
Cost-damage analysis of attack trees
Milan Lopuhaä-Zwakenberg

University of Twente
m.a.lopuhaa@utwente.nl

Mariëlle Stoelinga
University of Twente & Radboud University

m.i.a.stoelinga@utwente.nl

Abstract—Attack trees (ATs) are a widely deployed modelling
technique to categorize potential attacks on a system. An attacker
of such a system aims at doing as much damage as possible,
but might be limited by a cost budget. The maximum possible
damage for a given cost budget is an important security metric of
a system. In this paper, we find the maximum damage given a cost
budget by modelling this problem with ATs, both in deterministic
and probabilistic settings. We show that the general problem
is NP-complete, and provide heuristics to solve it. For general
ATs these are based on integer linear programming. However
when the AT is tree-structured, then one can instead use a faster
bottom-up approach. We also extend these methods to other
problems related to the cost-damage tradeoff, such as the cost-
damage Pareto front.

Index Terms—Attack trees, Pareto front, cost-damage analysis,
integer linear programming

I. INTRODUCTION

OR BASAND

0

0 10

ps: production
shutdown

dr: destroy robotca: cyberattack

fd: force doorpb: place bomb

200

100

c:1

c:3 c:2

Fig. 1: Attack tree for a
factory. Production can be
stopped by a cyberattack or
by destroying the produc-
tion robot, for which an at-
tacker forces their way in-
side and places a bomb.
Damage values (in 1000
USD) are inscribed in the
nodes, and cost values are
below the BASs.

Attack trees. Attack trees
(ATs) are a prominent method-
ology in security analysis.
They aid security specialists in
identifying, analyzing and pri-
oritizing (cyber)risks. ATs are
included in several popular sys-
tem engineering frameworks,
e.g., UMLsec [1] and SysMLsec
[2], and are supported by in-
dustrial tools such as Iso-
graph’s AttackTree [3]. ATs
have been used in many sce-
narios, such as military infor-
mation infrastructure [4], elec-
tronic voting [5], and IoT in-
sider threats [6]. Their popular-
ity is owed to their simplicity,
which allows for a range of
applications, and their analyz-
ability.

An AT is an hierarchical dia-
gram that describes a system’s
vulnerabilities to attacks. De-
spite the name, an AT is a
rooted directed acyclic graph

This research has been partially funded by ERC Consolidator grant 864075
CAESAR and the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Skłodowska-Curie grant agreement No.
101008233.

(DAG). Its root represents the adversary’s goal, while leaves
represent basic attack steps (BASs) undertaken by the adver-
sary. Other nodes represent intermediate attack goals and are
labeled with an OR-gate or AND-gate, determining how its
activation depends on that of its children. An example is given
in Fig. 1.
Quantitative analysis. Besides describing possible attacks on
a system, ATs can also be used to analyze quantitative infor-
mation about such attacks. Many attack metrics exist, such
as the damage, required cost, or required skill of an attack.
Such metrics are key performance indicators that formalize a
system’s security performance.

These metrics do not exist in isolation, and their interplay is
important for quantitative security analysis. For instance, one
attack may be cheaper than another, but require more time, or
a more skilled attacker. Therefore, it is essential to understand
the tradeoff between different security metrics. To understand
and quantify such tradeoffs, one considers the Pareto front of
multiple metrics [7], which includes all attacks that are not
dominated by another attack in all metrics. For instance, in
Fig. 1 the attack {ca} does damage 200 for cost 1, which is
preferable over {fd} which does 10 damage for cost 2.
Cost-damage analysis. In this paper we consider the interplay
between two important attack metrics: attack cost [8], describ-
ing an attacker’s budget in, e.g., money or time; and attack
damage [9], representing the damage done to the system,
e.g., in terms of monetary value. The larger the cost budget
available to an attacker, the more damaging an attack can
be. While damage is the most relevant metric to the system
owner, knowing the cost of an attack helps them understand
the likelihood of such an attack. This fits within the perspective
that likelihood and impact both play an important role in
risk analysis [10]. For a comprehensive risk assessment of
a system’s security, it is therefore paramount to solve the
following problems:

Problem statement. Given an attack tree T , solve the
following problems:
DgC) Find the most Damaging attack given a Cost budget.
CgD) Find the Cheapest attack given a Damage threshold.

CDPF) Find the Cost-Damage Pareto Front.

Existing approaches to calculating the Pareto front of multi-
ple AT metrics [7], [11], [12] cannot be applied to cost-damage
problems for two reasons: First, existing methods assume
that only BASs are assigned metric values. For damage, this

1

ar
X

iv
:2

30
4.

05
81

2v
1

 [
cs

.C
R

]
 1

2
A

pr
 2

02
3

assumption is not realistic, as the internal nodes often represent
disabled subsystems, which also have an associated damage
value. For instance, in Fig. 1, the attack {ca} and {pb, fd}
both shut down production, but the latter does so by destroying
the production robot, leading to greater monetary loss. Second,
existing methods only consider successful attacks, i.e., attacks
that activate the top node of the AT. In the case of cost-damage
analysis, however, attacks not reaching the top node can still
do quite some damage on intermediate nodes, and should be
considered in the analysis. For instance, an attacker can try
to rob an ATM by forcing it with explosives. Even if the
attacker fails in stealing the money, the explosives still cause
significant damage to the ATM owner. Thus existing work
cannot solve cost-damage problems in the generality required
to model realistic scenarios. For these reasons new approaches
and algorithms need to be developed.
Approach. This paper introduces three novel methods to solve
the problems stated above. We first consider a deterministic
setting, where BASs always succeed. We then consider a prob-
abilistic setting, where BASs may fail with a given probability.

NP-completeness: We first prove two important negative
results, showing that even the simplest cost-damage problems
do not have ‘easy’ solutions. Cost-damage problems are sim-
ilar to binary knapsack problems [13]; we use this to prove
that even the simplest type of cost-damage analysis is NP-
complete. Unfortunately, this similarity cannot be exploited
to apply heuristics for knapsack problems or their many
extensions [14]–[16] to cost-damage problems: All extensions
assume properties of the damage function (i.e., the function
assigning a damage value to each attack) that are not met in
our setting. In fact, we prove that the damage function can be
any nondecreasing function. This highlights the need for the
completely new methods for cost-damage analysis in ATs.

As common, our algorithms distinguish between tree- and
DAG-shaped attack trees. Further, we consider deterministic
versus probabilistic failure behaviour in the leaves.

Bottom-up algorithm for treelike ATs: Existing approaches
to the Pareto front of two metrics work bottom-up, discarding
non-optimal attacks at every node [7]. This does not work
for damage, as intermediate nodes also carry damage values.
Hence attacks that are non-optimal at a certain node may do
more damage at a higher node, becoming optimal there.

To solve problem CDPF above, we describe a new bottom-
up method for finding the Pareto front in both the deterministic
and probabilistic setting. The key insight is to perform a
bottom-up Pareto analysis in an extended cost-damage domain,
by adding a dimension for the current top node’s activation
(or activation probability in the probabilistic setting); this
dimension signifies an attack’s ‘potential’ to do more damage
at higher nodes. As shown in our experiments, these bottom-
up methods drastically reduce computation time from multiple
hours to less than 0.1 second.

For the single-objective problems DgC and CgD we cannot
do a ‘simpler’ bottom-up approach in which only the optimal
attack is propagated, as one needs the overview of the full
AT to decide which attack is optimal. Instead, we still need

Tree DAG
Deterministic bottom-up (Theorem 4) BILP (Theorem 6)
Probabilitistic bottom-up (Theorem 9) open problem

TABLE I: Overview of this paper’s algorithmic contributions.

to propagate (part of) the Pareto front, and we gain our
solution for DgC and CgD from minor adaptations to the
CDPF approach.

Integer linear programming for DAG-like ATs: It is well-
known [12], [17] that bottom-up algorithms do not work
for DAG-like ATs: since nodes may have multiple parents,
their cost/damage being counted twice. We introduce a novel
method for the deterministic setting by translating cost-damage
problems into the bi-objective integer linear programming
(BILP) framework [18]; we can then apply existing BILP
solvers to solve them [19]. This translation is nontrivial, as
damage is a nonlinear function of the adversary’s attack, as we
will show in Section V. The key insights behind our algorithm
are that (1) damage is linear in terms of the structure function
that describes which AT nodes are reached by an attack and (2)
the constraints defining the structure function can be phrased
as linear constraints.

We use existing biobjective methods and solvers to solve
CDPF [20], and single-objective solvers to solve DgC and
CgD [21]. This does not extend to the probabilistic setting,
where equations become nonlinear; we leave the analysis of
probabilistic DAG-like ATs as an open problem.

Finally, in experiments we show our methods can be used
for risk analysis by applying them to two systems: a wireless
sensor device tracking wildlife in a giant panda reservation,
and a data server in a network behind a firewall. The ATs of
these systems are taken from the literature [22], [23]. We use
the cost-damage Pareto front to assess the vulnerabilities of
these systems. Furthermore, we also measure the computing
time in the case studies and on 500 random ATs: both
bottom-up and BILP methods vastly outperform the existing
enumerative approach. This shows that our methods present
an enormous speedup compared to the status quo.

Contributions. Summarized, our contributions are:
1) A formal definition of cost-damage problems in ATs;
2) A proof that these problems are NP-complete (Sec. V);
3) A proof that cost-damage problems cannot be reduced

to common extensions of the binary knapsack problem;
(Sec. V);

4) A bottom-up method to solve the deterministic and
probabilistic cost-damage problems for treelike attack
trees (Sec. VI & IX);

5) An integer linear programming-based method to solve
the deterministic cost-damage problems for DAG-like
attack trees (Sec. VII).

6) An experimental evaluation of the above methods on
two realistic cases from the literature (Sec. X).

The Matlab code for the experiments can be found at [24].

2

II. RELATED WORK

In the literature, there are multiple approaches to decorating
an AT with cost and damage values. Existing work concerning
damage (also called impact) on ATs can be divided into three
categories: works in which only BASs have a damage attribute
[9], [11], [25], [26], works in which only the root node has a
damage attribute [27], and works in which every node can have
a damage attribute [28]. In the same manner, in some works
intermediate nodes are allowed to have an associated cost [11],
[29], while in others only BASs have costs [11], [12], [30].
In this paper, every node has a damage attribute, while only
BASs have a cost attribute. We choose this because it is the
simplest model for the most expressivity; as we will show in
Section IV, cost values on internal nodes can be modeled by
adding dummy BASs, but damage values cannot.

Most of the work listed above only considers one metric at
a time. For instance, in [25] binary decision diagrams (BDDs)
are used to calculate both the minimal cost of a succesful
attack and the maximal damage, but the tradeoff between the
two metrics is not investigated. Other methods for calculating
single metrics include bottom-up methods for treelike ATs [12]
and priced-timed automata [29]. Of the works that consider
cost-damage tradeoffs, some focuse on modeling rather than
algorithms [9], [28]. One approach to the Pareto front is via
priced-timed automata [11]; however, we cannot directly apply
this to our setting as in that work only BASs have a damage
attribute. In [27], cost and damage are used to define a single
attack parameter outcome, which is optimized heuristically.

Other works on ATs consider the Pareto front between two
generic metrics. A bottom-up method for calculating Pareto
fronts for treelike ATs, and under some additional assumption
for DAG-like ATs, is given in [7]. Furthermore, a BDD-based
approach for DAG-like ATs is developed in [12]. However,
damage does not satisfy the conditions for either of these two
approaches, and these cannot be used for our CgD, DgC and
CDPF problems. Overall, we can conclude that none of the
existing literature is able to solve cost-damage problem in the
general model discussed in this paper.

Another approach to multi-objective optimization is to ap-
proximate the Pareto front, for example using genetic algo-
rithms [31], [32]. This has also been applied to ATs with cost
[26]. While such an approach would be interesting for cost-
damage ATs, in this paper we instead focus on provably opti-
mal solutions, corresponding to provable security guarantees.

