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Abstract: We consider privacy mechanisms for releasing data X = (S, U), where S is sensitive and
U is non-sensitive. We introduce the robust local differential privacy (RLDP) framework, which
provides strong privacy guarantees, while preserving utility. This is achieved by providing robust
privacy: our mechanisms do not only provide privacy with respect to a publicly available estimate
of the unknown true distribution, but also with respect to similar distributions. Such robustness
mitigates the potential privacy leaks that might arise from the difference between the true distribution
and the estimated one. At the same time, we mitigate the utility penalties that come with ordinary
differential privacy, which involves making worst-case assumptions and dealing with extreme cases.
We achieve robustness in privacy by constructing an uncertainty set based on a Rényi divergence.
By analyzing the structure of this set and approximating it with a polytope, we can use robust
optimization to find mechanisms with high utility. However, this relies on vertex enumeration
and becomes computationally inaccessible for large input spaces. Therefore, we also introduce two
low-complexity algorithms that build on existing LDP mechanisms. We evaluate the utility and
robustness of the mechanisms using numerical experiments and demonstrate that our mechanisms
provide robust privacy, while achieving a utility that is close to optimal.

Keywords: local differential privacy; Rényi divergence; robust optimization

1. Introduction

We consider the setting in which an aggregator collects data from many users with
the purpose of, for instance, computing statistics or training a machine learning model.
In particular, the data contain sensitive information and users do not trust the aggregator.
Therefore, they employ a privacy mechanism that transforms the data before sending it to
the aggregator. Users have data X = (S, U) from a finite alphabet X = S × U , where s ∈ S
is sensitive information and u ∈ U is non-sensitive. Data are distributed i.i.d. across users
according to the distribution P∗. In order to preserve their privacy, users disclose a sanitized
version Y of X by using a privacy mechanism Q : X → Y . The aim is that Y contains as
much information about X as possible without leaking too much information about S. The
challenge that is addressed in this paper is to develop good privacy mechanisms. This
scenario and closely related ones were studied in, for instance [1–11]. In this paper, we use
the following version of local differential privacy (LDP), as introduced in [3]:

P(Y = y|S = s) ≤ eεP(Y = y|S = s′), (1)

for all s, s′ ∈ S and privacy parameter ε > 0. In addition, we measure the utility of
Y through the mutual information I(X; Y). We discuss differences with related work in
Section 2.

Note that if all information is sensitive, i.e., if X = S , (1) reduces to

P(Y = y|X = x) ≤ eεP(Y = y|X = x′), (2)
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which is the traditional LDP constraint [1,2,5]. An important property of (2) is that it does
not depend on P∗, but only on Q. The independence of P∗ is a key factor in the success of
differential privacy, since it leverages the need to make assumptions about the distribution
of the data or on the background/side-knowledge available to the aggregator. As is clear
from (1), however, independence from P∗ no longer holds if not all data are sensitive.

Assuming that P∗ is known, one can develop good privacy mechanisms for various
settings with partially sensitive information [3,6,12]. In practice, however, P∗ has to be
modeled using domain knowledge or estimated from data, leading to errors. The prevalent
approach in the literature has been to develop privacy mechanisms based on a (point)
estimate P̂ and analyze sensitivity with respect to. errors in this estimate. In this work, we
follow the approach that was proposed in [13,14], which is to construct a set F of probability
distributions that we are confident contains P∗. Subsequently, we construct privacy mecha-
nisms that aim to maximize utility, while satisfying (1) for all probability distributions in F .
We call the resulting privacy framework robust local differential privacy (RLDP).

In a sense, RLDP is a relaxed form of privacy. Indeed, it may seem appealing, but it
is—as we illustrate next—often infeasible to enforce (1) for all possible distributions. To
this end, we consider two extreme cases. First, consider a joint distribution of S and U
under which S = U. Intuitively, we cannot disclose much information about U, since this is
directly leaking information about S. As such, the utility of Y is low. Next, consider a joint
distribution under which S and U are independent. Intuitively, we can disclose U without
additional precautions, providing a high utility on Y. The point is that we need to design a
single privacy mechanism Q that satisfies (1) for all distributions, including the ‘worst case’
in which S = U, leading to low utility Y. In this work, we take the mid-ground between,
on the one hand, only using a point estimate P̂ and, on the other hand, using all possible
distributions. We do so by defining a set of ‘reasonable’ distributions F . In particular,
we construct F based on public side-information. This public side information consists
of n pairs of data (s1, u1), . . . , (sn, un), which like the data of users are i.i.d. according
to unknown distribution P∗. Our set F is constructed as a closed ball under a Rényi
divergence around the maximum likelihood point estimate P̂ of P∗. By doing so, we
are (statistically) confident that F contains P∗, with the radius of the ball controlling the
confidence level.

The RLDP framework is an instance of the more general Pufferfish framework [15].
In Section 2, we make this connection explicit and use it to describe the semantic privacy
guarantees that are offered by RLDP.

The main contributions of this paper are as follows:

1. We use a Rényi divergence to construct F and analyze the resulting structure and
statistics of F . In particular, we demonstrate that projections of F are again balls
under the same divergence. Moreover, we bound the projected sets in terms of an
ℓ1 norm.

2. Using these results we approximate F by an enveloping polytope. We then use
techniques from robust optimization [16–18] to characterize PolyOpt, the mechanism
that is optimal over this polytope.

3. A drawback of this method is that it relies on vertex enumeration and is, therefore,
computationally unfeasible for large alphabets. Therefore, we introduce two low-
complexity privacy mechanisms. The first is independent reporting (IR), in which S
and U are reported through separate LDP mechanisms.

