(T + e1) = {e1}.

• T → T (e1 ∈ E∗(T + e1)) and Ê \ {e1} = {e7, e8} → Ê (Ê ̸= ∅).
• Choose e8 ∈ Ê. Calculate ∆T+e8 (e8) =

√
2−
√
1+
√
2−
√
1 ≈ 0.828, ∆T+e8 (e2) = ∆T+e8 (e3) =

√
3−
√
2+
√
2−
√
1 ≈

0.732. Thus E∗(T + e8) = {e8}.
• T → T (e8 ∈ E∗(T + e8)) and Ê \ {e8} = {e7} → Ê (Ê ̸= ∅).
• Choose e7 ∈ Ê. Calculate ∆T+e7 (e7) =

√
2−
√
1+
√
2−
√
1 ≈ 0.828, ∆T+e7 (e5) = ∆T+e7 (e6) =

√
3−
√
2+
√
2−
√
1 ≈

0.732. Thus E∗(T + e7) = {e7}.
• T → T (e7 ∈ E∗(T + e7)) and Ê \ {e7} = ∅ → Ê.
• T → T ′ and GIFf (T ) = 2

√
3+ 4→ GIFf (T ′).

Before proving Theorem 7, we take on the job of analysing its running time on an input cubic graph G on n
vertices. We may call the breadth-first search algorithm of [7] to generate a spanning tree of G in running time O(n).
Let T be a spanning tree of G. Since G is a cubic graph, for any edge e ∈ E(G) \ E(T ), ∆∗T+e is one value in the set
{2f (3)−2f (2), f (3)− f (1), 2f (2)−2f (1)}. This implies that, for e∗ ∈ E∗(T+e), GIFf (T )−GIFf (T+e−e∗) ≥ 2f (2)− f (3)− f (1)
if GIFf (T+e−e∗) < GIFf (T ). By Lemma 2, we have GIFf (T ) ≤ (n−2)f (2)+2f (1). The number of iterations of the while-loop
s at most (n−2)f (2)+2f (1)

2f (2)−f (3)−f (1) , which is O(n). The running time of each iteration corresponds to the worst case of times we need
o optimize a spanning tree T . Since G is a cubic graph on n vertices, |E(G)| = 3n

2 . The worst case (all edges are local
ptima) is that we need to consider each edge in Ê = E(G) \ E(T ) (that is, consider all unicyclic graphs generated by
dding one edge). We have |Ê| = |E(G)| − (n− 1) = n

2 + 1. For each unicyclic graph, we need to calculate which edge in
the cycle is optimal. The worst case is that all edges we need to consider are in the cycle. In that case we need to calculate
this n times. Each iteration runs in time ( n2 + 1)× n = O(n2). Therefore, Local Search-c-MINST-GFIf runs in time O(n3),
here n is the number of vertices of the input cubic graph G.
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Let G be a graph. A vertex v of G is called a pendant vertex if and only if v has degree 1. Now we have all the ingredients
to prove Theorem 7.

Proof of Theorem 7. Let G be a cubic graph on n vertices. Let T ′ be a spanning tree of G obtained by using Algorithm 1.
Let a, b and c be the numbers of vertices of degree 3, 2 and 1 of T ′, respectively. We first state and prove two claims.

Claim 1. a < c.

Proof. Using the above notations, we have 3a+ c = 2n− 2b− 2 and a+ c = n− b. This implies a− c = −2 < 0. □

An M-path P is a maximal path with all internal vertices of degree 2 and ends of degrees 1 or 3. It follows that the
um of the numbers of internal vertices of M-paths of T ′ is b.

laim 2. b ≤ 4c.

roof. By Claim 1, the number of M-paths is less than 2c. If each M-path has at most two internal vertices, then the
laim holds. If all internal vertices of every M-path are adjacent to pendant vertices of T ′, then the claim holds as well.
This follows since each pendant vertex of T ′ is adjacent to at most two internal vertices, hence b ≤ 2c ≤ 4c.

Let P be an M-path. Suppose that there exist at least three internal vertices of P , with one internal vertex not adjacent
to any pendant vertex of T ′.