III. PRELIMINARIES

Let B be the set {0, 1}, with logical operators ∧,∨.

Definition 1. An attack tree is a rooted directed acyclic graph
T = (N,E) where each node v ∈ N has a type γ(v) ∈
{BAS,OR,AND}, such that γ(v) = BAS if and only if v is
a leaf.

Contrary to terminology an AT is not necessarily a tree.
When the DAG T is actually a tree, it is called treelike; the
general case is referred to as DAG-like. The root of T is
denoted RT . For a node v we denote its set of children by

Notation Explanation page
B {0,1} 3

T = (N,E) Attack Tree 3
B BASs of T 3
γ(v) Type of node v 3
Ch(v) Children of node v 3
(A,�) Poset of attacks 3
S(x, v) Structure function of T 3
c(v) Cost of BAS v 4
d(v) Damage of node v 4
ĉ(x) Cost of attack x 4
d̂(x) Damage of attack x 4
minX Set of minima of X 4

(R2
≥0,v) Poset of attribute pairs 4(ĉ
d̂

)
Attribution map 4

PF(T) Pareto-front of T 4
CDPF Cost-damage Pareto front 4
DgC Maximal damage given cost 4
CgD Minimal cost given damage 4

(DTrip,v) Deterministic attribute triples 6
minU Cost-restricted min 6,9
CDU (v) Incomplete deterministic PF at v 6
p(v) Probability of BAS v 8
Yx Actualized attack 8

d̂E(x) Expected damage of attack x 8
CEDPF Cost-expected damage Pareto front 8
EDgC expected damage given cost 8
CgED cost given expected damage 8

PS(x, v) Probabilistic structure function 8
(PTrip,v) Probabilistic attribute triples 9
CPU (v) Incomplete probabilistic PF at v 9

TABLE II: Notation used in this paper.

Ch(v) = {w | (v, w) ∈ E}; we also say that v is an ancestor
of w, and w a descendant of v, if there is a path v → w in T .
When Ch(v) = {v1, . . . , vn}, we write v = OR(v1, . . . , vn)
or v = AND(v1, . . . , vn) depending on γ(v). The set of BASs
a.k.a. leaves is denoted by B. For instance, in the AT T from
Fig. 1 one has B = {ca, pb, fd}, dr = AND(pb, fd), and
RT = ps = OR(ca, dr). Note that T is treelike.

An attacker performs an attack by activating a chosen set
of BASs, represented by a status vector x ∈ BB ; the status
xv of a BAS v equals 1 if v is activated, and 0 if it is not.
Such a status vector can also be regarded as a subset of B.
Transposing the partial order⊆ to status vectors yields a partial
order �.

Definition 2. An attack on T is a vector x ∈ BB; we let
A = BB be the set of all attacks. This has a partial order �
given by x � y iff xv ≤ yv for all v ∈ B.

An attack propagates upwards from the BASs. A node is
reached by an attack depending on its type OR or AND, and
whether any/all of its children are reached by the attack. This
idea is formalized by the structure function S. Given an attack
vector x, and a node v, S(x, v) indicates whether v is reached
by x, i.e., if S(x, v) = 1.

Definition 3. The structure function S: A ×N → B of T is
defined recursively:

S(x, v) =

xv if γ(v) = BAS,∨

v′∈Ch(v) S(x, v
′) if γ(v) = OR,∧

v′∈Ch(v) S(x, v
′) if γ(v) = AND.

3

IV. DETERMINISTIC COST-DAMAGE PROBLEMS FOR ATS

In this section we formulate this paper’s problem; solutions
are presented in Sections VI and VII. This section deals with
a deterministic setting, where a BAS’s success is guaranteed;
its probabilistic equivalent is presented in Section VIII.

The attacker’s goal is to disrupt the system as much as
possible, which is measured by a damage value representing
financial cost, downtime, etc. Each node v has a damage value
d(v), and an attack’s total damage d̂(x) is the sum of the
damage value of all nodes reached by x. At the same time, an
attacker may have only limited resources. Each BAS v has a
cost value c(v) representing e.g. the money, time or resources
the attacker has to spend to activate it. The total cost ĉ(x) of
an attack is the sum of the costs of the activated BASs.

Definition 4. A cd-AT is a triple (T, c,d) of an AT T and
maps c : B → R≥0 and d: N → R≥0. Define the total cost
and damage functions ĉ, d̂ : A → R≥0 by

ĉ(x) =
∑
v∈B

xv c(v), d̂(x) =
∑
v∈N

S(x, v) d(v).

As opposed to other works in quantitative analysis on ATs
[7], [12], we do not only consider so-called successful attacks,
i.e., x for which S(x,RT) = 1. The reason is that in our model
damage can be done at any level, not just at the top node. It
is therefore important to know the damaging capabilities of
an attacker, even when that attacker’s limited resources mean
that they cannot damage the top node. Furthermore, an attacker
may try different avenues towards success, and while a given
path may be discarded without reaching the top node, side
effects may remain. We therefore assign damage values not
only to the top node, but also to internal nodes.

Example 1. Consider the AT T from Fig. 1, repeated below,
and its cost and damage functions. Then the functions ĉ and
d̂ are calculated as in the following table.

xca 0 0 0 0 1 1 1 1
xpb 0 0 1 1 0 0 1 1
xfd 0 1 0 1 0 1 0 1
ĉ(x) 0 2 3 5 1 3 4 6
d̂(x) 0 10 0 310 200 210 200 310

0

0 10

ps: production
shutdown

dr: destroy robotca: cyberattack

fd: force doorpb: place bomb

200

100

c:1

c:3 c:2

Some works also assign cost
values to internal nodes [11],
[29], the interpretation being
that an internal node is only
activated if enough of its chil-
dren are activated and its cost
is paid. However, this can be
simulated by adding a dummy
BAS which holds the associ-
ated cost, as in Fig. 2. However, the same cannot be done
for damage: moving the damage to the dummy BAS leads to
a situation where only the dummy needs to be activated to do
the damage. For full expressivity we thus allow internal nodes
to have damage values, but not cost values.

0 0

1

c:1 c:1

c:1

0 0

0

c:1 c:1

c:1

0

1

0 0

0

c:1 c:1

c:1

1

0

Fig. 2: An example showing that damage values on internal
nodes are necessary, but cost values on internal nodes are not.
The cost value on the internal node in the AT on the left
is replaced by a dummy BAS in the middle AT, which is
equivalent: both ATs require cost 2 to perform 1 damage. In
the right AT, the damage is also moved to the dummy BAS,
but the result is not equivalent: 1 cost already yields 1 damage.

A. Cost damage problems

In ATs, there is a tradeoff between resource utilization and
damage: the higher the cost budget an attacker has at their
disposal, the more damage they may cause. This tradeoff can
be analyzed via the Pareto front: the cost and damage values
of all attacks that are not dominated by other attacks, where x
dominates y if x is cheaper than y while doing more damage.
An attack x in the Pareto front is called Pareto optimal, and
it is the most damaging attack if the attacker cannot exceed
cost ĉ(x). Thus the Pareto front gives a full overview of the
system’s vulnerability to any attacker.

For a general poset (X,�), we define its set of minimal
elements as

min� X = {x ∈ X | ∀x′ ∈ X.x′ 6≺ x}.

We drop the subscript � if it is clear from the context. We
consider the domain of attribute pairs, i.e., the set R2

≥0 with
a partial order v given by (a, a′) v (b, b′) if and only if
a ≤ b and a′ ≥ b′. For a cd-AT (T, c,d), we define the
evaluation map

(
ĉ
d̂

)
: A → R2

≥0 by
(
ĉ
d̂

)
(x) =

(ĉ(x)
d̂(x)

)
(we

represent elements of R2
≥0 as column vectors). Note that x

dominates y if and only if
(
ĉ
d̂

)
(x) @

(
ĉ
d̂

)
(y).

The aim of this paper is to find the cost-damage Pareto
front, as well as two related single-objective problems. Math-
ematically, these are formulated as follows:

Problems. Given a cd-AT (T, c,d), solve the following
problems:
CDPF Cost-damage Pareto front: find minv

(
ĉ
d̂

)
(A) ⊆ R2

≥0.
DgC Maximal damage given cost constraint: Given U ∈

R≥0, find dopt = maxx : ĉ(x)≤U d̂(x).
CgD Minimal cost given damage constraint: L ∈ R≥0,

find copt = minx : d̂(x)≥L ĉ(x).

From CDPF one can solve DgC and CgD via

dopt = max{d ∈ R≥0 | ∃c ∈ [0, U]. (c
d) ∈ PF(T)}, (1)

copt = min{c ∈ R≥0 | ∃d ∈ R≥L. (c
d) ∈ PF(T)}. (2)

4

0 2 4 6 8
0

100

200

300

∅ {fd} {pb}

{ca} {ca, fd}

{ca, pb}

{pb, fd}

{ca, pb, fd}

cost

da
m

ag
e

Fig. 3: CDPF for Examples 1 and 2. Filled nodes are Pareto-
optimal attacks.

These problems are relevant in security analysis: DgC can
be used to determine the damaging capabilities of different
attacker profiles [11], [26]. CDPF can be used to give an
overview over all attacker profiles. For a security operations
center monitoring a network, a cost-damage analysis (with cost
measured in time) provides insight in whether the response
time is sufficient to stop damaging attacks.

Example 2. In Example 1,
(
ĉ
d̂

)
(A) is given by the lower two

rows of the table. A number of these attacks are not Pareto
optimal: we have (1

200) @ (2
10) , (

3
0) , (

4
200), and furthermore

(5
310) @ (6

310). It follows that (see Fig. 3):

PF(T) = {(00) , (1
200) , (

3
210) , (

5
310)} . (3)

From this we find, for instance that the solution to DgC for
U = 2 is given by dopt = 200.

In what follows, we present novel methods to solve CDPF,
DgC and CgD. As in many problems related to calculating AT
metrics, an important factor in the complexity of solutions is
whether the AT is treelike or not [12]. We introduce a bottom-
up method for treelike ATs in Section VI, and a method based
on integer linear programming for DAG-like ATs in Section
VII.

V. RELATION TO KNAPSACK PROBLEMS AND
NP-COMPLETENESS

In this section, we prove two important negative results,
based on the similarity of cost-damage problems to binary
knapsack problems. First, we show that even the simplest
cost-damage problem is NP-complete. Second, we show that
cost-damage problems are considerably more general than
(extended) knapsack problems, which means that existing
heuristics for knapsack problems cannot be applied to our
situation. Both results emphasize the importance of finding
new heuristics for cost-damage problems.

DgC is a generalisation of the binary knapsack problem
[13], which is

minimizex∈Bn f(x) subject to g(x) ≤ b

where b ∈ R and n ∈ N are constants and the objective and
constraint functions f and g are linear, i.e., f(x) =

∑n
i=1 fixi

for some constants fi ∈ R. In DgC, n = |B|, b = U , and the
objective and constraint functions are −d̂ and ĉ. Although ĉ
is linear, −d̂ is not; for instance, in the AT AND(a, b), one
has d̂(x) = d(a)xa + d(b)xb + d(RT)(xa ∧ xb). To show
NP-completeness, consider the decision problem associated to
CDPF, DgC and CgD:

Problem (Cost-damage decision problem (CDDP)). Given a
cd-AT (T, c,d), a cost upper bound U and a damage lower
bound L, decide whether there exists an attack x ∈ A such
that ĉ(x) ≤ U and d̂(x) ≥ L.

CDDP can be reduced to CDPF, DgC or CgD. Theorem
1 shows that the knapsack decision problem can be reduced
to the CDDP (in fact, a treelike AT with n BASs and a root
suffices). Since the knapsack decision problem is known to be
NP-complete [33] and it is straightforard to show that CDDP
is in NP, we find the following result:

Theorem 1. CDDP is NP-complete, even when restricted to
treelike ATs.