4. We characterize the conditions that underlying LDP mechanisms have to satisfy in
order for IR to ensure RLDP. Furthermore, while IR can incorporate any LDP mech-
anism, we show that it is optimal to use randomized response [19]. This drastically
reduces the search space and allows us to find the optimal IR mechanism using
low-dimensional optimization.

5. The second low-complexity mechanism that we develop is called secret-randomized
response (SRR) and is based on randomized response.
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6. We show that SRR maximizes mutual information in the low-privacy regime for the
case that F is the entire probability simplex.

7. We demonstrate the improved utility of RLDP over LDP with numerical experiments.
In particular, we compare the performance of our mechanisms with generalized
random response [5]. We provide results for both synthetic data sets and real-world
census data.

The structure of this paper is as follows: After discussing related work in Section 2, we
describe the model in detail in Section 3. In Section 4, we present results on the structure
and statistics of projections of F . These results are used in Section 5 to develop the PolyOpt
privacy mechanism. Low-complexity privacy mechanisms are presented in Sections 6 and 7.
In Section 8, we evaluate the discussed methods experimentally. Finally, in Section 9, we
provide a discussion of our results and provide an outlook on future work. Most proofs are
deferred to Appendix A.

Part of this paper was presented at the IEEE International Symposium on Information
Theory 2021 [14]. In this paper, we generalize from a χ2-divergence to an arbitrary Rényi
divergence. Moreover, Sections 4 and 6, most of Section 8, and all proofs are new in the
current paper.

2. Related Work
2.1. The Pufferfish Framework

Our RLDP framework is an instance of the more general Pufferfish framework [15]. In
this subsection, we make this connection explicit and elaborate on the semantic guarantees
offered by RLDP.

A privacy definition following the Pufferfish framework specifies (i) a set of potential
secrets, (ii) a set of discriminative pairs of secrets, and (iii) a set of assumptions about how
data are generated. In RLDP the potential secrets are the possible values of S, i.e., S . We
want to prevent the aggregator from learning anything about S. This means that it should
not be able to distinguish the case S = s from S = s′ for all s ̸= s′, so all non-identical pairs
are discriminative. Note that this relies on S being finite, with extensions to continuous S
discussed in detail in [15].

The set of assumptions on how data are generated consist, in our setting, of proba-
bility distributions over X . A key idea in Pufferfish is that this set explicitly models the
information that is available to an attacker, i.e., an entity that is trying to infer information
about S by observing Y. In our setting, the aggregator is the only attacker and a probability
distribution P over X captures the beliefs that the attacker has about S prior to seeing Y.
We can rewrite (1) as

PX∼P(S = s|Y = y)
PX∼P(S = s′|Y = y)

≤ eε PX∼P(S = s)
PX∼P(S = s′)

(3)

and see that our local differential privacy constraint (1) can be interpreted as the condition
that the posterior distribution of S after seeing Y must be very close to the prior distribution.
The relevance of P is that it captures a specific set of beliefs of the attacker. As such, we
want (3) to hold for various values of P, where each P captures specific background/side-
knowledge available to the attacker/aggregator. Note that by doing so we are not making
any claims about the actual knowledge available to the aggregator, but instead describing
the possible scenarios for which we want to protect the privacy of users. In Pufferfish,
these possible scenarios are called the set of assumptions on how data are generated, and
in RLDP this is F .

Often, side-information in the form of domain knowledge or existing data is publicly
available; i.e., to both the users and the aggregator. This public side-information may
suggest, for instance, that there is, at most, limited dependence between S and U. In that
case, protecting against attackers who have the belief that S = U incurs an enormous
penalty in achieved utility. It is true that those attackers gain a lot of information on S by
observing Y. However, they could have also obtained this information from the public
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side-information directly. Therefore, the approach taken in the Pufferfish framework and
in this paper is that we only protect against attackers that have beliefs, i.e., distributions P,
that are in line with publicly available side information.

A challenge in working with the Pufferfish framework is that it is often challenging
to find good mechanisms. A general mechanism is proposed in [20], but it relies on
enumerating over all distributions in F , which is an uncountable set in our setting and
cannot be used here. A constrained version of Pufferfish that facilitates analysis and a
methodology for finding good mechanisms is proposed in [21]. Another interesting line of
work is to model correlations between users in the non-local differential privacy setting [22].
Finally, ref. [23] proposed a modeling framework for capturing domain knowledge about
the data. In contrast, in the current work, we impose constraints that are learned from data.
Our setting does not fit any of the frameworks for which good mechanisms are known in
the literature. One of the main contributions of this paper is to develop such mechanisms.

2.2. Other Privacy Frameworks

Disclosing X through a privacy mechanism that protects sensitive information S has
been studied extensively. One line of work starts from differential privacy [24] and imposes
the additional challenge that the aggregator cannot be trusted, leading to the concept
of local differential privacy [1,2,5]. For this setting, several privacy mechanisms exist,
including randomized response [19] and unary encoding [25]. Optimal LDP mechanisms
under a variety of utility metrics, including mutual information, are found in [5]. In [1,2,5],
all data are sensitive, i.e., X = S. The variation of LDP for the case of disclosing X = (S, U),
where only S is sensitive, was proposed in [3] and is the setting that we study in this paper.
Another line of work connects this setting to the information bottleneck [26], leading to
a privacy constraint in terms of mutual information [6,8–10]. In these works, it is shown
that approaches to optimizing the information bottleneck also work for finding good
privacy mechanisms.

