
Attack Time Analysis in Dynamic Attack
Trees via Integer Linear Programming
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Abstract. Attack trees (ATs) are an important tool in security analy-
sis, and an important part of AT analysis is computing metrics. However,
metric computation is NP-complete in general. In this paper, we showcase
the use of mixed integer linear programming (MILP) as a tool for quan-
titative analysis. Specifically, we use MILP to solve the open problem of
calculating the min time metric of dynamic ATs, i.e., the minimal time to
attack a system. We also present two other tools to further improve our
MILP method: First, we show how the computation can be sped up by
identifying the modules of an AT, i.e. subtrees connected to the rest of the
AT via only one node. Second, we define a general semantics for dynamic
ATs that significantly relaxes the restrictions on attack trees compared to
earlier work, allowing us to apply our methods to a wide variety of ATs.
Experiments on a synthetic testing set of large ATs verify that both the
integer linear programming approach and modular analysis considerably
decrease the computation time of attack time analysis.

Keywords: Attack trees · Quantitative analysis · Optimization ·
Mixed integer linear programming

1 Introduction

↓

OR AND

SAND BAS

(Dynamic) Attack Trees. Attack trees (ATs) are a promi-
nent methodology in security analysis. They facilitate secu-
rity specialists in identifying, documenting, analyzing and
prioritizing (cyber) risks. An AT is a hierarchical diagram
that describes a system’s vulnerabilities to an adversary’s
attacks. Despite their name, ATs are rooted directed acyclic
graphs. Roots of ATs represent the adversary’s goal, while the
leaves represent basic attack steps (BAS) undertaken by the adversary. Each inter-
nal root is labeled with a gate, determining how its activation depends on that of
its children. Standard ATs (SATs) feature only OR and AND gates, but many exten-
sions have been introduced to describe more elaborate attack scenarios [16]. One
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of the most prominent extensions are dynamic ATs (DATs) [14]. DATs introduce
a SAND (sequential AND) gate, which is activated only when its children are acti-
vated sequentially in the correct order. By contrast, an AND-node’s children can
be activated in parallel. An example is given in Fig. 1.

Fig. 1. A DAT for a bank rob-
bery [4]. To rob a bank, attack-
ers must break in, open the safe,
and escape (in that order). The
safe is opened by cutting it open,
or by unlocking via obtaining the
key and combination.

Quantitative Analysis. Quantitative analy-
sis aims at computing AT metrics. Such met-
rics formalize how well a system performs in
terms of security, and are essential when com-
paring alternatives or making trade-offs. Many
such metrics exist, such as the minimal cost,
minimal required skill, or maximal damage
of a successful attack. This paper focuses on
min time: the minimal time the adversary
needs to perform a successful attack, given
the duration of each BAS. This is impor-
tant, since attack success crucially depends on
time: attacks that take too long are not viable.
Insight in timing behaviors of attacks is there-
fore a key to devising effective countermea-
sures. For instance, a security operations centre
is interested in the time difference between the
fastest viable attack and its average response
time [1]. Min time is especially relevant in
the context of DATs: On many metrics, such
as cost/probability/skill, SAND and AND gates
behave identically. Thus, to compute those metrics, algorithms for SATs immedi-
ately generalize to DATs. It is in the timing behavior that the difference between
SAND and AND manifests itself, so that novel computation algorithms are needed.

↓ ↓

32 4

Existing Algorithms for min time. The naive approach
to calculating min time is to list all attacks that reach the
root, and to find the one that takes the least time; clearly
this is computationally prohibitive for larger ATs. A tree-
shaped DAT can be computed via a bottom-up (BU) algo-
rithm [14,23]. This algorithm works for general attributes
(e.g. cost, probability, time), by using appropriate operators
at each gate. For DAG-shaped ATs, the BU algorithm does not always work,
because the values in different branches are no longer independent. For SATs
this is not a problem because the relevant operators are idempotent [17]. In
the DAT above, however, the BU algorithm of [14] calculates min time as
max(2 + 3, 3 + 4) = 7. However, the only successful attack is the one that acti-
vates the three BAS sequentially, and so min time equals 2 + 3 + 4 = 9. Thus to
find min time for DAG-shaped DATs new approaches are needed; in [5], efficient
computation for DAG-shaped DATs is left as an open problem.
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Integer Linear Programming. In this paper, we present a novel method to
calculate min time for general DATs based on MILP. We translate calculating
min time into a real-valued optimization problem, with a set of nonlinear con-
straints. We rewrite these into linear constraints by introducing auxiliary integer
variables at each gate; for SAND-gates this is nontrivial and requires a careful
analysis of the semantics, beyond the current literature (see below). Since dedi-
cated solvers exist for MILP, translating attack time analysis into MILP speeds
up computation time considerably.

Modular Analysis. To improve performance, we combine MILP with modular
analysis [9]: we identify modules in a DAT, i.e., subDATs whose only connections
to the rest of the DAT go via their root. We prove that min time can be computed
by analyzing the modules separately; this requires a detailed comparison of the
attacks on the larger DAT to the attacks on its modules. If a module is tree-
shaped or static, then we can deploy the bottom-up algorithm to further decrease
computation time. We integrate these modifications into our MILP algorithm.