The binary knapsack decision problem (and by extension
CDDP) is known to be NP-complete [34]. It should come as no
surprise that we do not give polynomial-time methods to solve
CDPF, DgC, and CgD, but instead introduce heuristic methods.
These methods discard infeasible solutions throughout the
computation instead of at the end, making them faster than
the naive approach.

In the literature, many extensions of the binary knapsack
problem have been considered that allow less restrictive types
of objectives functions, such as quadratic [14], cubic [15] and
submodular [16] objective functions. However, the following
theorem shows that objective functions d̂ arising from cd-ATs
form the even larger class of nondecreasing functions (i.e.,
x � y implies f(x) ≤ f(y), see Definition 2).

Theorem 2. Let X be a finite set, and let f : BX → R≥0 be
any nondecreasing function. Then there is a cd-AT (T, c,d)
with B = X and d̂ = f .

It follows that we cannot use existing binary knapsack
approaches to solve DgC, since these approaches [14]–[16] put
some assumptions on d̂. Instead, we develop new techniques,
based on bottom-up methods and integer linear programm-
ming. These techniques exploit the structure of the cd-AT from
which the objective d̂ originates.

VI. TREELIKE ATS, DETERMINISTIC SETTING

For treelike ATs in the deterministic setting we focus on
CDPF. DgC and CgD then follow from (1) and (2) respectively.
These single-objective problems cannot be computed easier
because, as we will demonstrate below, we need to propagate
(part of) the Pareto front bottom-up, rather than a single
damage/cost value, to solve these problems.

A. CDPF

A naive way to solve CDPF (and with it DgC and CgD)
is by calculating ĉ(x) and d̂(x) for each x ∈ A. Since

5

|A| = 2|B|, this is impractical for large ATs, and new heuris-
tics are needed. We solve CDPF via a bottom-up approach in
which only a small set of attacks is handled at each node, and
infeasilibity is determined at each node rather than at the end.
The key insight to make this work is that at intermediate nodes,
we perform Pareto analysis in an extended domain DTrip, and
we only project to R2

≥0 at the root.
For a node v, we let Tv be the sub-AT of T with root v, and

we let Bv be its set of BASs. At the node v, we are interested
in the cost and damage of attacks on Tv , which are elements
of BBv . Suppose that Ch(v) = {v1, v2}. Since T is treelike,
one has Bv1 ∩ Bv2 = ∅. So BBv = BBv1 × BBv2 , and an
attack x on Tv can be written x = (x1,x2) for attacks x1 on
Tv1 and x2 on Tv2 . With regards to cost and damage, we find

ĉ(x) = ĉ(x1) + ĉ(x2), (4)

d̂(x) = d̂(x1) + d̂(x2) + S(x, v) d(v) (5)

where we recall that S(x, v) is defined as

S(x, v) =

xv, if γ(v) = BAS,

S(x1, v1) ∨ S(x2, v2), if γ(v) = OR,

S(x1, v1) ∧ S(x2, v2), if γ(v) = AND.

Thus, in order to correctly calculate the cost and damage of
attacks as we combine them, we need to store each attack x as
an attribute triple in the deterministic attribute triple domain:(

ĉ(x)

d̂(x)
S(x,v)

)
∈ DTrip := R≥0 × R≥0 × B.

Example 3. Consider the AT of Example 1. Each BAS has only
two possible attacks (activating that BAS or not) so for pb we
have

{(
0
0
0

)
,
(

3
0
1

)}
⊂ DTrip, and

{(
0
0
0

)
,
(

2
10
1

)}
⊂ DTrip

for fd. Combining these, we have four possible attacks on the
AND-gate dr, which is the set{(

0
0
0

)
,
(

3
0
0

)
,
(

2
10
0

)
,
(

5
110
1

)}
⊂ DTrip.

After finding the values of all attacks on v by combining
those on v1 and on v2, we discard the infeasible ones.
Infeasibility is based on two conditions:

1) In DgC, if ĉ(x) > U , then x is infeasible.
2) Other than that, feasibility is determined by Pareto op-

timality on the poset (DTrip,v), where
(

c
d
b

)
v
(

c′

d′

b′

)
if and only if c ≤ c′, d ≥ d′ and b ≥ b′. The first
two inequalities are to be expected from cost-damage
optimality. The third inequality is introduced for the
following reason: if x and x′ are two attacks on v
corresponding to (c, d, 0)ᵀ and (c′, d′, 1)ᵀ, respectively,
then potentially x′ can reach nodes higher up in T , and
thereby eventually do more damage than x. However,
whether this happens or not cannot be detected at the
level of v, and therefore we need to keep both triples.

Example 4. We continue Example 3. At dr, we have
(

0
0
0

)
@(

3
0
0

)
, so the latter is infeasible and discarded, leaving us with

the Pareto front{(
0
0
0

)
,
(

2
10
0

)
,
(

5
110
1

)}
⊂ DTrip.

This example shows why we need the third dimension: if not,
we would have discarded the attack (30) at pb for being
infeasible: (00) does the same damage at lower cost. However,
had we done so at pb, we would have concluded that it is
always optimal not to activate pb, thereby missing out on the
attack (5

110) at dr. By also storing the top node’s activation,
we ensure that activating pb is still considered feasible.

This approach can be formally defined as follows. Let U ∈
[0,∞]. For each v ∈ N , we define a Pareto front CDU (v) ⊆
DTrip (for Deterministic) of feasible attacks on v. To do this,
we define a map minU : P(DTrip)→ P(DTrip) given by

minU (X) = minv

{(
c
d
b

)
∈ X : c ≤ U

}
which returns the Pareto-optimal elements (w.r.t. the partial
order v of DTrip) of a set X that do not exceed the
cost constraint. From now we assume that T is binary, i.e.,
|Ch(v)| ∈ {0, 2} for all v. Since every AT is equivalent to
a binary one this assumption is purely to simplify notation.
We then recursively define the Pareto front CDU (v) of attribute
triples, by combining elements of CDU (v1) and CDU (v2) via (4)
and (5) and then discarding the nonfeasible triples:

CDU (v)

=

{(

0
0
0

)
,

(
c(v)
d(v)
1

)}
, if γ(v) = BAS and c(v) ≤ U,{(

0
0
0

)}
, if γ(v) = BAS and c(v) > U,

CDU (AND(v1, v2))

= minU

{(
c1+c2

d1+d2+(b1∧b2)·d(v)
b1∧b2

)
∈ DTrip

∣∣∣∣(ci
di

bi

)
∈ CDU (vi)

}
,

CDU (OR(v1, v2))

= minU

{(
c1+c2

d1+d2+(b1∨b2)·d(v)
b1∨b2

)
∈ DTrip

∣∣∣∣(ci
di

bi

)
∈ CDU (vi)

}
.

These theorems show the validity of this approach.

Theorem 3. The solution to DgC is given by
max

{
d ∈ R≥0

∣∣∣(c
d
b

)
∈ CDU (RT)

}
.

Theorem 4. The solution to CDPF is given by
minπ(CD∞(RT)), where π : DTrip → R2

≥0 is the projection
map onto the first two components.

Example 5. We continue Examples 3 and 4, for U = ∞, in
which we calculated CD∞(dr). Below shows the calculation for
CD∞(v) for every node; underlined vectors are infeasible and
are not part of CD∞(v). The top set is the solution to CDPF.

6

{(
0
0
0

)
,
(

3
0
1

)}
pb

{(
0
0
0

)
,
(

2
10
1

)}
fd

{(
0
0
0

)
,
(

3
0
0

)
,
(

2
10
0

)
,
(

5
110
1

)}
rd

{(
0
0
0

)
,
(

1
0
1

)}
ca

{(
0
0
0

)
,
(

1
200
1

)
,
(

2
10
0

)
,
(

3
210
1

)
,
(

5
310
1

)
,
(

6
310
1

)}
ps

{(00) , (1
200) , (

3
210) , (

5
310)}

B. DgC and CgD

For DgC we still have to compute a Pareto front at every
node v, instead of taking the most damaging attack satisfying
the cost constraint ĉ(x) ≤ U , for the following reason.
Suppose

(
c
d
0

)
,
(

c′

d′

1

)
are the attribute triples of two attacks

on a node v with c, c′ ≤ U and d > d′. If we would just keep
the most damaging attack, we would have to discard

(
c′

d′

1

)
;

however, similar to Example 4, this could cause us to miss
high damage attacks later on in the bottom-up process. Thus
a ‘simple’ bottom-up approach, in which only a single attack
value is propagated, does not work; the best we can do is
exclude attacks that at a node already exceed the cost budget.
For CgD even this is impossible, as attacks that do not yet
satisfy the minimum damage at a certain node may yet do so
later.

C. Complexity

Theorem 5 states that the approaches of Theorems 3 and 4
are of exponential complexity.

Theorem 5. The complexity of solving DgC and CDPF via
Theorems 3 and 4 is O(2|B|). For CDPF this cannot be
improved.

The fact that CDPF cannot be computed in less than
exponential time can be seen from Example 6 below, from
the simple reason that the Pareto front may be of exponential
size. For DgC, we have improved on the efficiency of CDPF in
practice by disregarding attacks that exceed the cost constraint
at any node. This does not work for CgD: if an attack does not
reach the damage goal at node v, that is no reason to regard it
as infeasible, because it may be combined with other attacks
to increase damage. Therefore we need the full Pareto front
to solve CgD in this fashion.

Example 6. Let T be the AT given by RT =
OR(v0, . . . , vn−1), where γ(vi) = BAS and c(vi) = d(vi) =
2i for all i < n; furthermore d(RT) = 0. Then

∀x ∈ A :

(
ĉ

d̂

)
(x) =

(∑
i : xvi

=1 2i∑
i : xvi

=1 2i

)
,

so each
(
ĉ
d̂

)
(x) is optimal in

(
ĉ
d̂

)
(A) ={(

k
k

)
∈ R2

≥0
∣∣k ∈ {0, . . . , 2n − 1}

}
. It follows that

|PF(T)| = |A| = 2|B|.

VII. DAG-LIKE ATS, DETERMINISTIC SETTING

If T is DAG-like, then the approach outlined in the previous
section does not give the correct answer to DgC and CDPF.
This is because for a node v with children v1, v2, the sub-
ATs Tv1 and Tv2 may no longer be disjoint, and so equations
(4) and (5) no longer hold. In particular, if v1 = v2, we have
ĉ(x) = ĉ(x1) = ĉ(x2) rather than (4).

A. CDPF

Instead, to solve CDPF, we introduce a novel approach
based on Biobjective Integer Linear Programming (BILP) [18],
i.e., an integer linear programming problem with two objective
functions. A BILP problem is of the following form:

minimisey∈Zn (c1·yc2·y) subject to A · y ≤ 0 (6)

where c1, c2 ∈ Rn and A ∈ Rm×n for some integers m,n.
The solution to this BILP problem is the Pareto front

min
{
(c1·yc2·y) ∈ R2

∣∣y ∈ Zn, Ay ≤ 0
}
,

where min is taken in the poset (R2,≤). Solvers for BILP
problems work by repeatedly solving single-objective integer
linear programming problems [18]. In our case, as variables
we use y ∈ {0, 1}N , where we want yv to represent S(x, v)
for an attack x (so yv = xv for v ∈ B). Then the objective
functions are

ĉ(x) =
∑
v∈B

c(v)yv, −d̂(x) = −
∑
v∈N

d(v)yv.