Next to differential privacy and mutual information as privacy measures, a multitude
of other privacy frameworks and leakage measures exist [27]. Some of these have been
studied in the context of privacy mechanisms. In [7,11], privacy leakage is measured
through the improved potential of statistical inference by an attacker after seeing the
disclosed information. This measure is formulated through a general cost function, with
mutual information resulting as a special case. Perfect privacy, which demands the output
to be independent of the sensitive data, was studied in [28], and methods were given to
find optimal mechanisms in this setting. An estimation-theoretic framework was studied
in [29,30]. Our use of a Rényi divergence in the construction of F may suggest considering
a generalization of our privacy definition. This could be achieved by considering, for
instance, a Rényi divergence in the privacy constraint, as done in [31]. Along a different
line, in [32], the maximal leakage measure with a clear operational interpretation is defined.
In [33], this measure is generalized to a parametrized measure, enabling interpolating
between maximal leakage and mutual information. A stronger, pointwise, version of the
maximal leakage measure is proposed in [34]. These are interesting research directions but
not pursued in this paper.

Our setting X = (S, U) is a special case of a Markov chain S − X − Y, where only X is
observed. This Markov chain is typically studied in the information bottleneck and privacy
funnel settings [6,26]. We do not generalize to this setting, because we need observations of
S for the estimate of PU|S. Without direct observations of s, we can only make worst-case
assumptions on PU|S, leading to very poor utility. A different type of model, in which only
part of the information in X is sensitive, is proposed in [12]. This is a block-structured model
in which X is partitioned and information about the partition of an element is sensitive
but its index in the partition is not. Our setting of X = S × U does not fit this model. One
can partition X according to U , but our privacy constraints are different from [12]. We will
elaborate on this in Section 6.
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2.3. Robustness

The distribution P∗
S,U is not available in practice. The approach taken in most works

is to estimate P∗
S,U from data and analyze sensitivity with respect to this estimate P̂S,U .

One of the contributions in [7] is to quantify the impact of mismatched priors, i.e., the
impact of not knowing P∗

S,U exactly. A bound on the resulting level of privacy is derived
in terms of the total variational distance between the actual and the estimated P̂S,U . The
setting in [35] is similar to ours: A ball of probability distributions, centered around a point
estimate, was defined that contains P∗

S,U with high probability. It was then shown that a
privacy mechanism that was designed based on the empirical distribution was valid for
the entire set for a looser privacy constraint. The privacy slack was quantified and shown
to approach zero as the size of the data set increased. An important difference with the
current work was that we explicitly optimize the privacy mechanism over the uncertainty
set. Another difference is that we base our ball on a Rényi divergence, whereas [35] used an
ℓ1 norm. The main technical tool used in [35] was large deviations theory, whereas we rely
on convex analysis and robust optimization. We also mention [36,37]. In [36] it is assumed
that nothing is known about P∗

S and P∗
U|S. It is shown that good privacy mechanisms

can be found through a connection to maximal correlation, see also [38]. In [37], sets of
probability distributions are not derived from data but carefully modeled such that optimal
mechanisms can be derived analytically.

Using robust optimization [16] to find a good mechanism that satisfies privacy con-
straints for all PS,U in uncertainty set F was proposed in [13,14]. In this work, we generalize
and extend results from [14]. The idea of robust optimization is that constraints in an opti-
mization problem contain uncertain parameters that are known to come from a (a priori
defined) uncertainty set. The constraints must hold for possible values of the uncertain
parameters. A key result is that, using Fenchel duality, the problem can be expressed
in terms of the support function of the uncertainty set and the convex conjugate of the
constraint [16,17]. The case where the uncertain parameters are probabilities is known as
distributionally robust optimization. Using results from [39], it was shown in [40] how an
uncertainty set can be constructed from data using an f -divergence, providing an approxi-
mate confidence set. Confidence sets for parameters that are not necessarily probabilities
were constructed in [18] under a χ2-divergence. Convergence of robust optimization based
on f -divergences was studied in [41] and for the case of a KL-divergence in [42]. In [43], it
is shown how distributionally robust optimization problems over Wasserstein balls can be
reformulated as convex problems. For the regular differential privacy setting, distribution-
ally robust optimization was used in [44] to find optimal additive privacy mechanisms for
a general perturbation cost function. In this paper, we show how robust optimization can
be applied to the setting of partially sensitive information with local differential privacy.

2.4. Miscellaneous

Another line of work on privacy mechanisms builds on recent advances in generative
adversarial networks [45]. In [46,47], a generative adversarial framework is used to provide
privacy mechanisms that do not use explicit expressions for PX. Even though this is
not explicitly addressed in [46,47], it is expected that the generalization properties of
networks will provide a form of robustness. Closely related approaches are used in the
field of face recognition [48,49], with the aim of preventing biometric profiling [50]. The
leakage measures that are used in [48,49], however, do not seem to have an operational
interpretation.

Disclosing information in a privacy-preserving way is one of the main challenges in
official statistics [51,52]. The setting considered in the current paper is closely connected to
disclosing a table with microdata, where each record in the table is released independently
of the other records. This approach to disclosing microdata was studied in [4] by consider-
ing expected error as the utility measure and mutual information as the privacy measure.
The resulting optimization problem corresponds to the traditional rate-distortion problem.
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3. Model and Preliminaries

In this section, we give an overview of the setting and objectives of this paper. The
notation used in this section, as well as the rest of the paper, is summarized in Table 1.

Table 1. Notation used in this paper. ‘Page’ denotes the page the notation is first defined.