Suppose that u is an internal vertex of P and w is a vertex in G with dT ′ (w) = 2 satisfying e = uw ∈ E(G) \ E(T ′).
Set {v, x} = NP (u). Since T is a tree, e = wu must lie on the cycle of T ′+ e. There exists a path, different from wu, from
to u passing through v or x. This implies that v or x is on the cycle of T ′+e. Otherwise, dT (u) ≥ 3 is not an internal vertex

f P . Without loss of generality, we assume that v is on the cycle of T ′ + e. Set e′ = uv ∈ E(P). It follows that T ′ + e− e′
s a spanning tree of G. By straightforward calculations, we obtain the following expression for ∆T ′+e(e′)−∆T ′+e(e):

∆T ′+e(e′)−∆T ′+e(e)
=(f (dT ′+e(u))− f (dT ′+e(u)− 1)+ f (dT ′+e(v))− f (dT ′+e(v)− 1))
− (f (dT ′+e(u))− f (dT ′+e(u)− 1)+ f (dT ′+e(w))− f (dT ′+e(w)− 1))
=f (dT ′+e(v))− f (dT ′+e(v)− 1)− f (dT ′+e(w))+ f (dT ′+e(w)− 1)
=f (2)− f (1)− f (3)+ f (2)
=2f (2)− f (3)− f (1).

ecall that a real-valued function f on an interval is said to be strictly concave if f ((1− α)x+ αy) > (1− α)f (x)+ αf (y)
or any α ∈ (0, 1) and x ̸= y. Setting x = 3, y = 1 and α = 1

2 , we get f (2) > 1
2 f (3)+

1
2 f (1) (i.e., 2f (2)− f (3)− f (1) > 0). So

we obtain ∆T ′+e(e′) > ∆T ′+e(e). This implies GFIf (T ′ + e− e′) < GFIf (T ′), which contradicts that T ′ is a minimal spanning
tree of G constructed by Algorithm 1.

This completes the proof of Claim 2. □

Let T̂ be a spanning tree of G with the minimum graphical function-index. Let T ∗ be a tree with degree sequence
(T ∗) = [3

n−2
2 , 1

n+2
2 ]. From the proof of Theorem 3, we have GFIf (T ∗) ≤ GFIf (̂T ) and c ≤ n+2

2 . By Claims 1 and 2, we have
n = a+ b+ c < 6c. This implies a+ b < 5n

6 . Since G is a cubic graph, we have n ≥ 4. If f (3) ≥ f (2), then we get

GFIf (G)(T ′) = af (3)+ bf (2)+ cf (1)

≤ (a+ b)f (3)+ cf (1)

≤
5n
6

f (3)+
n+ 2
2

f (1)

≤
10
3

(
n− 2
2

f (3)+
n+ 2
2

f (1)
)

=
10
3

GFIf (T ∗)

≤
10
3

GFIf (̂T ).

f f (3) < f (2), then we get

GFIf (G)(T ′) = af (3)+ bf (2)+ cf (1)

≤
5n

f (2)+
n+ 2

f (1)

6 2
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Table 2
Some topological indices and their definition.

Name Expression

Balaban index J(G) = |E(G)|
µ+1

∑
uv∈E(G)

1√
δG(u)δG(v)

Degree-based entropy Ik(G) = −
∑

u∈V (G)

dG(u)k∑
v∈V (G)

dG(v)k
log2

(
dG(u)k∑

v∈V (G)
dG(v)k

)
First degree-based entropy I1(G) = −

∑
u∈V (G)

dG(u)
2|E(G)| log2

(
dG(u)
2|E(G)

)
Energy EN(G) =

∑n
i=1 |λi|

Estrada index EE(G) =
∑n

i=1 e
λi

First Zagreb index M1(G) =
∑

v∈V (G)
dG(v)2

General first Zagreb index Mα
1 (G) =

∑
v∈V (G)

dG(v)α

General Randić index Rα(G) =
∑

uv∈E(G)
(dG(u)dG(v))α

Geometric-arithmetic index GA(G) =
∑

uv∈E(G)

2
√

dG(u)dG(v)
dG(u)+dG(v)

Harmonic index H(G) =
∑

uv∈E(G)

2
dG(u)+dG(v)

Hosoya index Z(G) =
∑
k≥0

m(G, k)

Hyper-Wiener index WW (G) = 1
2

( ∑
u,v∈V (G)

dG(u, v)+
∑

u,v∈V (G)
d2G(u, v)

)
Merrifield–Simmons index σ (G) =

∑
k≥0

i(G, k)

Randić index R(G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

Second Zagreb index M2(G) =
∑

uv∈E(G)
dG(u)dG(v)

Sum-connectivity index χ (G) =
∑

uv∈E(G)

1√
dG(u)dG(v)

Wiener index W (G) =
∑

{u,v}⊆V (G)
dG(u, v)

≤
10f (2)
3f (3)

(
n− 2
2

f (3)+
n+ 2
2

f (1)
)

=
10f (2)
3f (3)

GFIf (T ∗)

≤
10f (2)
3f (3)

GFIf (̂T ).