We now need to describe the linear constraints on y. If v is an
AND-gate, we introduce a constraint yv ≤ yw for all children
w of v; this ensures that yv = 0 whenever at least one of the
children has yw = 0. If v is an OR-gate, then we introduce
a constraint yv ≤

∑
w∈ch(v) yw. Together, these constraints

ensure that yv ≤ S(x, v) for all v. Extra constraints that ensure
the equality yv = S(x, v) are not necessary, because taking y
such that equality holds turns out to be always Pareto optimal.
This then leads to the following result:

Theorem 6. CDPF is solved by solving the BILP problem
given by

minimisey∈{0,1}N

(
−
∑

v∈N d(v)yv∑
v∈B c(v)yv

)
(7)

subject to ∀v ∈ {v′ ∈ V | γ(v′) = AND}.
∀w ∈ Ch(v). yv ≤ yw,

∀v ∈ {v′ ∈ V | γ(v′) = OR}.

yv ≤
∑

w∈ch(v)

yw

Example 7. Applying Theorem 6 to the AT and cost/damage
values of Example 1 yields the following BILP problem:

minimisey∈{0,1}N
(

yca+3ypb+2yfd
−10yfd−100ydr−200yps

)
subject to ydr ≤ yfb,

ydr ≤ yfd,
yps ≤ yca + ydr.

7

B. CgD and DgC

We solve CgD and DgC, by deriving constrained single-
objective optimization problems from (7). Associated to a
BILP problem (6) one has these single-objective problems:

minimizey∈Zn c1 · y subject to A · y ≤ 0,

c2 · y ≤ C2,

minimizey∈Zn c2 · y subject to A · y ≤ 0,

c1 · y ≤ C1.

These are standard integer linear program (ILP) problems, for
which efficient solvers exist [35]. By applying this to (7), we
can formulate DgC and CgD as single-objective ILP problems,
which can be fed to a solver.

Theorem 7. DgC and CgD are solved by solving the con-
strained single-objective optimization problems derived from
(7) with respective added constraints∑

v∈B
c(v)yv ≤ U, −

∑
v∈N

d(v)yv ≤ −L.

Note that to solve DgC and CgD via Theorem 7, one does
not need to first solve the BILP problem (7), but one can
directly solve the single-objective problem.

VIII. PROBABILISTIC COST-DAMAGE PARETO FRONT

So far, we have assumed that any BAS undertaken by the
attacker will succeed. However, in reality an attempted BAS
may or may not succeed. Following earlier work [12], [36] we
now assume a probabilistic setting in which each BAS v has
a success probability p(v). More precisely, we assume:

1) The activation of the BASs may or may not succeed;
2) The successes of different BASs are independent;
3) The attacker pays the cost of a BAS, whether its activation

succeeds or not;
4) All BASs are attempted simultaneously and paid for in

advance;
5) Each BAS can only be attempted once.

The independence assumption is standard [12], [36], while
the other assumptions lead to the most straightforward setting.
Extensions are possible: for instance, the attacker might recoup
some of the costs of failed activations, or BASs are attempted
one by one and the attacker may choose to reallocate their
budget based on BASs that have succeeded or failed their
activation thusfar. Such extensions lead to more complicated
models, and are left to future work.

Definition 5. A cdp-AT is a tuple (T, c,d,p) of an AT T and
maps c : B → R≥0, d: N → R≥0, and p: B → [0, 1].

In a cdp-AT, the damage done by an attack is a random
variable: its value depends on the actualized attack, i.e., the
BASs that succeed. Therefore, an attacker is interested in the
expected damage of an attack.

Definition 6. Let (T, c,d,p) be a cdp-AT. For x ∈ A, define
the actualized attack to be the random variable Yx on A given
by

P(Yx = y) =

{∏
v : xv=1 p(v)

yv (1− p(v))1−yv , if y � x,
0, otherwise.

We define the expected damage of an attack to be d̂E(x) =
E[d̂(Yx)] ∈ R≥0.

Example 8. We return to the setting of Example 1. We extend
the cd-AT (T, c,d) with a probability map p: B → [0, 1] given
by p(ca) = 0.2, p(pb) = 0.4 and p(fd) = 0.9. We use this to
calculate the function d̂E; we write an attack x as the vector
(xca, xpb, xfd). Then the random variable Y(0,1,1) is given by

P[Y(0,1,1) = (0, 0, 0)] = 0.6 · 0.1 = 0.06,

P[Y(0,1,1) = (0, 0, 1)] = 0.6 · 0.9 = 0.54,

P[Y(0,1,1) = (0, 1, 0)] = 0.4 · 0.1 = 0.04,

P[Y(0,1,1) = (0, 1, 1)] = 0.4 · 0.9 = 0.36.

Similar to d̂E, we also define
(

ĉ
d̂E

)
(x) = (ĉ(x), d̂E(x)) ∈

R2
≥0. We then have the following probabilistic counterparts of

CDPF, DgC, and CgD:

Problems. Given a cdp-AT (T, c,d,p), solve the following
problems:
CEDPF Cost-expected damage Pareto front: find

minv
(

ĉ
d̂E

)
(A) ⊆ R2

≥0.
EDgC Maximal expected damage given cost con-

straint: Given U ∈ R≥0, find dE,opt =
maxx : ĉ(x)≤U d̂E(x).

CgED Minimal cost given expected damage constraint:
L ∈ R≥0, find cE,opt = minx : d̂E(x)≥L ĉ(x).

Example 9. We continue Example 8. Using the definition of
d̂ from the table in Example 1, we find d̂E(0, 1, 1) = 0.06 ·
0 + 0.54 · 0 + 0.04 · 10 + 0.36 · 310 = 112.

Solving CDEPF naively is more involved than CDPF: not
only do we have to calculate d̂E(x) for exponentially many
x, but a single d̂E(x) also requires P(Yx = y) · d̂(y) for
exponentially many y. Therefore, we introduce new methods
to solve CDEPF for treelike ATs in Section IX, by adapting
the deterministic method of Section VI to account for proba-
bilities. For DAG-like ATs, we cannot simply adapt the BILP
method of Section VII, as (7) becomes nonlinear, and CDEPF,
EDgC and CgED for DAG-like ATs are left to future work.

IX. TREELIKE ATS, PROBABILISTIC SETTING

EDgC and CEDPF for treelike ATs can be solved similar to
the approach of Section VI. The main difference is that instead
of working with the structure function S(x, v), we work with
the probabilistic structure function PS(x, v) := P(S(Yx, v) =
1). With this notation we can write

d̂E(x) =
∑
v∈N

PS(x, v) d(v).

8

Let v be a node with children v1, v2, and let x ∈ A. Since
T is treelike, v1 and v2 do not have shared BASs. Since the
truth values of the BASs in Yx are independent of each other,
this means that the random variables S(Yx, v1) and S(Yx, v2)
are independent, and so we find

PS(x,OR(v1, v2))

= PS(x, v1) + PS(x, v2)− PS(x, v1) PS(x, v2), (8)
PS(x,AND(v1, v2))

= PS(x, v1) PS(x, v2). (9)

On the other hand, we can express d̂E(x) as

d̂E(x) = d̂E(x1) + d̂E(x2) + PS(x, v) d(v). (10)

Combining this with (8) and (9) we can calculate the attributes
ĉ, d̂E, PS of attacks on v from their constituent attacks
on v1 and v2. From here, we continue akin to Section VI.
More precisely, we consider the probabilistic attribute triple
domain, which is the poset (PTrip,v) given by PTrip =
R≥0 × R≥0 × [0, 1] and (c, d, p) v (c′, d′, p′) if and only
if c ≤ c′, d ≥ d′ and p ≥ p′. For every node v we define
a set CPU (v) ⊆ P(PTrip) of attribute triples. Just as in
the deterministic case, we add the requirement p ≥ p′ in
determining feasibility because a greater activation probability
of a node may lead to more damage higher up in the AT.
As in Section VI, we define a map minU : P(PTrip) →
P(PTrip) by minU (X) = min

{(c
d
p

)
∈ X : c ≤ U

}
. Define

? : [0, 1]2 → [0, 1] by p ? p′ = p + p′ − pp′. Then we again
assume that T is binary, and we define CPU (v) recursively by

CPU (v) (11)

=

{(

0
0
0

)
,

(
c(v)

p(v) d(v)
p(v)

)}
, if γ(v) = BAS and c(v) ≤ U,{(

0
0
0

)}
, if γ(v) = BAS and c(v) > U,

CPU (OR(v1, v2)) (12)

= minU

{(c1+c2
d1+d2+(p1?p2)·d(v)

p1?p2

)
∈ PTrip

∣∣∣(ci
di
pi

)
∈ CPU (vi)

}
,

CPU (AND(v1, v2)) (13)

= minU

{(c1+c2
d1+d2+p1p2 d(v)

p1p2

)
∈ PTrip

∣∣∣(ci
di
pi

)
∈ CPU (vi)

}
.

Then similar to the results in Section VI one can prove:

Theorem 8. The solution to EDgC is given by
max

{
d ∈ R≥0

∣∣∣(c
d
p

)
∈ CPU (RT)

}
.

Theorem 9. The solution to CEDPF is given by
minπ(CP∞(RT)), where π : PTrip → R2

≥0 is the projection
map onto the first two coefficients.

In the worst case, the complexity of this approach will be
the same as in Section VI; the Pareto frontier can still be of
exponential size. Typically, however, CPU (v) will be larger than
CDU (v); in the deterministic model, it is often nonoptimal to
add BASs with no damage but with extra costs to an attack,
when that attack already activates their parent nodes. However,

in the probabilistic model, attempting extra BASs that are not
needed in the deterministic model typically leads to a higher
probability of activating the parent nodes, giving another way
of increasing the cost of an attack to increase its expected
damage.

Example 10. Consider the AT with w = RT = OR(v1, v2),
with γ(vi) = BAS, c(vi) = 1, d(vi) = 0, p(vi) = 0.5 for
i = 1, 2, and d(w) = 1. For U ≥ 2 the incomplete Pareto
fronts CDU and CPU are given in the table below.

Node CDU CPU
v1, v2

{(
0
0
0

)
,
(

1
0
1

)} {(
0
0
0

)
,
(

1
0
0.5

)}
w

{(
0
0
0

)
,
(

1
1
1

)} {(
0
0
0

)
,
(

1
0.5
0.5

)
,
(

2
0.75
0.75

)}

0 0

1

c:1
p:0.5

c:1
p:0.5

In the deterministic case one vi
suffices to reach w, and activating the
other comes with extra costs without
benefit, which is infeasible. In the
probabilistic case attempting both vi
instead comes at the same extra cost, but it increases the
expected damage because it increases the probability of w
being reached.

For DAG-like ATs in the probabilistic setting one cannot
transpose our BILP approach of Section VII, because the
associated equations become nonlinear. For instance, if we
introduce a vector ~y ∈ [0, 1]N where yv represents PS(x, v),
then for v = AND(v1, v2) we get a constraint yv = yv1 · yv2 ,
which is nonlinear. In Section VII, this issue was circum-
vented because this equation can be linearized if one knows
yv ∈ {0, 1}, but in general this is not possible. Therefore, we
leave CEDPF, CgED and EDgC for DAG-like ATs as an open
problem.

X. EXPERIMENTS

We tested the validity of our methods by executing them
on two established ATs from the literature; these model the
attacks on private information of valuable assets in a wireles
sensor network [22] and on a data server on a network behind
a firewall [23]. We also evaluate computation time on a suite of
randomly generated ATs. As discussed in Section II, existing
approaches cannot be applied to solve the Cg(E)D, (E)DgC
and C(E)DPF problems; instead, we compare computation
time to an enumerative method that goes through all attacks
to find the Pareto optimal ones.

The methods are implemented in Matlab and executed on
PC with an Intel Core i7-10750HQ 2.8GHz processor and
16GB memory. The source code can be found at [24]. The
BILP problems are solved by translating them into single-
objective problems via the methods of [18] in the YALMIP
environment [21], which translates them into the Gurobi solver
[19], a state-of-the-art optimizer that can handle ILP problems.
We find that our methods compute C(E)DPF considerably
faster than the naive method, and that the resulting Pareto front
provides valuable insight into the weak points of the system.