Notation Meaning Page

S sensitive data space 6
U non-sensitive data space 6
X S × U 6
a1, a2, a, b |S|, |U |, |X |, |Y| 6
X = (S, U) user data 6
ine Q privacy mechanism 6
Q matrix of Q 6
Y Q(X) 6
Y output space 6
PX space of prob. dist. on X 6
P∗ true distribution 6
P̂ estimated distribution 7

I mutual information 8

F uncertainty set for P 6
PU|s condition probability vector 9
FU|s conditional projection of F 9
Lu|s(F ), rads(F ) statistics of F 9
Dα Rényi divergence 10

PolyOpt PolyOpt 13
SRRε Secret Randomized Response 17
IRR1,R2 Independent Reporting 18

The data space is X = S × U , where S and U are finite sets. We write |S| =: a1,
|U | =: a2, and |X | = a1a2 =: a. Data items X = (S, U) are drawn from a probability
distribution P∗ in PX , the space of probability distributions on X ; here, S represents
sensitive data, while U represents non-sensitive data. The aggregator’s aim is to create a
privacy mechanism Q : X → Y such that Y = Q(X) contains as much information about
X as possible, while not leaking too much information about S.

The mechanism Q is a probabilistic map, which we represent by a left stochastic matrix
(Qy|x)y∈Y ,x∈X , and we write |Y| = b. Often, we identify Y = {1, . . . , b}, and likewise for
other sets.

The distribution P∗ is not known exactly. Instead, there is a set of possible distributions
F ⊂ PX , where PX denotes the probability simplex over X . We choose F in such a way
that it is likely that P∗ ∈ F . The uncertainty set F captures our uncertainty about P∗, we
guarantee privacy for all P ∈ F . We denote this as robust local differential privacy (RLDP).

Definition 1 (Robust Local Differential Privacy). Let ε ≥ 0 and F ⊂ PX . We say that Q
satisfies (ε,F )-RLDP if for all s, s′ ∈ S , all y ∈ Y , and all P ∈ F we have

PX∼P(Y = y|S = s) ≤ eεPX∼P(Y = y|S = s′). (4)

Note that we use the notation PX∼P(•) to emphasize that X is distributed according to
P. If no confusion can arise, we often leave out the subscript X ∼ P, to improve readability.
Note that we can also write

PX∼P(Y = y|S = s) = ∑
u∈U

Qy|s,uPX∼P(U = u|S = s), (5)
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so Definition 1 depends on the conditional probabilities of U given S = s and S = s′. It
does not, however, depend on the realization of U.

For clarity and use in future sections, we give the definition of regular LDP [1], which
is used when the goal is to obfuscate all of X, rather than just S.

Definition 2 (Local Differential Privacy). Let ε ≥ 0. We say that Q : X → Y satisfies ε-LDP if
for all x, x′ ∈ X and all y ∈ Y we have

P(Y = y|X = x) ≤ eεP(Y = y|X = x′). (6)

Now, for aggregator uncertainty about P∗, as captured by F , we suppose there is
a data base x⃗ = (x1, · · · , xn) accessible to the user, where each xi = (si, ui) is drawn
independently from P∗. Based on this, the user produces an estimate P̂ of P∗. In the
experiments, we consider a maximum likelihood estimator, i.e., P̂x = |{i ≤ n : xi = x}|.
We construct the uncertainty set F as a closed ball around P̂. In particular, let Dα be the
Rényi divergence of order α on PX , i.e., for α ∈ (0, ∞)

Dα(P̂||P) =

 1
α−1 log

(
∑x∈X

P̂α
x

Pα−1
x

)
, if α ̸= 1,

∑x∈X P̂x log P̂x
Px

, if α = 1.
(7)

The case α = 1 follows, in fact, as a limit from the α ̸= 1 case. Similarly, the definition
can be extended to α ∈ {0, ∞} by taking the corresponding limits, but in this paper we
restrict our attention to α ∈ (0, ∞) to keep the presentation clear. Note that D1 = DKL, the
Kullback–Leibler divergence, and D2 = log χ2, where the χ2-divergence is χ2(P1||P2) =

∑x(P1,x − P2,x)
2P−1

2,x . In general, a Rényi divergence is a continuous increasing function of
a power divergence (a.k.a. Hellinger divergence) [39,53,54], an example of an f -divergence.
We omit α from the notation when it is clear from the context.

We define F by fixing a bound B ∈ [0, ∞] and letting

F =
{

P ∈ PX : Dα(P̂||P) ≤ B
}

. (8)

Since a Rényi divergence is a continuous increasing function of an f -divergence, it
follows from [39,40] that F is a confidence set for P∗. In particular, for the case of α = 2,
which will be used in our numerical experiments in Section 8, for suitable B, we have

F =

P ∈ PX : ∑
x

(P̂x − Px)2

Px
≤

F−1
χ2,a−1(1 − β)

n

, (9)

with β ∈ (0, 1), where Fχ2,a−1 is the cumulative density function of the χ2-distribution with
a − 1 degrees of freedom, resulting in a set F with significance level β. This means that the
probability of P∗ ∈ F is at least 1 − β.

Hence, by designing Q based on F , we are confident in satisfying (1) for all attackers
that have beliefs that are based on the public side-information, as well as for attackers that
have beliefs that are closer to P∗.

As a special case of the above, we will study the case that nothing is known about P∗.
In this case, B → ∞ and F = PX . Regarding privacy, this is the ‘safest’ choice, as we do not
make assumptions about P∗. Another special case is where F is a singleton, which reflects
a situation where B = 0 and P∗ is assumed to be known. This setting was studied in [3].

Given F and ε, the goal is now to create a Q : X → Y to be used on new/future data;
our setting is depicted in Figure 1. The aim of this paper is to find a satisfactory answer to
the following problem:

Problem 1. Given F and ε, find a Q satisfying (ε,F )-RLDP, while maximizing a given utility
function.
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x⃗

x1
s1

u1

x2
s2

u2

xn
sn

un

known data probability space new data

PX
F

P̂

P∗

frequencies

xi ∼ P∗ X ∼ P∗
X

S

U

Q

Y

Figure 1. An overview of the setting of this paper when F is a confidence set based on a data set x⃗.
Note that it is typically, but not necessarily, true that P∗ ∈ F .