It follows that GFIf (G)(T ′) ≤ γ · GFIf (̂T ) in which γ = max{ 103 ,
10f (2)
3f (3) }. □

5. Concluding remarks

To complete the paper, we reflect on an earlier remark by listing some examples of well-studied topological indices in
Table 2 that do not fall under our general description, but for which similar complexity results hold. Following the table,
we gathered the known associated extremal results from literature in Theorem 9. The consequences of these extremal
results for the complexity of our studied decision and optimization problems are summarized in two corollaries.

For a better understanding of the expressions of the topological indices that are listed in the table, we introduce some
additional notation, without going into the details.

Let G be a graph. As usual, with dG(u, v) we denote the distance between two vertices u and v in G, assuming that G is
connected. Under the same assumption, we use δG(u) to denote the distance sum of a vertex u ∈ V (G) to all other vertices
in G. In the table, µ = |E(G)|−|V (G)|+1 is used for the cyclomatic number, and λ1, λ2, . . . , λ|V (G)| indicate the eigenvalues
of the adjacency matrix of G. Furthermore, α is used to indicate a real number, k is an integer, and m(G, k) denotes the
number of distinct matchings of G consisting of k edges. So, by definition, m(G, 0) = 1 and m(G, 1) = |E(G)|. Finally, in
the table i(G, k) denotes the number of distinct k-element independent vertex sets of G. So, by definition, i(G, 0) = 1 and
i(G, 1) = |V (G)|.

Below we present the known extremal results with respect to the listed topological indices, together with their sources.
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Theorem 9. Among trees on n vertices, Pn is the unique extremal tree with the minimum Balaban index [10,11], the maximum
degree-based graph entropy for k > 0 [17], the maximum energy [23], the minimum Estrada index [9], the minimum general
first Zagreb index Mα

1 (G) for α < 0 or α > 1 [24], the maximum general first Zagreb index Mα
1 (G) for 0 < α < 1 [24], the

minimum general Randić index Rα(G) for 0 < α ≤ 1 [16], the maximum general Randić Rα(G) for α < 0 [15], the maximum
eometrical–arithmetic index [31], the maximum harmonic index for n ≥ 4 [34], the maximum Hosoya index [32], the maximum
yper-Wiener index [14], the minimum Merrifield–Simmons index [32], the minimum second Zagreb index [20], the maximum
um-connectivity index [5], and the maximum Wiener index [12].

The above extremal results have the following consequences. In the first corollary, the decision version of the
aximization problem for a specific topological index TI(G) is the problem of deciding whether G has a spanning tree
with TI(T ) ≥ k, for an arbitrary graph G and real number k. The decision versions of the minimization problems are
efined analogously.

orollary 1. The decision version of the maximization problem is NP-complete for the following topological indices: the
egree-based entropy for k > 0, the energy, the general first Zagreb index Mα

1 (G) for 0 < α ≤ 1, the general Randić index Rα

or α < 0, the harmonic index, the Hosoya index, the hyper-Wiener index, the sum-connectivity index, and the Wiener index.
The decision version of the minimization problem is NP-complete for the following topological indices: the Balaban index,

he Estrada index, the general first Zagreb index Zα
1 (G) for α < 0 or α > 1, the general Randić index Rα(G) for 0 < α ≤ 1, the

errifield–Simmons index, and the second Zagreb index.

The general first Zagreb index Mα
1 (resp., the first degree-based entropy I1) corresponds to f (x) = xα (resp., f (x) =

x
2|E(G)| log2(

2|E(G)|
x )). We immediately obtain that f (x) regarding Mα

1 is strictly concave for 1 < α < 1, and strictly convex
for α < 0 or α > 1; f (x) regarding I1 is strictly concave. By applying Theorems 3, 4, 5 and 6, we obtain the following
result.

Corollary 2. The maximization problem is NP-complete and APX -complete for the general first Zagreb index Mα
1 for α < 0

or α > 1.
The minimization problem is NP-complete and APX -complete for the following indices: the general first Zagreb index Mα

1
for 0 < α < 1, and the first degree-based entropy I1.
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