9

3;0.94;0.1

3;0.3

2;0.7

10

1;0.5

1. obtain
messages

password
cracked

4;0.5 3;0.3

2. analytical
reasoning

3.brute
force

2;0.7

6. search
information

5

node
compromised

2;0.5

4. look
for nodes

3;0.5

5. crack
security

15

global info
compromised

4;0.9

7. high-monitor
equipment

global traffic
info collection

3;0.7

9. MAC
layer

2;0.7

8. physical
layer

3;0.7

10. appliance
layer

3;0.9

11. compute local
location info

location info
captured

messages
deciphered

info obtained
through node

global
eavesdropping

3;0.9

12. group monitor
equipment

3;0.9

13. traffic information
collection

14. analyze collected
information

5

group
eavesdropping

1;0.7

15. find base
station

3;0.5

16. follow
hop-by-hop

local
eavesdropping

location info
eavesdropped

1;0.7

19. look for
base station

20. crack
password

1;0.3

21. send malicious
codes to base station

3;0.3

22. malicious
codes ran

physical
theft

code theft

45

5

location privacy
leakage

base station
compromised

17. purchase
from 3rd party

18. internal
leakage

15

location info
purchased

Fig. 4: Attack tree for privacy attacks on a giant panda preservation IOT monitoring system [22]. Nonzero damage values (in
million USD) are in bold, BASs have cost values (unitless) and probabilities inscribed.

147

150

161100

150

147

3. RSH login to
SMTP server

100

1. internet connection
to SMTP server

161

2. FTP
rhost attack

SMTP authentication
bypassed

10.8

user access to
SMTP server

155

4. LICQ remote-
to-user attack

5.0

user access
to terminal

5. local buffer overflow
attack at "at" daemon

7.0

root access
to terminal

6. internet connection
to FTP server

9. FTP
rhost attack

FTP authentication
bypassed

155

7. attack
via SSH

8. attack
via FTP

SSH buffer
overflow

FTP buffer
overflow

10.5

root access to
FTP server

10. RSH login
to SMTP server

login to
FTP server

13.5

user access to
FTP server

connect to
data server

155

11. LICQ remote-
to-user attack

user access to
data server

163

12. suid buffer
overflow

36.0

root access to
data server

Fig. 5: Attack tree for a data server on a network [23]. Nonzero
damage values (unitless) are in bold, BASs have cost (in
seconds) inscribed.

A. IoT sensor network for wildlife observation

The first AT [22] is treelike (Fig. 4). It shows attacks
on a wireless IoT sensor network that have the goal of
obtaining the location information of valuable assets; in this
case, giant pandas in a reservation in China [22]. The costs
of BASs are given in [22] as unitless values 1–5. Detection
probability is also given as a value 1–5; we take this as the
BAS’s success probability by converting it to a value 0.1–0.9.

The work [22] does not contain damage values; instead, we
estimate these from the economic value of giant pandas and
the average reservation size [37]. The top event (the location
information of one giant panda) only does minor damage
compared to some of the internal nodes; e.g, if the base station
is compromised, all pandas’ location information is leaked.

On this AT, we first disregard probability and calculate
the cost-damage Pareto front bottom-up via Theorem 4. The
resulting Pareto front is shown in Fig. 6a, and the corre-
sponding Pareto-optimal attacks are listed as subsets of B
(where bi is the BAS numbered i in Fig. 4). As we can see,
only a few of the 222 possible attacks are Pareto optimal.
Furthermore, every optimal attack contains at least one of the
minimal attacks {b18}, {b19, b20} and {b21, b22}, and many
contain two of them. These three minimal attacks do a lot of
damage at relatively small cost; indeed, after these the curve
tapers off, and extra cost beyond this has less damage impact.
Thus, these attacks require the most defense, and security
improvements should focus on location information leakage by
internal sources (b18) and base station compromise by either
physical theft (b19, b20) or code theft (b21, b22). After defenses
are put in place, a new cost-damage analysis is needed to see
whether attack risks have been mitigated satisfactorily.

We also calculate the cost-expected damage Pareto front
via Theorem 9. It has 31 Pareto-optimal attacks; this increase
compared to the deterministic situation comes from the fact
that in the probabilistic case it is beneficial to activate multiple
children of an OR-gate, as in Example 10. Again the attack
{b18} is Pareto-optimal at (3, 18); however, {b19, b20} and
{b21, b22} have expected damage 10.5 and 4.5, respectively,
and at cost 4 are no longer Pareto-optimal. Instead, the next
Pareto-optimal attack is {b18, b19, b20}, which targets two
valuable low-level nodes. In this probabilistic setting, we
see that internal local information leakage (b18) is part of
every Pareto-optimal attack, which suggests this is the most
important attack to defend against.

10

0 10 20 30
0

20

40

60

80

100
da

m
ag

e

Attack BASs cost damage top
A1 {b18} 3 20 y
A2 {b19, b20} or {b21, b22} 4 50 y
A3 A1 ∪A2 7 65 y
A4 A3 ∪ {b1, b3} 11 75 y
A5 A3 ∪ {b7, b8} 13 80 y
A6 A4 ∪A5 17 90 y
A7 A6 ∪ {b4, b5} 22 95 y
A8 A7 ∪ {b11, b12, b13} 30 100 y

(a) Cost-damage Pareto front for Fig. 4.

0 20 40 60
0

20

40

60

ex
pe

ct
ed

da
m

ag
e

Attack BASs cost damage top
A1 {b18} 3 18.0 y
A2 A1 ∪ {b19, b20} 7 27.6 y
A3 A2 ∪ {b21, b22} 11 30.8 y
A4 A2 ∪ {b7, b8} 13 37.0 y
A5 A4 ∪ {b9} 16 39.8 y
...

...
...

...

(b) Cost-expected damage Pareto front for Fig. 4

0 500 1,000
0

20

40

60

80

100

da
m

ag
e

Attack BASs cost damage top
A1 {b6, b8} 250 24 n
A2 A1 ∪ {b11, b12} 568 60 y
A3 A2 ∪ {b1, b2, b3} 976 70.8 y
A4 A3 ∪ {b4} 1131 75.8 y
A5 A4 ∪ {b5} 1281 82.8 y

(c) Cost-damage Pareto front for Fig. 5.

Fig. 6: Pareto fronts for the example ATs, together with the
corresponding attacks as subsets of B. Except for A1 of (c)
all optimal attacks reach the top node.

B. Data server on a network

The second AT we consider represents the attack on a data
server through a firewall using known exploits [23]. Since
is DAG-like we only consider the deterministic case. The
damage values are from [23] and represent unitless composites
aggregating lost revenue, non-productive downtime, damage
recovery, public embarassment, and law penalty. The cost
is measured in time spent by the attacker, and the values
are taken from [38], where the time taken by similar at-
tacks is modeled via exponential distributions; we take the
expected value as each node’s duration. The rates in [38]
are unitless, so we assume they are in 1

100 s ; this does not
affect the Pareto front except for scaling. We have slightly
changed the AT compared to [23] as the presentation there
focused on vulnerabilities rather than attacks. Note that some
nodes, such as UserAccessToTerminal, are superfluous if
one only cares about activating the top node since they require
UserAccessToSMTPServer, but they do play a role in cost-
damage analysis since they carry damage values.

The results are depicted in Fig. 6c. There are 5 nonzero
Pareto-optimal attacks. Furthermore, every Pareto-optimal at-
tack contains the previous one. This implies that FTP buffer
overflow attacks on the FTP server (b6, b8) are the most
important BASs to defend against, followed by b11 and b12,
etc. Note that of these Pareto optimal attacks only A2 would
have been found by a minimal attack analysis.

C. Computation time: Case studies

We also measure the computation time of both our bottom-
up and BILP methods for our analyses where applicable. We
also compare it to an enumerative approach in which we
calculate the cost and damage for each possible attack, and
keep only the Pareto-optimal ones. For Fig. 4, this amounts to
222 ≈ 4 · 106 attacks. The bottom-up method is about 10× as
fast as BILP, and both outperform the enumerative method by
an enormous margin, especially in the larger Fig. 4.

To check the robustness of our timing results, we also
evaluate our methods on the same ATs, but with random c,d,p
values on each node (c(v) ∈ {1, . . . , 10}, d(v) ∈ {0, . . . , 10},
p(v) ∈ {0.1, 0.2, . . . , 1.0}). The average computation time and
standard deviations are given in Table III. For the bottom-
up methods, the results conform to our earlier results, but
BILP is slower; this may be because the random ATs contain
considerably more nonzero values. The enumerative method
is skipped because it is a lot slower than our new approaches;
we compare it to our methods more comprehensively below.

D. Computation time: Randomly generated ATs

We also apply our methods to a suite of ATs, randomly gen-
erated through a method adapted from [39]. More specifically,
we generate ATs by taking literature ATs (see Table IV) and
combining them in one of the three following ways (see [39]):

1) We take a random BAS from the first AT and replace it
with the root of the second AT, thus joining the two ATs;

2) We give the roots of the two ATs a common parent with
a random type;

11

True c, d, (p) Random c, d, (p)
AT time (BU) time (BILP) time (enumerative) time (BU) time (BILP) time (enumerative)
Fig. 4 deterministic 0.044s 0.438s 34h 0.037s±0.004s 3.144s±0.526s
Fig. 4 probabilistic 0.047s n/a 49h 0.051s±0.012s n/a
Fig. 5 deterministic n/a 0.380s 79.53s n/a 1.558s±0.252s 84.19s±4.79s

TABLE III: Computation time for C(E)DPF for the given ATs using bottom-up methods (Theorems 4 & 9), BILP (Theorem
6) and enumerative methods for their given c,d,p values, and average and standard deviations over 100 random c,d,p values.

Source |N | treelike Source |N | treelike
[11] Fig. 1 12 no [40] Fig. 3 8 yes
[11] Fig. 8 20 no [40] Fig. 5 21 yes
[11] Fig. 9 12 no [40] Fig. 7 25 yes
[8] Fig. 1 16 no [41] Fig. 2 20 yes

[17] Fig. 1 15 yes

TABLE IV: ATs from the literature used as building blocks.
The trees from [41] and [17] are attack-defense trees; only the
root component of the attack part was used for these trees.

3) Same as the previous, but we also identify two randomly
chosen BASs, one from each AT.

For each integer 1 ≤ n ≤ 100, we combine ATs from Table IV
via a method randomly drawn from the three above until the
resulting AT satisfies |N | ≥ n. We do this five times for each
n, yielding a testing suite TDAG of 500 DATs, with random
c,d,p as above. To test our bottom-up methods, we also create
a suite Ttree of treelike ATs, using the first two combining
methods above and only the treelike ATs from Table IV.

We evaluate computation times and average the results in
groups of ATs grouped by bNc/10; see Fig. 7. We only
evaluated the enumerative method for the first 3 groups. Again,
BU is faster than BILP, and both are considerably faster than
the enumerative approach. For large ATs probabilistic BU is
slower than deterministic BU, which is not yet seen from the
case study (N = 38). This is probably because not only there
are exponentially many attacks to consider, each attack also
considers exponentially many actualized attacks to calculate
expected damage, see Example 8.

XI. CONCLUSION

This paper introduced two novel methods to solve cost-
damage problems for attack trees, both by optimizing damage
(resp. cost) under a cost (resp. damage) constraint, and by cal-
culating the cost-damage Pareto front. For treelike ATs, this is
done via bottom-up methods, both in the deterministic and the
probabilistic case. For DAG-like ATs in the deterministic case,
we introduce a method based on integer linear programming.