Generalized Semantics. Another point we settle in this paper are general-
ized semantics for DATs. As SAND-gates require their children to be executed
consecutively, different branches in the DAT may impose conflicting restrictions
on the execution orders. To rule out these conflicts, [5] imposed well-formedness
criteria at the cost of ruling out some satisfiable DATs. Furthermore, the corre-
sponding attack definition was overly restrictive, with some fastest attacks not
being recognized. This leads to an overestimation of min time. In this work we
extend the definition of a (successful) attack so min time is correctly defined.
This new definition applies to all DATs, not just the well-formed ones.

Experimental Validation. For confidentiality reasons industrial DATs are
typically not disclosed to the general public [7,26]. Therefore, we create a test-
ing suite of 2400 synthetic DATs, obtained by combining smaller DATs from
the literature via standard DAT composition methods, and we compare the per-
formance of four methods (modular versus nonmodular and enumerative versus
MILP). The experiments show that on larger DATs MILP outperforms enumer-
ative, and modular outperforms nonmodular. The code for the experiments, the
generated DATs and the experimental results are available in [22], and a version
with proofs is available at [21].

Contributions. Summarized our main contributions are:

1. A generalization of the poset semantics of [5] that significantly relaxes the
syntactic constraints on the use of SAND-gates.

2. A novel algorithm to calculate min time for general DATs based on Mixed
Integer Linear Programming.

3. A modularization approach that yields significant speed ups by separately
handling fragments of the DAT that are static or tree-shaped.

4. Extensive experimental validation to evaluate the performance of the algo-
rithms.
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2 Related Work

Dynamic ATs were first formally defined in [14], with series-parallel graphs
semantics. These assume that each node must be activated separately for each of
its parents. Effectively, this makes any DAT tree-shaped, which limits the range
of scenarios that can be modeled.

Poset-semantics for DATs are used in [5]; here each node can be activated
only once, allowing more scenarios to be modeled. The calculation of time-related
metrics such as min time on DAG-shaped DATs is left as an open problem.

In [2,3,18,19,31] DATs are modeled as priced-timed automata. This allows
for a detailed analysis, including min time calculation, by activating nodes from
the root either in parallel or sequentially, depending on gate type. However,
this approach does not consider satisfiability; hence the min time found via
this method can correspond to a non-existing attack. As such, this method only
calculates a lower bound to the actual min time.

Cyber security risks are also analyzed via time-to-compromise [24]. This
assigns an (exponential) probability distribution to the failure time of each
component, from which one finds the system failure pdf. This approach can
be extended to consider different attack scenarios [28]. The current paper’s DAT
approach allows for a more systematic way of studying different attack scenarios,
but we do not consider probabilistic data. Another way to incorporate stochas-
tics is to consider Bayesian fault trees [12,25], in which a node’s activation
depends probabilistically on that of its children. This allows for more detailed
modelling, but analysis is considerably more complicated: instead of a single min
time metric, there is a Pareto front of attack time and attack success probability.
Incorporating probability in these manners would be interesting for future work.

Time analysis of DATs falls into the wider framework of quantitative anal-
ysis on ATs. Existing approaches either focus on a single metric [4,6,7] or they
develop methods that apply to general classes of metrics [5,17,23]. The latter
case typically use algebraic structures like semirings, defining the metric in terms
of operators which are assumed to have certain properties.

3 Dynamic Attack Trees

This section reviews the definition of DATs, and develops their semantics and the
min time metric. The notation introduced throughout the paper is summarized
in Table 1. The following definition of a DAT is from [5].

Definition 1. A dynamic attack tree (DAT) is a rooted directed acyclic graph
T = (N,E) where each node v ∈ N has a type γ(v) ∈ {BAS, OR, AND, SAND} such
that γ(v) = BAS if and only if v is a leaf, and every node v with γ(v) = SAND has
an ordering of its set of children.

Note that a DAT is not necessarily a tree. If it is, we call it tree-shaped. The
root is denoted RT . For γ ∈ {BAS, OR, AND, SAND}, we write Nγ for the set of
nodes v with γ(v) = γ. The (po)set of children of v is denoted ch(v). If γ(v) =
SAND and v has (ordered) children v1, . . . , vn, we write v = SAND(v1, . . . , vn) for
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Table 1. Notation used in this paper.