Throughout this paper, we follow the original privacy funnel [6] and its LDP coun-
terpart [3] in taking mutual information I(X; Y) as a utility measure. As is argued in [6],
mutual information arises naturally when minimizing log loss distortion in the privacy
funnel scenario. As a utility measure of Q, we take IX∼P(X; Y) (abbreviated to IP(X; Y)),
since the aim is to create Y that reflects X as faithfully as possible. This utility measure
depends on the distribution P of X that we choose to evaluate. Ideally, one would like
to use P = P∗, but in practice this is not possible, as P∗ is unknown. In the theoretical
part of this paper, we circumvent this issue by proving our results for general P. In the
experiments of Section 8, we take P = P̂ as the best available alternative to P = P∗. We
investigate the effect of this choice by comparing IP∗(X; Y) to IP̂(X; Y).

Another option is to use the robust utility measure minP∈F IP(X; Y) to ensure good
utility for every ‘reasonable’ P, see [13]. We do not explicitly study this measure in this
paper, but since our results hold for general P, they can also be applied to robust utility.

Example 1. We set up an example to illustrate the concepts of this paper. Take S = {s1, s2} and
U = {u1, u2}, and suppose

P∗ =


P∗

s1,u1
P∗

s1,u2
P∗

s2,u1
P∗

s2,u2

 =


0.1
0.1
0.2
0.6

. (10)

Moreover, suppose we have a publicly known database of n = 100 entries, from which we estimate

P̂ =


P̂s1,u1

P̂s1,u2

P̂s2,u1

P̂s2,u2

 =


0.07
0.10
0.26
0.57

. (11)

To obtain a 95%-confidence set for F according to a χ2-distribution, we take α = 2 and B =

log

(
1 +

F−1
χ2,3

(0.05)

100

)
= 0.0752. In this way, we obtain
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F =
{

P ∈ PX : Dα(P̂||P) ≤ B
}

(12)

=

P ∈ PX : log

(
∑
x

P̂2
x

Px

)
≤ log

1 +
F−1

χ2,3(0.05)

100

 (13)

=

P ∈ PX : ∑
x

(P̂x − Px)2

Px
≤

F−1
χ2,3(0.95)

100

, (14)

which is the desired confidence set (note that the χ2-distribution has |X |− 1 = 3 degrees of freedom).
In this case, we have D2(P̂||P∗) = 0.0281 < B, so P∗ ∈ F .

4. Conditional Projection of F
In Sections 5 and 7 below, we will introduce privacy mechanisms that provide (ε,F )-

RLDP. These mechanisms depend on the conditional projections of F on PU given S = s,
denoted as FU|s. In this section, we analyze the structure and statistics of these sets. To do
so, we introduce, for s ∈ S , u ∈ U and P ∈ PX .

Ps = ∑
u∈U

Pu,s, (15)

Pu|s =
Pu,s

Ps
, (16)

PU|s = (Pu|s)u∈U ∈ PU , (17)

FU|s = {PU|s : P ∈ F} ⊂ PU , (18)

We are interested in the following statistics:

Lu|s(F ) = min
R∈FU|s

Ru for a given u ∈ U , (19)

rads(F ) = max
R∈FU|s

||R − P̂U|s||1. (20)

In (19), Ru is the u-coefficient of R ∈ PU . It turns out that these statistics give us the
information required to construct (ε,F )-protocols efficiently: In Section 5, we use Lu|s(F )
to approximate FU|s by a polytope, to make computation easier, while in Section 7, we
use rads(F ) as a measure for the size of FU|s. While these statistics (or bounds for them)
are relatively easy to find for F itself, the hard part lies in the fact that we have to give
bounds for the projection FU|s. The extent to which these bounds can be found explicitly
heavily depends on the divergence measure that is used to construct F . In this section,
we show how these bounds can be obtained for our case where we construct F using a
Rényi divergence. The reason for this, as we will see below, is that we can give an explicit
description of FU|s.

4.1. Structure of FU|s
Recall that, for a given α ∈ (0, ∞), the Rényi divergence Dα : PX → [0, ∞) is defined by

Dα(P̂||P) =

 1
α−1 log

(
∑x∈X

P̂α
x

Pα−1
x

)
, if α ̸= 1,

∑x∈X P̂x log P̂x
Px

, if α = 1.
(21)

The following theorem states that the conditional projections of balls defined by Rényi
divergence are themselves Rényi divergence balls:
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Theorem 1. Let s ∈ S be such that P̂s > 0. Let F be defined by Rényi divergence, i.e.,

F =
{

P ∈ PX : Dα(P̂||P) ≤ B
}

(22)

for a given α ∈ (0, ∞) and B ∈ R≥0. Define the constant Bs by

Bs =


α

α−1 log
(

e(α−1)B/α−(1−P̂s)

P̂s

)
, if α ̸= 1,

B
P̂s

, if α = 1.
(23)

Then,
FU|s =

{
R ∈ PU : Dα(P̂U|s||R) ≤ Bs

}
. (24)

This theorem gives us a direct description of the FU|s, which is useful because the
Lu|s(F ) of (19) and rads(F ) of (20) are defined in terms of these projection sets. A similar
bound could also be found for the limit cases α = 0, ∞, but this is not pursued in this paper,
because it does not provide additional insights.