There are multiple avenues for further research. An obvious
one is the probabilistic case for DAG-like ATs, which is not
discussed in this paper. One approach would be to use a
bottom-up approach, but in a polynomial ring with formal
variables for nodes that occur multiple times, rather than in the
real numbers. In that way, one can keep track of which nodes
occur twice, and tweak addition to prevent double counting.
Another extension is to compare the formal, provably optimal
approach presented in this paper with a genetic algorithm
approach to multiobjective optimization to approximate the
Pareto front [32]. From experiments it could be established to

8 20 40 60 80 100 121
10−2
10−1
100
101
102
103

m
ea

n
tim

e
(s

) Enum BU BILP

(a) Ttree deterministic

8 20 40 60 80 100 121
10−2
10−1
100
101
102
103

m
ea

n
tim

e
(s

)
Enum BU

(b) Ttree probabilistic

8 20 40 60 80 100 115
10−2
10−1
100
101
102
103

m
ea

n
tim

e
(s

)

Enum BILP

(c) TDAG deterministic
BU BILP enum∗

Ttree det.
min <0.01s 0.563s 0.266s
mean 0.159s 11.12s 86.87s
max 1.141s 44.86s 3917s

Ttree prob.
min <0.01s 0.313s
mean 42.30s 426.0s
max 1335s 3853s

TDAG prob.
min 0.781s 0.313s
mean 11.09s 296.3s
max 50.08s 5619s

(d) Overall statistics. ∗Only ATs with N < 30.

Fig. 7: Computation time on randomly generated ATs. Means
over subsets grouped by bN/10c.

what extent the performance gain (if any) from using genetic
algorithms comes at an accuracy cost. Finally, the cost and
damage values may not be precisely known, but carry some
uncertainty. A more elaborate analysis can incorporate this
uncertainty, for example using fuzzy numbers, to obtain a
robust version of the cost-damage Pareto front.

12

REFERENCES

[1] Y. Roudier and L. Apvrille, “SysML-Sec: A model
driven approach for designing safe and secure systems,”
in MODELSWARD, IEEE, 2015, pp. 655–664, ISBN:
978-989-758-136-6.

[2] L. Apvrille and Y. Roudier, “SysML-sec: A sysML
environment for the design and development of se-
cure embedded systems,” in APCOSEC, 2013. [Online].
Available: http://www.eurecom.fr/publication/4186.

[3] Isograph, AttackTree. [Online]. Available: https://www.
isograph.com/software/attacktree/.

[4] J. R. Surdu, J. M. Hill, R. Dodge, S. Lathrop,
and C. Carver, “Military academy attack/defense net-
work simulation,” in Proceedings of advanced simula-
tion technology symposium. Military, government, and
aerospace simulation, 2003.

[5] A. Yasinisac and J. H. Pardue, “A process for assessing
voting system risk using threat trees,” Journal of Infor-
mation Systems Applied Research, vol. 4, no. 1, p. 4,
2011.

[6] F. Kammüller, J. R. Nurse, and C. W. Probst, “Attack
tree analysis for insider threats on the iot using isabelle,”
in International Conference on Human Aspects of In-
formation Security, Privacy, and Trust, Springer, 2016,
pp. 234–246.

[7] B. Fila and W. Wideł, “Efficient attack-defense tree
analysis using pareto attribute domains,” in 2019
IEEE 32nd Computer Security Foundations Symposium
(CSF), IEEE, 2019, pp. 200–20 015.

[8] F. Arnold, D. Guck, R. Kumar, and M. Stoelinga,
“Sequential and Parallel Attack Tree Modelling,” in
SAFECOMP, ser. LNCS, vol. 9338, Springer Interna-
tional Publishing, 2015, pp. 291–299. DOI: 10 .1007 /
978-3-319-24249-1\ 25.

[9] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling
using attack trees,” Journal of Computing Sciences in
Colleges, vol. 23, no. 4, pp. 124–131, 2008.

[10] P. Hopkin, Fundamentals of risk management: under-
standing, evaluating and implementing effective risk
management. Kogan Page Publishers, 2018.

[11] R. Kumar, E. Ruijters, and M. Stoelinga, “Quantitative
attack tree analysis via priced timed automata,” in Inter-
national Conference on Formal Modeling and Analysis
of Timed Systems, Springer, 2015, pp. 156–171.

[12] C. E. Budde and M. Stoelinga, “Efficient algorithms
for quantitative attack tree analysis,” in CSF, IEEE
Computer Society, 2021, pp. 501–515. DOI: 10.1109/
CSF51468.2021.00041.

[13] K. Dudziński and S. Walukiewicz, “Exact methods for
the knapsack problem and its generalizations,” en, Eu-
ropean Journal of Operational Research, vol. 28, no. 1,
pp. 3–21, Jan. 1987, ISSN: 03772217. DOI: 10.1016/
0377- 2217(87)90165- 2. [Online]. Available: https : / /
linkinghub.elsevier.com/retrieve/pii/0377221787901652
(visited on 02/24/2022).

[14] G. Gallo, P. L. Hammer, and B. Simeone, “Quadratic
knapsack problems,” in Combinatorial Optimization,
M. W. Padberg, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1980, pp. 132–149, ISBN: 978-3-
642-00802-3. DOI: 10 . 1007 / BFb0120892. [Online].
Available: https://doi.org/10.1007/BFb0120892.

[15] R. J. Forrester and L. A. Waddell, “Strengthening a
linear reformulation of the 0-1 cubic knapsack problem
via variable reordering,” en, Journal of Combinatorial
Optimization, Jan. 2022, ISSN: 1382-6905, 1573-2886.
DOI: 10.1007/s10878-021-00840-z. [Online]. Available:
https://link.springer.com/10.1007/s10878-021-00840-z
(visited on 02/24/2022).

[16] M. Sviridenko, “A note on maximizing a submodular
set function subject to a knapsack constraint,” Oper-
ations Research Letters, vol. 32, no. 1, pp. 41–43,
2004, ISSN: 0167-6377. DOI: https : / / doi . org / 10 .
1016 / S0167 - 6377(03) 00062 - 2. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii /
S0167637703000622.

[17] B. Kordy and W. Wideł, “On quantitative analysis of
attack–defense trees with repeated labels,” in Interna-
tional Conference on Principles of Security and Trust,
Springer, 2018, pp. 325–346.

[18] M. Özlen and M. Azizoğlu, “Multi-objective integer
programming: A general approach for generating all
non-dominated solutions,” European Journal of Opera-
tional Research, vol. 199, no. 1, pp. 25–35, 2009.

[19] Gurobi Optimization, LLC, Gurobi Optimizer Reference
Manual, 2022. [Online]. Available: https://www.gurobi.
com.

[20] T. Stidsen, K. A. Andersen, and B. Dammann, “A
branch and bound algorithm for a class of biobjective
mixed integer programs,” Management Science, vol. 60,
no. 4, pp. 1009–1032, 2014.

[21] J. Lofberg, “Yalmip: A toolbox for modeling and
optimization in matlab,” in 2004 IEEE international
conference on robotics and automation (IEEE Cat. No.
04CH37508), IEEE, 2004, pp. 284–289.

[22] R. Jiang, J. Luo, and X. Wang, “An attack tree based
risk assessment for location privacy in wireless sen-
sor networks,” in 2012 8th International Conference
on Wireless Communications, Networking and Mobile
Computing, IEEE, 2012, pp. 1–4.

[23] R. Dewri, I. Ray, N. Poolsappasit, and D. Whitley,
“Optimal security hardening on attack tree models of
networks: A cost-benefit analysis,” International Jour-
nal of Information Security, vol. 11, no. 3, pp. 167–188,
2012.

[24] M. Lopuhaä-Zwakenberg. (2023). “Code and data used
in the experiment section of the publication: Cost-
damage analysis of attack trees,” [Online]. Available:
https://data.4tu.nl/datasets/afd36f9c-4e84-4420-80f4-
66ca02b217bb.

[25] A. Bobbio, L. Egidi, and R. Terruggia, “A methodology
for qualitative/quantitative analysis of weighted attack

13

http://www.eurecom.fr/publication/4186
https://www.isograph.com/software/attacktree/
https://www.isograph.com/software/attacktree/
https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1109/CSF51468.2021.00041
https://doi.org/10.1109/CSF51468.2021.00041
https://doi.org/10.1016/0377-2217(87)90165-2
https://doi.org/10.1016/0377-2217(87)90165-2
https://linkinghub.elsevier.com/retrieve/pii/0377221787901652
https://linkinghub.elsevier.com/retrieve/pii/0377221787901652
https://doi.org/10.1007/BFb0120892
https://doi.org/10.1007/BFb0120892
https://doi.org/10.1007/s10878-021-00840-z
https://link.springer.com/10.1007/s10878-021-00840-z
https://doi.org/https://doi.org/10.1016/S0167-6377(03)00062-2
https://doi.org/https://doi.org/10.1016/S0167-6377(03)00062-2
https://www.sciencedirect.com/science/article/pii/S0167637703000622
https://www.sciencedirect.com/science/article/pii/S0167637703000622
https://www.gurobi.com
https://www.gurobi.com
https://data.4tu.nl/datasets/afd36f9c-4e84-4420-80f4-66ca02b217bb
https://data.4tu.nl/datasets/afd36f9c-4e84-4420-80f4-66ca02b217bb

trees,” IFAC Proceedings Volumes, vol. 46, no. 22,
pp. 133–138, 2013.

[26] A. Lenin, J. Willemson, and D. P. Sari, “Attacker
profiling in quantitative security assessment based on
attack trees,” in Secure IT Systems, K. Bernsmed
and S. Fischer-Hübner, Eds., Cham: Springer Interna-
tional Publishing, 2014, pp. 199–212, ISBN: 978-3-319-
11599-3.

[27] A. Jürgenson and J. Willemson, “Computing exact
outcomes of multi-parameter attack trees,” in OTM
Confederated International Conferences” On the Move
to Meaningful Internet Systems”, Springer, 2008,
pp. 1036–1051.

[28] T. Ingoldsby, “Fundamentals of capabilities-based at-
tack tree analysis,” Amenaza Technologies Limited,
pp. 406–917, 2005.

[29] É. André, D. Lime, M. Ramparison, and M. Stoelinga,
“Parametric analyses of attack-fault trees,” Fundamenta
Informaticae, vol. 182, no. 1, pp. 69–94, 2021.

[30] S. Mauw and M. Oostdijk, “Foundations of attack
trees,” in International Conference on Information Se-
curity and Cryptology, Springer, 2005, pp. 186–198.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A
fast and elitist multiobjective genetic algorithm: Nsga-
ii,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

[32] S. Ali, P. Arcaini, and T. Yue, “Do quality indicators
prefer particular multi-objective search algorithms in
search-based software engineering?” In International
Symposium on Search Based Software Engineering,
Springer, 2020, pp. 25–41.

[33] M. R. Garey and D. S. Johnson, Computers and in-
tractability. San Francisco: Freeman, 1979.

[34] R. M. Karp, “Reducibility among combinatorial prob-
lems,” in Complexity of computer computations,
Springer, 1972, pp. 85–103.

[35] D.-S. Chen, R. G. Batson, and Y. Dang, Applied integer
programming: modeling and solution. John Wiley &
Sons, 2011.

[36] A. Rauzy, “New algorithms for fault trees analysis,”
Reliability Engineering & System Safety, vol. 40, no. 3,
pp. 203–211, 1993.

[37] F. Wei, R. Costanza, Q. Dai, N. Stoeckl, X. Gu, S.
Farber, Y. Nie, I. Kubiszewski, Y. Hu, R. Swaisgood, et
al., “The value of ecosystem services from giant panda
reserves,” Current Biology, vol. 28, no. 13, pp. 2174–
2180, 2018.

[38] F. Zhao, H. Huang, H. Jin, and Q. Zhang, “A hybrid
ranking approach to estimate vulnerability for dynamic
attacks,” Computers & Mathematics with Applications,
vol. 62, no. 12, pp. 4308–4321, 2011.

[39] M. Lopuhaä-Zwakenberg and M. Stoelinga, “Attack
time analysis in dynamic attack trees via integer linear
programming,” arXiv preprint arXiv:2111.05114, 2021.