Notation Meaning Section Notation Meaning Section

T = (N, E) Dynamic attack tree Sect. 3 mt(T, d), mt(T ) min time of DAT T Sect. 3.2

γ(v) Type of v Sect. 3 FT Time assignments of T Sect. 4

RT Root of T Sect. 3 M min time upper bound Sect. 4

NBAS {v ∈ N | γ(v) = BAS} Sect. 3 Zv
i Consecutive BAS pairs Sect. 4

Tv subDAT with root v Sect. 3 xv
i , yv, zv

i,a,a′ Auxiliary MILP variables Sect. 4

Bv Set of BAS of Tv Sect. 3 nv Number of children of v Sect. 4

(AT , ≤) Poset of attacks on T Sect. 3.1 Tv Sub-DAT with root v Sect. 5

ST Successful attacks Sect. 3.1 ṽ BAS replacement for Tv Sect. 5

t(O, d), t(O) Time of attack O Sect. 3.2 Tv T with Tv replaced by ṽ Sect. 5

convenience. We do the same for OR and AND, where the ordering of the children
does not matter. We write Tv for the subDAG consisting of all descendants of v,
i.e. all v′ for which there is a path from v to v′, including v itself. Furthermore,
we let Bv be the set of descendants of v in NBAS. DATs can be represented
graphically as in Fig. 1.

A dynamic attack tree codifies the ways an attacker can make a system fail
by executing the basic attack steps, i.e., the nodes in NBAS. A non-BAS node is
reached depending on its children, where OR and AND have the expected meaning,
and a SAND-node is reached if all children are reached in their given order. The
adversary’s goal is to reach RT . These semantics are defined in Sect. 3.1.

In the literature, two interpretations of nodes with multiple parent nodes
exist, affecting both semantics and metrics. In the first interpretation, multi-
ple activation (MA), [14,23,32] each BAS can be activated multiple times, and
every parent of a node requires its own activation of that node. Thus SAND(a, a)
succeeds only if a is activated twice consecutively. By adding a copy of each node
for each of its parents, any DAT can be transformed into a tree-shaped one with
equivalent semantics and metrics. As a result, metrics can be calculated quickly
via a bottom-up algorithm [10], but MA cannot adequately model systems in
which one action has multiple independent consequences.

In single activation (SA) [5,15] each BAS is executed at most once, and a
node only needs to be activated once to count as an input for all its parents. In
SA SAND(a, a) cannot be satisfied, because a cannot be activated before itself. SA
is able to describe a much wider range of systems; although every SA represen-
tation can be turned into an equivalent MA representation, this process is both
computationally expensive as it is done by writing the corresponding boolean
function in disjunctive normal form. This rewriting also loses the meaning of the
intermediate nodes in the DAT, which typically represent intermediate attacker
goals. We therefore choose to analyze DATs under the SA interpretation; since
every DAT is equivalent to a tree-shaped one under MA and MA and SA coincide
on trees, SA can model every scenario that MA can.

3.1 Semantics

We discuss DAT semantics, extending [5]. An attack consists of a set A of
attacker-activated BAS, and a strict partial order ≺, where a ≺ a′ means a
is executed before a′.
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Definition 2. The set AT of attacks on T is the set of strictly partially ordered
sets O = (A,≺), where A ⊆ NBAS. This set has a partial order ≤ given by O ≤ O′,
for O = (A,≺) and O′ = (A′,≺′), if and only if A ⊆ A′ and ≺ ⊆ ≺′.

We are interested in successful attacks, i.e., attacks that manage to reach the
root. Successful attacks, and the semantics of T , are defined as follows:

Definition 3. Let v be a node. We say that an attack O = (A,≺) reaches v if:

1. v ∈ NBAS and v ∈ A;
2. v = OR(v1, . . . , vn) and O reaches at least one of the vi;
3. v = AND(v1, . . . , vn) and O reaches all of the vi;
4. v = SAND(v1, . . . , vn) and O reaches all of the vi, and for all a ∈ A ∩ Bvi

,
a′ ∈ A ∩ Bvi+1 one has a ≺ a′.

A is successful if it reaches RT . The semantics of T is the set ST of successful
attacks on T .

↓

ba c

A SAND-gate v = SAND(v1, . . . , vn) is only reached if all
of the BAS of vi have been (successfully) executed before
any of the BAS of vi+1 has started. By contrast, an AND-gate
allows its children to be executed in parallel. Contrary to the
static case (without SAND-gates), it is possible that ST = ∅.
For example, SSAND(a,a) = ∅. Also, being successful is not
monotonous on the set of attacks, i.e., it is possible that O
is successful while O′ is not, even if O ≤ O′. For instance, in the DAT above
({a, c}, {(a, c)}) is a successful attack, but ({a, b, c}, {(a, c)}) is not. Note that
unlike the situation for SATs, a gate’s activation does not simply depend on the
activation of its children, but also on the relative order on the BAS associated
to these children; this encodes the timing information essential to DATs.

a b

↓

Definition 3 is not the only way one might define the semantics
of DATs. In fact, our semantics are based on those of [5], but
differ on certain DATs; see Sect. 3.3. We have chosen to interpret
the SAND-gate in a strict matter, so that it is activated only if
the entirety of the attack on vi has finished before the attack on
vi+1 is started; in particular, vi and vi+1 cannot share activated
BAS, which may be considered unwanted behaviour. There are
also other approaches, which unfortunately have other problems.
For instance, one could define succesful attacks bottom-up in a compositional
fashion, defining O to reach SAND(v1, v2) if there exists attacks O1,O2 such that
O is the parallel composition of O1 and O2. However, under such a definition the
AT above ({a, b}, {(a, b)}) is a succesful attack, whereas in our opinion this AT
should not be considered satisfiable. Yet another approach would be to assign a
starting and finishing time to each node, similar to what we do in Definition 5,
but this has the disadvantage of being more convoluted as an attack is now a
function N → R.
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3.2 The Min Time Metric

Min time is the minimal time it takes to perform a successful attack on a given
DAT. While other metrics exist for DATs, min time is a fundamental time metric,
and calculating it efficiently for non-tree-shaped DATs is an open problem [5].