A key property of the Rényi divergence that allows us to prove Theorem 1 is that we
can write

P̂α
x

Pα−1
x

=
P̂α

u|s

Pα−1
u|s

· P̂α
s

Pα−1
s

. (25)

This allows us to express the divergence Dα(P̂U|s||PU|s) in terms of Dα(P̂||P). For other
divergences, which may depend on P̂ and P in a more complicated way, this is typically
not possible. Therefore, we cannot generalize our results to uncertainty sets constructed
from, for instance, arbitrary f -divergences.

In light of this theorem and the fact that in the following sections we care more about
the statistics of FU|s than about those of F itself, one might be inclined to think that it
is more straightforward to estimate the P̂U|s from the data and defining uncertainty sets
FU|s around them directly, without going through the intermediate stage F . However,
projecting these sets back to PX results in a larger set. In other words, there are distributions
P such that each PU|s is an element of FU|s, while P /∈ F . That is, we have F ⊊ F ′ := {P ∈
PX : ∀s PU|s ∈ FU|s}. The reason for this is that, in the proof of Theorem 1, it becomes
clear that the P ∈ F that project to the boundary points of FU|s satisfy PU|s′ = P̂U|s′ for
s′ ̸= s. In other words, elements of F can be extremal in, at most, one FU|s. By contrast, F ′

also includes P that are extremal in multiple FU|s. We conclude that constructing the FU|s
directly results in a larger F ′, which results in a lower utility. We will give an example of
this phenomenon in Example 2.

4.2. Statistics of FU|s
In this section, we analyze statistics of FU|s. More concretely, to find Lu|s(F ) and

rads(F ), fix s, α and B and define for ρ ∈ [0, 1] and ξ ∈ R≥0 such that ξ(1 − ρ) ≤ 1,

φBs(ρ, ξ) =


1

α−1 log
(

ρξ1−α + (1 − ρ)
(

1−ρξ
1−ρ

)1−α
)
− Bs, if α ̸= 1 and ρ ̸= 1,

ρ log 1
ξ + (1 − ρ) log 1−ρ

1−ρξ − Bs, if α = 1 and ρ ̸= 1,

log 1
ξ − Bs, if ρ = 1,

(26)

ξ−(ρ) = inf
{

ξ ∈ (0, 1] : φBs(ρ, ξ) ≤ 0
}

, (27)

ξ+(ρ) = sup
{

ξ ∈ [1, (1 − ρ)−1) : φBs(ρ, ξ) ≤ 0
}

. (28)

Note that the case ρ = 1 can be obtained via taking the limit. The expressions for ξ− and ξ+
are a bit complicated, but note that, given ρ < 1, the function φBs(ρ, ξ) is convex in ξ. Thus,
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φBs(ρ, ξ) = 0 has at most two solutions. Furthermore, φBs(ρ, 1) = −Bs and φBs(ρ, ξ) → ∞
as ξ approaches 0 or 1

1−ρ , so for ρ < 1 the values ξ−(ρ) and ξ+(ρ) are the two solutions to
φBs(ρ, ξ) = 0.

The following proposition expresses our desired statistics in terms of ξ− and ξ+.

Proposition 1. Let u ∈ U . Then,

Lu|s(F ) = P̂u|sξ−(P̂u|s), (29)

rads(F ) = 2 max
U1⊂U :
U1 ̸=∅

P̂U1|s(ξ+(P̂U1|s)− 1). (30)

As discussed above, ξ±(ρ) can be found quickly numerically; however, the calculation
of rads(F ) still involves taking the maximum over an exponentially large set.

4.3. Special Case α = 2

In this section, we show that when α = 2, we can find explicit expressions for ξ± and
consequently Lu|s and rads. As discussed in (9), for this α, the set F is a confidence set for a
χ2-test. To find ξ−(ϱ), ξ+(ϱ), we need to solve φBs(ρ, ξ) = 0. For α = 2, we can write this
as a quadratic equation in ξ, and solving it leads to the following expression:

Lemma 1. Suppose α = 2. Then,

ξ−(ρ) =
eBs + 2ρ − 1 −

√
(eBs − 1)(eBs − (2ρ − 1)2)

2eBs ρ
, (31)

ξ+(ρ) =
eBs + 2ρ − 1 +

√
(eBs − 1)(eBs − (2ρ − 1)2)

2eBs ρ
. (32)

Now, we can determine Lu|s(F ) and rads(F ) using Lemma 1 and Proposition 1.
For Lu|s(F ), we immediately obtain an expression; for rads(F ), a careful analysis of ξ+
shows that the optimal U1 of (30) can be found. For large enough Bs , the optimum is at
U1 = {umin}, where umin is the u that minimizes P̂u|s. Thus, we obtain a concrete expression
for rads(F ) without the need for optimization. For smaller Bs, we do not find an exact
expression, but we can still derive a lower bound. The results are summarized in the
following proposition.

Proposition 2. Let α = 2. Then, the following hold:

1. One has

Lu|s(F ) =
eBs + 2P̂u|s − 1 −

√
(eBs − 1)(eBs − (2P̂u|s − 1)2)

2eBs
. (33)

2. Let umin = arg minu∈U P̂u|s. If Bs ≥ log(1 + (1 − P̂umin|s)
2), then

rads(F ) =
−eBs + 2P̂umin|s − 1 +

√
(eBs − 1)(eBs − (2P̂umin|s − 1)2)

eBs
. (34)

3. If Bs < log(1 + (1 − P̂umin|s)
2), one has rads(F ) ≤

√
eBs − 1.