[40] F. Arnold, H. Hermanns, R. Pulungan, and M. Stoelinga,
“Time-dependent analysis of attacks,” in Interna-

tional Conference on Principles of Security and Trust,
Springer, 2014, pp. 285–305.

[41] M. Fraile, M. Ford, O. Gadyatskaya, R. Kumar, M.
Stoelinga, and R. Trujillo-Rasua, “Using attack-defense
trees to analyze threats and countermeasures in an
atm: A case study,” in IFIP Working Conference on
The Practice of Enterprise Modeling, Springer, 2016,
pp. 326–334.

APPENDIX

A. Proof of Theorem 2

Theorem 2. Let X be a finite set, and let f : BX → R≥0 be
any nondecreasing function. Then there is a cd-AT (T, c,d)
with B = X and d̂ = f .

Proof. Define n = |X|. Let f : BX → R≥0 be a nondecreas-
ing function, and let x1, . . . ,x2n be an ordering of Bn such
that f(xi) ≤ f(xi+1) for all i < 2n, and such that xi � xj

implies i ≤ j for all i and j. Since f is nondecreasing, these
two conditions can be fulfilled simultaneously. Furthermore,
define an AT T by having B = X and non-leaf nodes
{Ai, Oi}i≤2n and RT given by

Ai = AND({v ∈ B|xiv = 1}),
Oj = OR({Ai|i ≥ j}),
RT = AND({Oj | j ≤ 2n}).

Furthermore, we define d : N → R≥0 by

d(v) = 0 ∀v ∈ B,
d(Ai) = 0 ∀i ≤ 2n,

d(O1) = f(x1),

d(Oj+1) = f(xj+1)− f(xj) ∀j < 2n,

d(RT) = 0.

Note that RT does not play a role in the cost-damage analysis
and is here purely to satisfy the condition of T having a root.
Now consider an attack xi; then S(xi, Aj) = 1 if and only if
xj � xi. It follows that S(xi, Oj) = 1 if and only if there is
an xk with j ≤ k and xj � xi. The latter can only happen
when j ≤ i, and so S(xi, Oj) = 1 if and only if j ≤ i. It
follows that

d̂(xi) =
∑
j≤i

d(Oj) = f(xi)

and since this holds for all i, we have f = d̂.

B. Proof of Theorem 1

Theorem 1. CDDP is NP-complete, even when restricted to
treelike ATs.

Proof. First, we show that CDDP is in NP. A witness of a
CDDP problem determined by (T, c,d, U, L) is given by an
attack x ∈ A; to verify this we need to calculate ĉ(x) and
d̂(x). By Definition 4, the former can be calculated in O(|B|)
time. The latter can be calculated in O(|N | + |E|) time, as
calculating S (x, v) for all v takes O(|N | + |E|) time via
Definition 3. We conclude that CDDP is in NP.

14

Consider a binary knapsack decision problem, i.e. two linear
functions f, g : Bn → R≥0, an upper bound U and a lower
bound L; the problem is to determine whether there exists a
x ∈ Bn such that f(x) ≥ L and g(x) ≤ U . This problem is
known to be NP-complete [33], and we prove that the cost-
damage decision problem by transforming the binary knapsack
decision problem into it.

Since f and g are linear and their images lie in R≥0,
there exist f1, . . . , fn, g1, . . . , gn ∈ R≥0 such that f(x) =∑n

i=1 fixi and g(x) =
∑n

i=1 fixi. Now define a cd-AT
(T, c,d) by taking N = {v1, . . . , vn,RT }, with the vi BASs
and RT = AND(v1, . . . , vn). Furthermore, take c(vi) = gi,
and d(vi) = fi and d(RT) = 0. Then ĉ(x) = g(x) and
d̂(x) = f(x), and so a solution to the cost-damage decision
problem is a solution to the binary knapsack decision problem.
Since (T, c,d) is polynomial (even linear) in the size of the
original knapsack problem, this shows that the cost-damage
decision problem is NP-complete.

C. Proof of Theorem 5

Before we prove the theorem, we first consider the following
auxiliary lemma.

Lemma 1. Let T = (N,E) be a binary tree, i.e., Ch(v) ∈
{0, 2} for all v ∈ N . For a non-leaf node v, let b(v) be the
number of leaf descendants of v (with edges pointing away
from the root). Let v1, . . . , vK be an enumeration of the non-
leaf nodes of T such that b(vi) ≤ b(vj) whenever i ≤ j. Then
b(vi) ≤ i+ 1.

Proof. We prove this by induction on |N |; it is clearly true
if |N | = 3, where the single internal node, the root, has two
leaves as children. Let T be a full binary tree with |N | > 3,
and let RT be its root; let a1, a2 be its children. Furthermore,
let Ti = (Ni, Ei) be the subtree consisting of ai and its
descendants. Let v1, . . . , vK be an enumeration of the non-
leaf nodes of N such that b(vi) ≤ b(vj) whenever i ≤ j. Let
i ≤ K; we aim to prove that b(vi) ≤ i+1. If vi ∈ N1, define
r := |{j ≤ i | vj ∈ N1}|. Then r ≤ i. On the other hand, if
we restrict the sequence v1, . . . , vK to just elements of N1, the
resulting sequence satisfies the conditions of the Lemma for
T1, and vi is the r-th element in this sequence. It follows from
the induction hypothesis that b(vi) ≤ r + 1; hence certainly
b(vi) ≤ i+1. The case that vi ∈ N2 is handled similarly. The
last remaining case is vi = RT ; but this happens when i = K
as RT is necessarily the last element of the sequence. Since
T is a binary tree, one has K = |B|−1, from which this case
also follows.

Theorem 5. The complexity of solving DgC and CDPF via
Theorems 3 and 4 is O(2|B|). For CDPF this cannot be
improved.

Proof. At a node v with children v1, v2, we have to do
at most |CDU (v1)| · |CDU (v2)| computations. We also have
|CDU (v)| ≤ |CDU (v1)| · |CDU (v2)|. Since |CDU (v)| ≤ 2 if v ∈ B,
one straightforwardly proves by induction that for inner nodes
one has |CDU (v)| ≤ 2b(v), where b(v) is the number of BAS

descendants of v as in Lemma 1. It also follows that at v we
have to do at most 2b(v) computations. Let v1, . . . , v|B|−1 be
an enumeration of N \ B such that b(vi) ≤ b(vj) whenever
vi ≤ vj ; then the total number of computations is equal to

|B|−1∑
i=1

2b(v) ≤
|B|−1∑
i=1

2i+1 = 2|B|+1 − 2, (14)

where the inequality follows from Lemma 1. This shows
the statement about complexity. The fact that this cannot be
improved for CDPF follows from Example 6, which shows that
the Pareto front can be of size 2|B|; in particular, outputting
it takes at least that much time.

D. Proofs of Theorems 6 and 7
We only prove Theorem 6, as the proof of Theorem 7 is

essentially the same but less involved, as the optimization is
only done in one dimension.

Theorem 6. CDPF is solved by solving the BILP problem
given by

minimisey∈{0,1}N

(
−
∑

v∈N d(v)yv∑
v∈B c(v)yv

)
(7)

subject to ∀v ∈ {v′ ∈ V | γ(v′) = AND}.
∀w ∈ Ch(v). yv ≤ yw,

∀v ∈ {v′ ∈ V | γ(v′) = OR}.

yv ≤
∑

w∈ch(v)

yw

Proof. Let y ∈ BN satisfy the conditions of (6), and let
x ∈ BB be the attack given by xv = yv for v ∈ B. We
claim that yv ≤ S(x, v) for all v ∈ N , and we prove this by
induction; clearly it is true for BASs. Suppose the claim is
true for v1, . . . , vn, and consider v = AND(v1, . . . , vn). Then
(6) amounts to yv ≤ min{yvi | i ≤ n}. By the induction
hypothesis we then have

yv ≤ min{yvi | i ≤ n} ≤ min{S(x, vi) | i ≤ n} = S(x, v).
(15)

Similarly, if v = OR(v1, . . . , vn), we get

yv ≤ min

1,
∑
i≤n

yvi

≤ min

1,
∑
i≤n

S(x, vi)

=

{
0, if S(x, vi) = 0 for all i,
1, otherwise

= S(x, v).

This proves the claim.
We now continue with the proof of the theorem. Let F be

the set of y satisfying the conditions of (6), and write for
y ∈ F :

f(y) =
∑
v∈B

c(v)yv, g(y) = −
∑
v∈N

d(v)yv.

15

Our aim is to prove the following equality:

{(c
−d)|(c

d) ∈ PF(T)} = min
{(

f(y)
g(y)

)∣∣∣y ∈ F} , (16)

where the min on the RHS is taken in the poset (R2,≤). We
first prove “⊇”. Let y ∈ F be such that

(
f(y)
g(y)

)
is minimal.

Let x ∈ A be such that xv = yv for all v ∈ B, and let y′ ∈ BN

be given by y′v = S(x, v) for all v. A straightforward induction
proof shows that y′ ∈ F , and by the claim we have yv ≤ y′v
for all v ∈ N , with equality when v ∈ B. It follows that
f(y) = f(y′) and g(y) ≥ g(y′). Since

(
f(y)
g(y)

)
is minimal,

this must be an equality, and we get(
f(y)
g(y)

)
=
(

f(y′)

g(y′)

)
=
(

ĉ(x)

−d̂(x)

)
.

It remains to be shown that
(

ĉ(x)

d̂(x)

)
∈ PF(T). Let x′′ ∈ A be

such that ĉ(x′) ≤ ĉ(x) and d̂(x′′) ≥ d̂(x). Let y′′ ∈ BN be
such that y′′v = S(x′′, v) for all v; then again y′′ ∈ F , and(

f(y′′)

g(y′′)

)
=
(

ĉ(x′′)

−d̂(x′′)

)
≤
(

ĉ(x)

−d̂(x)

)
=
(

f(y)
g(y)

)
.

Since
(

f(y)
g(y)

)
is minimal, this means that equality must hold

here; this shows that x is Pareto optimal, and so we have
shown “⊇” in (16).

The argument to prove “⊆” is very similar. Let x ∈ A be
such that

(
ĉ(x)

d̂(x)

)
∈ PF(T), and let y ∈ BN be given by

yv = S(x, v). Then y ∈ F and
(

f(y)
g(y)

)
=
(

ĉ(x)

−d̂(x)

)
; we need

to show that this vector is minimal. Let y′ ∈ F be such that(
f(y′)

g(y′)

)
≤
(

f(y)
g(y)

)
. Define x′′ ∈ A by x′′v = y′v for all v ∈ B,

and define y′′ ∈ BN by y′′v = S(x′′, v) for all v ∈ N . Similar
to the above we have y′′ ∈ F and

(
f(y′′)

g(y′′)

)
≤
(

f(y′)

g(y′)

)
. It

follows that we have(
ĉ(x′′)

−d̂(x′′)

)
=
(

f(y′′)

g(y′′)

)
≤
(

f(y′)

g(y′)

)
≤
(

f(y)
g(y)

)
=
(

ĉ(x)

−d̂(x)

)
.

Since x is Pareto optimal by assumption, the above must have
equalities throughout. In particular

(
f(y′)

g(y′)

)
=
(

f(y)
g(y)

)
, which

proves that y is minimal. This shows “⊆” in (16), completing
the proof.

E. Proofs of Theorems 3, 4, 8 and 9

We will show that all these theorems follow from a shared
main result, namely Theorem 10 below. In order to formulate
it, we first need a little more notation. For a node v, we let
Tv = (Nv, Ev) be the sub-DAG of T consisting of v and all its
descendants, together with its set of BASs Bv , set of attacks
Av , cost, damage, and expected damage functions ĉv , d̂v and
d̂E,v:

Nv = {w ∈ N | ∃ path v → w},
Ev = E ∩ (Nv ×Nv),

Tv = (Nv, Ev),

Bv = B ∩Nv,

Av = BBv ,

ĉv(x) =
∑

w∈Bv

c(w)xw, for x ∈ Av,

d̂v(x) =
∑

w∈Nv

d(w) S(w), for x ∈ Av,

d̂E,v(x) = E
[
d̂v(Yx)

]
, for x ∈ Av.