Min time is defined as follows: There is a duration function d : NBAS → R≥0,
with d(a) denoting the time it takes to execute a. If a ≺ a′, then the BAS a′

can only be started once a has been completed, while a and a′ can be activated
in parallel if such a relation does not exist. As such, we can define the total
duration of an attack t(O, d) and min time mt(T, d) as

t(O, d) = max
C max. chain

in O

∑

a∈C

d(a), mt(T, d) = min
O∈ST

t(O, d)

where the maximum is taken over the maximal chains (i.e., maximal linearly
ordered subsets) of the strict poset O. We will often omit d from the notation
and write t(O) if there is no confusion. Note that t is monotonous: if O ≤ O′

one has t(O) ≤ t(O′). Furthermore, mt(T ) = ∞ if ST = ∅.

Example 1. Figure 2 depicts the bank robbery DAT of Fig. 1 augmented with
durations for the BAS (we take the expected durations from the distributions
given in [4]). To calculate mt(T ) one would first need to find ST . While this
set is quite large, because of the monotonicity of t, the minimum is attained
at one of the minimal elements of the poset (ST ,≤). There are two minimal
attacks, depending on whether the attackers choose to cut open the safe, or
unlock it. Abbreviating BAS names, we can represent these minimal attacks
as sets of chains as O1 = {bi ≺ cos ≺ e} and O2 = {bi ≺ fk ≺ e, bi ≺
gc ≺ e}. These have duration t(O1) = 1.00 + 0.67 + 0.20 = 1.87 and t(O2) =
max(1.00 + 0.50 + 0.20, 1.00 + 1.00 + 0.20) = max(1.70, 2.20) = 2.20. It follows
that mt(T ) = min(1.87, 2.20) = 1.87.

Fig. 2. The bank robbery DAT of
Fig. 1 augmented with durations.

In the multiple activation scenario, min
time can be calculated by reshaping a DAT
into its canonical form [14], from which min
time is easily calculated. However, this tech-
nique does not carry over to our formalism,
as in the single activation scenario a canonical
form does not exist.

3.3 Relation to Semantics of [5]

In [5] attacks are called attacks only if they
satisfy the ordering constraints imposed by all
SAND-gates. This is defined only for well-formed
DATs, i.e., all these constraints are simultane-
ously satisfiable. More formally, that work only
considers attacks that we call full in the follow-
ing definition.
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Definition 4. Let T be a DAT. Define a relation 	′ on NBAS by a 	′ a′ iff
there exists a node v = SAND(v1, . . . , vn) and an i < n such that a ∈ Bvi

and
a′ ∈ Bvi+1 . Let 	 be the transitive closure of 	′. Then T is well-formed if 	 is a
strict partial order. An attack (A,≺) on a well-formed DAT is full if ≺ = 	|A,
the restriction of 	 to A.

↓

a b

However, not all attacks will be full, because an attack may
not need to reach all SAND-nodes in order to reach the root, and
non-reached nodes should not put restrictions on attacks. Con-
sider the well-formed DAT on the right. Only ({a, b}, {(a, b)}) is
a full successful attack. However, ({a, b}, ∅) is a successful attack
as well. Hence non-full attacks are needed to fully describe the
semantics of well-formed DATs, which motivates Definition 2.
Furthermore, our definition defines the semantics of general DATs, not just the
well-formed ones.

4 An MILP Approach to Min Time

This section describes a novel method to compute mt(T ) based on mixed-integer
linear programming (MILP). Although MILP is NP-complete, a number of good
heuristics and solvers exist specifically for MILP, which can result in a low com-
putation time. We first show that min time can be found by solving an opti-
mization problem in Theorem 1, and then we describe how that optimization
problem can be rewritten into the MILP framework.

The building block of the new approach is the notion of time assignment,
which assigns to each node a completion time fv that respects all timing con-
straints in the DAT. If fv = ∞ then v is not reached at all. The formal definition
is stated below; recall that Bv is the set of BAS-descendants of v, and N the set
of nodes in the attack tree.

Definition 5. Let T be a DAT. For a node v with children v1, . . . , vn and i < n,
define Zv

i := Bvi
× Bvi+1 . A time assignment is a vector f ∈ [0,∞]N satisfying:

1. For each a ∈ NBAS one has fa ≥ d(a);
2. For each v = OR(v1, . . . , vn) one has fv ≥ mini fvi

;
3. For each v = AND(v1, . . . , vn) one has fv ≥ maxi fvi

;
4. For each v = SAND(v1, . . . , vn), the following must hold:

(a) it holds that fv ≥ fvn
;

(b) If there is a i ≤ n such that fvi
= ∞, then fv = ∞;

(c) If there exist i < n and (a, a′) ∈ Zv
i such that fa′ − d(a′) < fa < ∞, then

fv = ∞.