We note that α = 2 is not the only value of α for which one can bound Lu|s and rads.
For instance, for α ≤ 1, one can use Pinsker’s inequality [55,56] and its generalizations [57]
to bound rads(F ) in terms of ||P̂U|s − PU|s||1, which in turn can be used to bound Lu|s(F ).
However, unlike α = 2, these do not result in exact bounds.
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Example 2. We continue Example 1. We have

P̂s1 = 0.17, P̂u1|s1
= 0.4118, P̂u2|s1

= 0.5882,

P̂s2 = 0.83, P̂u1|s2
= 0.3133, P̂u2|s2

= 0.6867.

Inserting our values of B and P̂s into Theorem 2, we find Bs1 = 0.3782, Bs2 = 0.0900. In
other words,

PU|s1
=

{
R =

(
Ru1

Ru2

)
∈ PU : D2

((
0.4118
0.5882

)
||
(

Ru1

Ru2

))
≤ 0.3782

}
, (35)

PU|s2
=

{
R =

(
Ru1

Ru2

)
∈ PU : D2

((
0.3133
0.6867

)
||
(

Ru1

Ru2

))
≤ 0.0900

}
. (36)

To determine the lower bounds on each Rui , we use Proposition 2 to obtain

Lu1|s1
(F ) = 0.1620, Lu2|s1

(F ) = 0.2829,

Lu1|s2
(F ) = 0.1923, Lu2|s2

(F ) = 0.5337.

In principle, we can also use Proposition 2 to determine the rads(F ). However, in this case, there is a
more straightforward approach. Since |U | = 2, every element of FU|s is a vector of length two whose
coefficients sum to 1; thus PU|s is determined by Pu1|s. Since Lu1|s(F ) ≤ Pu1|s ≤ 1 − Lu2|s(F ), it
follows that

FU|s1
∼= [Lu1|s1

(F ), 1 − Lu2|s1
(F )] = [0.1620, 0.7171],

FU|s2
∼= [Lu1|s2

(F ), 1 − Lu2|s2
(F )] = [0.1923, 0.4663].

Under this identification, rads(F ) is only twice the maximal distance from P̂u1|s to the endpoint of
this interval (the factor two comes from the fact that ||PU|s − P̂U|s||1 = |Pu1|s − P̂u1|s|+ |Pu2|s −
P̂u2|s| = 2|Pu1|s − P̂u1|s|). Hence,

rads1(F ) = 2 max{0.4118 − 0.1620, 0.7171 − 0.4118} = 0.6107,

rads1(F ) = 2 max{0.3133 − 0.1923, 0.4663 − 0.3133} = 0.3061.

We can also construct the set F ′ = {P ∈ PX : ∀s PU|s ∈ FU|s} of Section 4.1. We can write
this as

F ′ =




Ps1,u1

Ps1,u2

Ps2,u1

Ps2,u2

 ∈ PX :
0.1620 ≤ Pu1|s1

≤ 0.7171,
0.1923 ≤ Pu1|s2

≤ 0.4663

. (37)

The inequality 0.1620 ≤ Pu1|s1
can be written as 0.1620 ≤ Ps1,u1

Ps1,u1+Ps1,u2
, or 0.1620Ps1,u2 ≤

0.83830Ps1,u1 ; in other words, this becomes a linear constraint. We can do the same for the other
constraints and these, together with inequality constraints of the form Ps,u ≥ 0 and the equality
constraint ∑s,u Ps,u = 1, define the polytope F ′ ⊂ R4. One can calculate that this polytope is a
simplex, spanned by the vertices

0.7171
0.2829

0
0

,


0.1620
0.8380

0
0

,


0
0

0.4663
0.5337

,


0
0

0.1923
0.8077

. (38)

The resulting F ′ is considerably larger than F : one way to see this is that, for any of these vertices
P, one has D2(P̂||P) = ∞. This example shows the importance of working with the set F , rather
than with just its projections FU|s.
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5. Polyhedral Approximation: PolyOpt

In this section, we introduce PolyOpt, a family of mechanisms Q with good utility
obtained by enclosing F by a polyhedron, and then using robust optimization for polyhe-
dra [16] to describe the space of possible Q as a polyhedron; we then maximize the mutual
information over this polyhedron. This approach is related to the polyhedral approach
of [3], which finds the optimum for this problem in a non-robust setting.

For a mechanism Q and y ∈ Y , we define Qy = (Qy|x)x∈X ∈ RX to be the y-th row
of the stochastic matrix Q corresponding to Q, but transposed (i.e., viewed as a column
vector). Likewise, we define the column vector Qy|s = (Qy|s,u)u∈U ∈ RU . In this notation,
the condition for (ε,F )-RLDP can be formulated as

∀y ∈ Y ∀s1, s2 ∈ S : max
P∈F

[
PT
U|s1

Qy|s1
− eεPT

U|s2
Qy|s2

]
≤ 0. (39)

Equation (39) boils down to a set of linear constraints in Qy. What makes these difficult to
satisfy is that every value P ∈ F provides a linear constraint, and each Qy has to satisfy
all infinitely many of these. In this section, we address this difficulty by making the set F
slightly larger, so that robust optimization [16] becomes a convenient tool for optimizing
over the allowed Q. More precisely, for every s ∈ S , let Ds ⊂ PU be such that FU|s ⊂ Ds.
Then, certainly

max
P∈F

[
PT
U|s1

Qy|s1
− eεPT

U|s2
Qy|s2

]
≤ max

R1∈Ds1 ,
R2∈Ds2

[
RT

1 Qy|s1
− eεRT

2 Qy|s2

]
. (40)

Thus, we can conclude that Q is (ε,F )-RLDP whenever

∀y ∈ Y ∀s1, s2 ∈ S : max
R1∈Ds1 ,
R2∈Ds2

[
RT

1 Qy|s1
− eεRT

2 Qy|s2

]
≤ 0. (41)

The trick is now to choose the Ds in such a way that the set of Q satisfying (41) has a
closed-form description. To this end, we let each Ds be a polyhedron; that way, we can use
robust optimization for polyhedra [16] to give such a description.