Furthermore, we let PSv : Av ×Nv → B be the probabilistic
structure function of Tv , analogous to Definition 3. Based on
the equations above we define, for a node v, the extended
expected attribute map EAv : Av → PTrip by

EA(x) =

(
ĉv(x)

d̂E,v(x)
PS(x,v)

)
.

Then as we will show below, Theorems 3, 4, 8 and 9 all
follow from the following result:

Theorem 10. For every v ∈ N one has

CPU (v) = min {EAv(x) ∈ PTrip|x ∈ Av, ĉv(x) ≤ U} .

To prove this theorem we first need a few auxiliary lemmas,
as well as some definitions. For

(c1
d1
p1

)
,
(ci

di
pi

)
∈ PTrip and

d ∈ R≥0, we define

(c1
d1
p1

)
4d

(c2
d2
p2

)
=
(c1+c2

d1+d2+p1p2d
p1p2

)
,(c1

d1
p1

)
Od

(c2
d2
p2

)
=
(c1+c2

d1+d2+(p1?p2)d
p1?p2

)
.

Slightly abusing notation, we write X4dY ={(c1
d1
p1

)
4d

(c2
d2
p2

)∣∣∣(c1
d1
p1

)
∈ X,

(c2
d2
pv

)
∈ Y

}
and likewise

for Od. We then have the following result:

Lemma 2. For an internal node v ∈ N \B one has

EAv(Av)

=

{
EAv1(Av1)4d(v) EAv2(Av2), if γ(v) = AND,

EAv1(Av1)Od(v) EAv2(Av2), if γ(v) = OR.
(17)

Proof. Suppose γ(v) = AND. Since T is treelike, one has
Bv = Bv1 ∪Bv2 and Bv1 ∩Bv2 = ∅. It follows that we can
identify Av = BBv = BBv1 × BBv2 = Av1 × Av2 . Let x1 ∈
Av1

and x2 ∈ Av2 , and let x = (x1,x2) be the corresponding
element of A, i.e., xw = xi,w when w ∈ Bvi for i = 1, 2.
Then the attributes of x are given by

ĉv(x) =
∑

w∈Bv

xw c(w)

=
∑

w∈Bv1

x1,w c(w) +
∑

w∈Bv2

x2,w c(w)

= ĉv1(x1) + ĉv2(x2),

PSv(x, v) = PSv(x, v1) PSv(x, v2)

= PSv1(x1, v1) PSv2(x2, v2),

d̂v(x) =
∑

w∈Bv

PSv(x, w) d(w)

=
∑

w∈Bv1

PSv1(x1, w) d(w)

16

+
∑

w∈Bv1

PSv2(x2, w) d(w) + PSv(x, v) d(v)

= d̂v1(x1) + d̂v2(x2) + PSv1(x1, v1) PSv2(x2, v2) d(v).

We can write this more succinctly as

EAv(x) = EAv1(x1)4d(v) EAv2(x2).

Ranging over all x1 and x2 (and consequently over all x) now
proves the lemma. The case that γ(v) = OR is completely
analogous.

Furthermore, for X ⊆ PTrip, we define

HU (X) :=
{(c

d
p

)
∈ X

∣∣∣c ≤ U} .
This function, along with the known function min, satisfies
the following properties:

Lemma 3. For X,Y ⊆ PTrip and d ∈ R≥0 the following
hold:

HU (min(X)) = min(HU (X)), (18)
HU (X4dHU (Y)) = HU (X4dY), (19)
HU (XOdHU (Y)) = HU (XOdY), (20)
min(X4dmin(Y)) = min(X4dY), (21)
min(XOdmin(Y)) = min(XOdY). (22)

Proof. We tackle these equations one by one, starting with
(18). Let x =

(c
d
p

)
∈ HU (min(X)); then x ∈ min(X).

Furthermore, c ≤ U , and so x ∈ HU (X). Suppose that x /∈
min(HU (X)); then there exists an x′ ∈ HU (X) such that x′ @
x. But this contradicts the fact that x ∈ min(X), and such x′

cannot exist; this proves HU (min(X)) ⊆ min(HU (X)).
Now let x =

(c
d
p

)
∈ min(HU (X)). Suppose x /∈ minX;

then there exists an x′ =
(

c′

d′

p′

)
such that x′ @ x. By definition

of @ this means that c′ ≤ c, and so x′ ∈ HU (X); but then this
contradicts the fact that x ∈ min(HU (X)). We can conclude
that x ∈ min(X). Since x ∈ HU (X), we also know that c ≤
U , and so x ∈ HU (min(X)). This proves HU (min(X)) ⊇
min(HU (X)).

Next, we prove (19) (equation (20) is proven analogously
to this and is therefore skipped). Since HU (Y) ⊆ Y it is clear
that HU (X4dHU (Y)) ⊆ HU (X4dY); we now prove the
opposite direction. Let x =

(c1
d1
p1

)
∈ X , y =

(c2
d2
p2

)
∈ Y be

such that x4dy ∈ HU (X4dY). Then c1+ c2 ≤ U , and since
c1, c2 ∈ R≥0 this implies that c2 ∈ U . Hence y ∈ HU (Y),
and this proves HU (X4dHU (Y)) ⊇ HU (X4dY).

Finally, we consider (21) and (22); since they can be proven
completely analogous we only consider the former. First, we
note that 4d preserves v in the following sense: if y v y′,
then x4dy v x4dy

′ for all x, y, y′ ∈ PTrip. Now let x ∈ X
and y ∈ min(Y) be such that x4dy ∈ min(X4dmin(Y)).
Suppose that x4dy /∈ min(X4dY); then there exist x′ ∈ X ,
y′ ∈ Y such that x′4dy

′ @ x4dy. Let y′′ ∈ min(Y) be such
that y′′ v y′; then

X4dmin(Y) 3 x′4dy
′′ v x′4dy

′ @ x4dy,

which contradicts the fact that x4dy ∈ min(X4dmin(Y)).
Hence x4dy ∈ min(X4dY), and this proves
min(X4dmin(Y)) ⊆ min(X4dY).

Now let x ∈ X and y ∈ Y such that x4dy ∈
min(X4dY). Let y′ ∈ min(Y) such that y′ v y. Then
x4dy

′ v x4dy. Since the latter is assumed to be minimal
in X4dY , it follows that x4dy

′ = x4dy. In particular,
x4dy ∈ X4dmin(Y). Since x4dy is minimal in X4dY ,
it is certainly minimal in the smaller set X4dmin(Y). This
proves min(X4dmin(Y)) ⊇ min(X4dY).

Proof of Theorem 10. We prove this via induction on v. From
(11) it is clear that it holds for BASs. Now suppose v =
AND(v1, v2), and that the statement holds for v1 and v2. We
can then write (13) as

CPU (v) = min(HU (CPU (v1)4dCPU (v2)))

and what we need to prove as

CPU (v)
?
= min(HU (EAv(Av))).

Using the induction hypothesis and Lemmas 2 and 3, we find

CPU (v)
= minHU [CPU (v2)4dCPU (v2)]
IH
= minHU [minHU (EAv1(Av1))4dminHU (EAv2(Av2))]
(18)
= HUmin [minHU (EAv1(Av1))4dminHU (EAv2(Av2))]

(21)
= HUmin [HU (EAv1(Av1))4dHU (EAv2(Av2))]

(18)
= minHU [HU (EAv1(Av1))4dHU (EAv2(Av2))]

(19)
= minHU [EAv1(Av1)4d EAv2(Av2)]

(17)
= minHU [EAv(Av)] ,

which is what needed to be shown. The case that v =
OR(v1, v2) is completely analogous.

We are now in a position to prove Theorems 3, 4, 8 and
9. Note that the deterministic scenario can be reduced to the
probabilistic scenario, by taking p(v) = 1 for all v ∈ B;
this ensures that d̂E(x) = d̂(x) for all x. It also causes the
definition of CDU (v) to coincide with that of CPU (v) for all v.
Therefore it suffices to prove 8 and 9.

Theorem 8. The solution to EDgC is given by
max

{
d ∈ R≥0

∣∣∣(c
d
p

)
∈ CPU (RT)

}
.

Proof. Let dE,opt be the solution to EDgC, i.e., there exists an
x0 = A such that c0 := ĉ(x) ≤ U and dE,opt = d̂E(x), and
dE,opt is maximal under this constraint. Let x0 = EA(x);

then certainly x0 ∈ HU (EA(A)). Let x′ =

(
c′

d′

p′

)
∈

minHU (EA(A)) with x′ @ x. Then c′ ≤ c0 ≤ U and
d′ ≥ dE,opt; since dE,opt was assumed to be optimal given
c0 ≤ U , we conclude that d = d′. It follows that

dE,opt = max
{
d
∣∣∣∃c, p. (c

d
p

)
∈ minHU (EA(A))

}
,

17

= max
{
d
∣∣∣∃c, p.(c

d
p

)
∈ CPU (RT)

}
,

where the second equation follows from Theorem 10. This is
what was needed to be proven.

Theorem 9. The solution to CEDPF is given by
minπ(CP∞(RT)), where π : PTrip → R2

≥0 is the projection
map onto the first two coefficients.

Proof. We claim that min ◦ π ◦ min = min ◦ π as maps
P(PTrip) → P(R2

≥0). To show this, let X ⊆ PTrip, and
let x ∈ min(X) be such that π(x) ∈ min(π(min(X))). Then
π(x) ∈ π(X); suppose π(x) is not minimal in π(X), and there
exists an x′ ∈ X such that π(x′) @ π(x). Let x′′ ∈ minX
be such that x′′ v x′. Since π is order-preserving, we have
π(x′′) v π(x′) @ π(x). However, this contradicts the fact
that π(x) is minimal in π(min(X)). Hence our assumption
that π(x) is not minimal in π(X) does not hold, and we can
conclude min(π(min(X))) ⊆ min(π(X)).

Now let x ∈ X be such that π(x) ∈ min(π(X)). Let
x′ ∈ min(X) be such that x′ v x. Since π is order-preserving,
we find π(x′) v π(x), but since π(x) is minimal, this is an
equality; hence π(x) = π(x′) ∈ π(min(X)). Furthermore,
since π(x) is minimal in π(X), it is certainly minimal in
π(min(X)). We conclude min(π(min(X))) ⊇ min(π(X)),
which proves the claim.

Let us now return to the proof of 9. Note that H∞ is just
the identity on P(PTrip), and that π ◦EA =

(
ĉ
d̂E

)
. It follows

that

minπCPT
∞ (RT) = minπminH∞ EA(A)

= minπEA(A)

= min

(
ĉ

d̂E

)
(A)

= EPF(T).

18

	I Introduction
	II Related work
	III Preliminaries
	IV Deterministic cost-damage problems for ATs
	IV-A Cost damage problems

	V Relation to knapsack problems and NP-completeness
	VI Treelike ATs, deterministic setting
	VI-A CDPF
	VI-B DgC and CgD
	VI-C Complexity

	VII DAG-like ATs, deterministic setting
	VII-A CDPF
	VII-B CgD and DgC

	VIII Probabilistic cost-damage Pareto front
	IX Treelike ATs, probabilistic setting
	X Experiments
	X-A IoT sensor network for wildlife observation
	X-B Data server on a network
	X-C Computation time: Case studies
	X-D Computation time: Randomly generated ATs

	XI Conclusion
	Appendix
	A Proof of Theorem 2
	B Proof of Theorem 1
	C Proof of Theorem 5
	D Proofs of Theorems 6 and 7
	E Proofs of Theorems 3, 4, 8 and 9