The set of all time assignments for T is denoted FT .

The SAND-conditions can be understood as follows. 4a) tells us that v cannot
be reached before vn, and 4b) tells us that v cannot be reached if any of its
children is not reached. 4c) conveys that whenever there is an a ∈ Bvi

that is
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activated (i.e., fa < ∞), then in order for v to be activated, one must have
fa′ −d(a′) ≥ fa for all a′ ∈ Bvi+1 . Since fa′ −d(a′) is the starting time of a′, this
means that a′ must be started after a is finished activating. It is more subtle
than simply requiring fa′ −d(a′) ≥ fa for all (a, a′) ∈ Zv

i ; that would ensure that
all SAND-gates impose ordering restrictions, not just those that are activated.

Note that fa′ − d(a′) is the starting time of a BAS a′, so 4c) tells us that v
is only reached if the BAS-descendants of vi+1 are started once those of vi have
been completed. We allow for a delay in completing node v, even when enough
of its children have been completed. Time assignments relate to min time:

Theorem 1. mt(T ) = minf∈FT
fRT

.

This result allows us to calculate mt(T ) by solving the following optimization
problem.

minimizef∈[0,∞]N &fRT
s.t. f ∈ FT . (1)

This is not a linear problem, due to the nonlinear constraints of Definition 5.
We use auxiliary integer variables to linearize these constraints. First, we need
to get rid of the ∞ in Definition 5, which we do by replacing it with a suitably
large real number. Define the constant M = 1 +

∑
a∈NBAS

d(a). The following
lemma shows that if T is satisfiable, then to minimize (1) one can focus on the
f with fv ∈ [0,M − 1] ∪ ∞.

Lemma 1. There is an f minimizing (1) for which ∀v : fv ∈ [0,M − 1] ∪ ∞.

This shows that we can use M to play the role of ∞ where necessary. We
enforce this by demanding fv ∈ [0,M ], and we interpret fv = M to mean that v
is not reached. For a node v, let nv be its number of children, which are denoted
v1, . . . , vnv

. We then use standard MILP techniques [8] to rewrite Definition 5.
To rewrite the OR-condition, we introduce an auxiliary binary variable xv

i for
each v ∈ NOR and each i ≤ nv. The purpose of xv

i is to represent the truthfulness
of the statement “i = arg mini′ fvi′ ”. We can then represent fv ≥ mini fvi

by

∑

i≤nv

xv
i ≥ 1, ∀i ≤ nv : fv ≥ fvi

+ M(xv
i − 1).

The latter is automatically satisfied if xv
i = 0, and reduces to fv ≥ fvi

if xv
i = 1.

The former ensures that the latter must happen for at least one i, so together
these encode fv ≥ mini fvi

. The condition for AND-gates can be rewritten as
∀i ≤ nv : fv ≥ fvi

.
Finally, we consider SAND-gates. For v ∈ NSAND, we introduce an auxiliary

binary variable yv that encodes “∃i < n : fvi
= ∞ or ∃i∃(a, a′) ∈ Zv

i : fa′ −
d(a′) < fa < ∞.” Then we can write Definition 5.4 as fv ≥ fvnv

, fv ≥ Myv. To
ensure yv = 1 whenever one of the fvi

equals ∞, we add the constraint ∀i <

nv : yv ≥ 1+fvi
−M

M , which forces yv = 1 only when fvi
> M − 1. Furthermore,
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to ensure yv = 1 whenever some a, a′ satisfy fa′ − d(a′) < fa, we would like to
add the constraint

∀i < nv∀(a, a′) ∈ Zv
i : yv ≥ min

{
fa−fa′+d(a′)

M , M−fa

M

}
. (2)

This forces yv = 1 only when both fa′ − d(a′) < fa and fa < M . To get rid
of the minimum, we introduce an auxiliary variable zv

i,a,a′ for each i < nv and
(a, a′) ∈ Zv

i as we did for the OR-condition. We then replace (2) with

∀i < nv∀(a, a′) ∈ Zv
i : yv ≥ fa−fa′+d(a′)

M − zv
i,a,a′ , yv ≥ M−fa

M − (1 − zv
i,a,a′).

Taking all of this together, it can be shown that the constraint fv ∈ [0,M ]
holds automatically for all ‘reasonable’ f (i.e., if this does not hold for f , then
f will not minimize fRT

) and can be replaced by fv ∈ R. We then find that the
optimization problem (1) can be rewritten into the following MILP problem of
Fig. 3. Note that this optimization returns an f with fRT

≤ M − 1 if and only if
ST �= ∅. Hence this optimization can also be used to determine whether T can
successfully be attacked.

We note that this is not the only way to encode min time analysis into a
MILP problem; for instance, instead of using the constant M , one could intro-
duce an additional binary variable per node that denotes whether the node is
activated or not. We chose for this approach since this ensures we need fewer
optimization variables, even though this means that some equations such as (2)
are less intuitive. Note that we get quadratically many constraints above, which
is a consequence of the fact that we get a constraint for every pair (a, a′) in
Definition 3.4.

Fig. 3. The MILP problem for calculating min time.
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5 Computation Time Reduction

In this section, we introduce an algorithm reducing the complexity of comput-
ing mt(T ). The algorithm consists of two components: First, we show that a
bottom-up algorithm from [14] can be used to calculate min time for static (no
SAND-gates) and tree-shaped DATs. As the state of the art method, based on
binary decision diagrams [5], has exponential complexity, and the bottom-up
algorithm has linear complexity, this is a big improvement. Second, we split up
the calculation of min time into parts by identifying the modules of a DAT, i.e.
subDAGs that are connected to the rest of the DAT via only one node.

5.1 Bottom-Up Computation

Fig. 4. MT-BU for a DAT T .

An important tool is the algorithm
MT-BU introduced in [14] presented in
Algorithm 4. It attempts to calculate
mt(T ) by traversing T bottom-up,
which only has linear time complex-
ity and is significantly faster than
the MILP approach of Fig. 3. For
tree-shaped T it calculates min time
correctly, but for DAGs it fails to
account for the fact that two chil-
dren of a node may share BAS,
which may be counted double. How-
ever, this double counting is only an
issue for SAND-gates, as the operators
min/max of OR/AND-gates are idem-
potent, i.e., min(x, x) = max(x, x) = x. This was first realized in [17], for attack-
defense trees under different semantics. However, min time based on these set
semantics can be proven to be equivalent to our definition in Sect. 3.2, yielding
the following result (Fig. 4):

Theorem 2 [14,17]. If T is tree-shaped or static, then MT-BU calculates mt(T ).

5.2 Modular Analysis

Fig. 5. Modular analysis.

Algorithm 4 only reduces complexity in the
two relatively rare cases where the DAT is
static or tree-shaped. However, it is possible
to also reduce complexity when T is only
partially static and/or tree-shaped. A well-
established method in studying DATs is to
consider the modules of T :
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Definition 6 [9]. A module is a node v ∈ N \ NBAS such that all paths from
T \ Tv to Tv pass through v.

The root of T is always a module. If v is a module, then v is the only node
within Tv with parents outside of Tv. Hence we can create a tree T v by replacing
Tv within T by a new single BAS ṽ; the parents of ṽ in T v are the parents of v in
T . Theorem 3 shows that min time can be calculated for T by first calculating
it for Tv, and then for T v. This is depicted in Fig. 5.

Theorem 3. Let T be a DAT, and let v be a module of T . Let T v be the node
obtained by removing v and replacing v itself with a new BAS ṽ. Then mt(T, d) =
mt(T v, dv) where dv is a duration function for T v given by

dv(a) =

{
d(a), if a ∈ NBAS \ Bv,

mt(Tv, d|Bv
), if a = ṽ.

Fig. 6. AMod for a DAT T . The notation
T v, dv is from Theorem 3.

While the statement seems intu-
itively true, the proof requires quite
a bit of work as one needs to develop
machinery to relate attacks on T (and
their minimal chains) to attacks on
Tv and T v. Theorem 3 reduces com-
plexity in two ways: We split the
tree into two parts whose total size
is the same as the original tree. Since
MILP is NP-hard, this can impact
computation time. Furthermore, the
smaller DAT Tv can be static or tree-
shaped, in which case we can use
MT-BU (Fig. 6).

The resulting algorithm is dis-
played in Algorithm 6. Here Module
refers to an algorithm that finds the
modules of T ; this can be done with
linear time complexity [9]. Algorithm
AMod makes use of an algorithm A that
calculates min time. For this, one can use naive enumeration or the MILP app-
roach of Fig. 3, or potentially any new algorithm. Since the calculation of a
module’s min time value depends on its own modules, we act on the lower mod-
ules first, so Algorithm 6 handles the modules by ascending height. Note that
when T is tree-shaped, every inner node is a module, so AMod is equivalent to
MT-BU for any A.

We note that other definitions of min time, such as the automata-approach of
[18] and the multiple-activation definition of [14], also allow for modular decom-
position. However, as these definitions are not compatible with ours, we cannot
directly use these results, and we require a novel proof for Theorem 3.
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6 Experiments

This section evaluates the performance of our methods. We compare the MILP
approach of Fig. 3 (MT-MILP) to the enumerative approach (MT-Enum). For the
latter, rather than exhaustively generating all succesful attacks, we generate
bottom-up a set of candidate attacks that include all minimal succesful attacks,
hence certainly the optimal attack by the monotonicity of t. For this we gener-
alize the set semantics of [17] to dynamic ATs. We also compare MT-MILP and
MT-Enum to their modular counterparts.

Fig. 7. DATs from the literature
used as building blocks. Trees
from [11,17] are adapted from
attack-defense Tree.

Existing methods in the literature are
based on series-parallel graphs [14] and priced
timed automata [18]. Their definitions of min
time are not equivalent to ours. In our view,
methods with different definitions of min time
can only be compared with respect to com-
putation time if one of them is designed to
be an approximation or bound of the other;
then one can compare the gain in computa-
tion time versus the loss in accuracy. However,
this is not the case here: the multiple activa-
tion definition is fundamentally different, and a
DAT constructed under this model represents
a system different from the same DAT in the
single activation model. Therefore, we cannot
directly compare performance to that of existing approaches.

In practice, attack trees can be very large [26,30]; however, for confidentiality
reasons these are typically not disclosed to the general public [7,26]. Hence to
our knowledge no established benchmark suites of DATs exist, and the existing
literature typically considers test cases with only ≤ 25 nodes [4,18]. For such
small DATs, the computation of min time takes less than a second no matter
which algorithm is being used, which makes them unsuitable for testing difference
in algorithm performance. To address the deficiency of a benchmark suite of
large DATs, we create a synthetic set of testing DATs. These are created by
combining DATs from the literature into larger ones. Then, we compare (1) the
MILP method MT-MILP to the enumerative algorithm MT-Enum and (2) the effect
of modular analysis on performance time.

All experiments are performed on a PC with an Intel Core i7-10750HQ
2.8 GHz processor and 16 GB memory. All algorithms are implemented in Mat-
lab, and for MILP we use the YALMIP environment [20] to translate the opti-
mization problem into the Gurobi solver [13], a state-of-the-art optimizer that
can handle MILP problems. The code and results are available in [22].

6.1 Generation of Testing DATs

To create a testing suite large enough for a meaningful performance compari-
son, we do the following. As building blocks, we use a selection of DATs from
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Fig. 8. The three ways of combining DATs.

the literature, shown in Fig. 7. For some, the duration of the BAS are random
variables, and we take the expected value for the duration; otherwise we take a
random duration from {1, 2, . . . , 10}. We use three methods for combining two
DATs T1, T2 into a larger one (see Fig. 8):

1. We take a random BAS v from T1 and consider the modular composition
by replacing v in T1 by T2. This represents a larger system, in which one
subsystem, represented by v in T1, is given its own DAT for more fine-grained
analysis.

2. We introduce a new root node v with a random label, and add edges (v,RT1)
and (v,RT2). This represents a system consisting of two separate subsystems.

3. We introduce a new root node v with a random label, and add edges (v,RT1)
and (v,RT2); we then pick random BAS b1 from T1 and b2 from T2 and identify
them (with a new random duration in {1, 2, . . . , 10}). This represents a system
consisting of two subsystems that have a shared attack step.

These are not the only ways by which multiple DATs can be combined; for
instance, T1 and T2 could share multiple BAS. We selected these three methods
to capture some of the common ways DATs are created by experts. Creating a
benchmark suite of large DATs that resemble DATs from industry is an impor-
tant avenue for further research, but beyond the scope of this paper.

We create two suites of testing DATs by combining the DATs from Fig. 7.
For the first suite, A, we combine DATs using one of the three methods above
(drawn randomly) until the result has a given number of nodes. The resulting
will have many modules, as T1 is a module under the first method, and both
T1 and T2 are modules under the second method. Therefore, we expect the
modular approaches to be very fast on the DATs in A. To also study DATs with
less modules, we create the second suite, B, by combining DATs using only the
third method. Again, one could assign other weights to the three combination
methods to obtain yet different testing suites, but A and B represent two of the
extremes of what DATs can look like.

For a given nmin, we combine DATs randomly drawn from Fig. 7 (either
via randomly drawn methods from the 3 above, or by method 3 only) until
|N | ≥ nmin. We do this 5 times for each 1 ≤ nmin ≤ 240, giving us two testing
sets A,B of 1200 DATs with 8 ≤ |N | ≤ 262. On average 26.6% of the nodes of
ATs in A, and 16.5% of the nodes of ATs in B are modules. Furthermore 54.2%
of the nodes of ATs in A, and 52.5% of the nodes of ATs in B are BAS.
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Table 2. Summary of the results. All times are in seconds. Failure denotes failure
to compute within 104 seconds. Asmall contains 754 DATs with ≤ 160 nodes, and A
contains 1200 DATs with ≤ 262 nodes (including those of Asmall). The sets Bsmall and
B hold the same amount of DATs of the same size; they are designed to contain less
modules.

Asmall A
MT-Enum MT-MILP MT-EnumMod MT-MILPMod MT-MILP MT-EnumMod MT-MILPMod

Median time 1.234 0.906 1.461 1.680 1.422 2.797 3.070

Max time 10000 7.984 12.656 6.656 19.125 10000 30.469

Failure 3.71% 0% 0% 0% 0% 0.08% 0%

Bsmall B
Median time 1.391 0.938 1.469 1.656 1.266 3.203 2.773

Max time 10000 4.75 2326 9.484 4.75 10000 9.484

Failure 3.81% 0% 0% 0% 0% 3.08% 0%

Fig. 9. Median time (in seconds) of MT-Enum, MT-MILP, MT-EnumMod,
MT-MILPMod, grouped by the number of nodes |N |.

6.2 Time Comparisons

We measure the computation time of the four algorithms on the testing set; we
cap computation time per DAT at 104 s. We group the DATs depending on their
value of �|N |/20� and calculate the median per group: these are presented in
Fig. 9. We use the median because it allows us to incorporate the computations
that were cancelled after 104 s. Since already 21.3% of the DATs of A, and 13.8%
of DATs of B, with 141 ≤ |N | ≤ 160 fail to compute for MT-Enum, we do not
continue testing this method for larger DATs. The subsets of A,B of DATs
with |N | ≤ 160 is called Asmall,Bsmall, and consist of 754 resp. 761 DATs. The
results are also summarized in Table 2, and pairwise comparisons are presented
in Fig. 10.

On the testing set A, we see from Fig. 9 that MT-Enum is by far the slowest
method, while MT-MILP is the fastest; the two modular approaches are slightly
slower than MT-MILP and have similar efficiency. While the inefficiency of MT-Enum
is to be expected, it is surprising that modular analysis for MILP has a net neg-
ative effect on computation time. One possible reason is that the Gurobi solver,
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which we treat as a black box, might incorporate strategies to reduce the MILP
problem complexity that are equivalent to modular analysis on the DAT side. At
any rate, the enumerative approach clearly shows the advantage of incorporating
the modular approach. These results are also reflected in Fig. 10(a)–(d).

Fig. 10. Pairwise computation time comparisons of the four algorithms. The first algo-
rithm is the vertical axis while the second is the horizontal axis. Each mark is a DAT;
purple circles are computations aborted for exceeding 104 s. (Color figure online)

Interestingly, the difference in median computation time between MT-Enum
and MT-MILP disappears when considering the modular versions of these algo-
rithms, although the worst-case behaviour of MT-EnumMod is considerably worse
than that of MT-MILPMod (see Table 2). We hypothesize that this is due to the fact
that the DATs of A contain many modules. As a result, the ‘indecomposable’
sub-DATs on which the algorithms MT-Enum and MT-MILP are called will typically
be small. Since the difference in computation time between these algorithms only
appears for larger DATs, we do not see it in these experiments.

For testing set B, we again see that MT-Enum is by far the slowest. Furthermore,
for larger DATs MT-MILPMod outpaces MT-EnumMod considerably; see also Fig. 10(f).
This shows that also in a modular setting the MILP approach significantly speeds
up calculations for large enough DATs. This is to be expected from our results
on set A as for larger DATs the ‘indecomposable’ subDATs on which MT-MILP is
invoked will be larger as well. Interestingly, on this dataset MT-MILP is slightly



Attack Time Analysis in Dynamic Attack Trees 181

faster than MT-MILPMod, as can also be seen from Fig. 10(e). This might be due to
the fact that on wide DATs, the MILP methods of Gurobi are more efficient at
splitting up DATs into modules than our Matlab implementation of the modular
decomposition algorithm. A detailed study into this difference in performance
would entail a comprehensive analysis into Gurobi’s Matlab implementation,
which is beyond the scope of this paper.

Taking A and B together, we can conclude that both the MILP approach
and modular analysis create a large decrease in computation time. While these
methods are slightly slower for small DATs, computation time for such DATs
only takes a few seconds anyway. By contrast, for larger DATs the difference
in computation time can go up to a factor 103. For DATs with large modules,
MT-EnumMod loses out against MT-MILP and MT-MILPMod, which behave similarly.

7 Conclusion and Discussion

This paper introduced two novel tools to calculate min time for DATs. First, we
introduced a novel MILP-based approach that finds min time by phrasing it as
an optimization problem. Second, we show how modular analysis can be used
to reduce the computation time of any min time calculation algorithm. In the
experiments, we compared these to the enumerative method. The experiments
show that for large DATs both MILP and modular analysis can have a big
impact on computation time. In particular, the MILP approach is consistently
fast on any input DAT, making it a reliable tool for quantitative DAT analysis
in practice.

There are several directions in which this work can be expanded. First, a
benchmark suite of DATs is needed. For this it is important to find out what
sizes and properties are typical for DATs used in industry, even if industry DATs
themselves may not be published due to confidentiality reasons.

Second, modular analysis can also be used for other metrics, as has been
done for fault trees [27,29]. Since modular analysis is a very general idea, a good
approach would be to develop an axiomatization of metrics that can be handled
via modular analysis, so that the method can be applied to a large set of metrics
at once. Such a result is probably not hard to prove for metrics that are defined
bottom-up as in [17]; the challenge lies in metrics that are defined directly from
the semantics as in [5].

Third, our MILP approach can be combined with a Monte Carlo approach in
a stochastic setting where the precise BAS values are unknown. A more thorough
investigation can explore what guarantees such simulations can give for min time.
As Monte Carlo methods involve sampling a large sample, performance of the
min time calculation algorithm is important in such a study.
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model for dynamic risk assessment. arXiv:1606.09042 (2016). Preprint

13. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://
www.gurobi.com

14. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
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