There are multiple ways to create a polyhedron Ds that envelops FU|s. Writing
Lu|s = Lu|s(F ) for convenience, we take

Ds = {R ∈ PU : ∀u Ru ≥ Lu|s}. (42)

Since Ds is described by linear equations, it is a polyhedron, and certainly FU|s ⊂ DU|s
for all s. Robust optimization for polytopes [16] then allows us to describe the set of
mechanisms satisfying (41). To formulate this, we first need the following definition:

Definition 3. Let ε > 0. Then, define Γε to be the convex cone consisting of all v ∈ RX
≥0 that

satisfy, for all s1, s2 ∈ S and all u1, u2 ∈ U :

vs1,u1 − eεvs2,u2 + ∑
u

Lu|s1
(vs1,u − vs1,u1)− eε ∑

u
Lu|s2

(vs2,u − vs2,u2) ≤ 0. (43)

Note that, for every choice of s1, s2, u1, u2, (3) is a linear inequality in T and thus defines
a half-space in RX . The intersection of these half-spaces, intersected with RX

≥0, defines the
convex cone Γε. This definition allows us to formulate the following result:

Theorem 2. Let Q be a privacy mechanism, and for y ∈ Y , let Qy be the y-th row of the associated
matrix Q = (Qy|x)y∈Y ,x∈X . Suppose that for all y we have Qy ∈ ΓL. Then, Q satisfies (ε,F )-
RLDP.
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The upshot of this theorem is that we have translated the infinitely many constraints
of (39) and (41) into the finitely many linear constraints of (3). This makes optimizing
utility considerably easier. We perform this optimization by translating it into a linear
programming problem. The key inspiration for this optimization is Theorem 4 of [5], where
optimal LDP mechanisms are found by translating the problem of optimizing mutual
information into linear programming; we use an analogous approach adapted to RLDP.
This approach can be sketched as follows: Let Γ̂ = {v ∈ Γε : ∑x vx = 1}, i.e., the intersection
of Γε with the hyperplane corresponding to ∑x vx = 1. This is a polyhedron, and every Q
satisfying the conditions of Theorem 2 has Qy = θyvy, for some θy ∈ R≥0 and vy ∈ Γ̂. The
authors of [5] made a number of key observations that also apply to our situation. The first
is that, in this case, we can write

IP̂(X; Y) = ∑
y

θyµ(vy), (44)

where
µ(v) = ∑

x∈X
vx P̂x log

vx

∑x′ vx′ P̂x′
. (45)

The second observation is that, in order to maximize (44), one can prove from the convexity
of µ that it is optimal to have each vy be a vertex of Γ̂. Thus, once we know the set of
vertices V of Γ̂, we find the optimal Q by assigning a weight θv to each v ∈ V , in such a way
that the resulting Qy form a probabilistic matrix and such that (44) is maximized. Since (44)
is linear in θ, this is a linear programming problem. This discussion is summarized in the
following theorem:

Theorem 3. Let Γ̂ be a polyhedron given by {v ∈ ΓL,ε : ∑x vx = 1}. Let V be the set of vertices of
Γ̂. Define µ as in (45). Let 1X ∈ RX be the constant vector of ones. Let θ̂ ∈ RV

≥0 be the solution to
the optimization problem

maximiseθ ∑
v∈V

θvµ(v) (46)

satisfying θ ∈ RV
≥0,

∑
v∈V

θvv = 1X .

Let the privacy mechanism Q be given by Y = {v ∈ V : θ̂v > 0} and Qv|x = θ̂vvx. Then, the
mechanism Q maximizes IP̂(X; Y) among all mechanisms satisfying the condition of Theorem 2.
One has |Y| ≤ a.

Together, Theorems 2 and 3 show that if we can solve a vertex enumeration problem,
we can find a mechanism Q that maximizes IP̂(X; Y) among a subset of all (ε,F )-RLDP
mechanisms; furthermore, we ensure that the output space Y is, at most, the size of the
input space X . The proof of Theorem 3 is analogous to the proof of Theorem 4 of [5] and is
given in Appendix A.5. Note that the results of [5] do not run into the vertex enumeration
problem, because the relevant polyhedron there is [1, eε]X , for which the vertices are known.

We remark that a simplex is not the only possible choice for Ds. In general, we can
make Ds closer to FU|s by adding more defining hyperplanes. Doing this allows more
Q to satisfy Theorem 2 and in turn increases the utility of the Q we find via Theorem 3.
However, since Γ is related to the Ds via duality, adding extra constraints to the Ds will
increase the dimension of Γ through the addition of auxiliary variables. This makes the
vertex enumeration problem of Theorem 3 more computationally involved. Thus, we have
a trade-off between utility and computational complexity. Even with the given, ‘simple’
choice of Ds, the computational complexity is quite high: recall that we defined a = |X |.
The polytope Γ̂ is (a − 1)-dimensional and is defined by a2 + a inequalities, thus it has
O((a2 + a)

a−1
2 ) = O(aa) vertices [58]. Since this is the dimension of the linear programming
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problem, we find that the total complexity of finding Q is O(aωa log(aa+1/δ)), where
ω ≈ 2.38 is the exponent of matrix multiplication and δ the relative accuracy [58]. Clearly,
this becomes infeasible rather quickly for large a.

It should be noted that, in general, the increasing utility obtained by decreasing Ds
in size does not approach the optimal utility over all (ε,F )-RLDP mechanisms. This is
because, as we take increasingly finer DU|s, we approach the set of Q that satisfy (4) for all P
in F ′ := {P : ∀s PU|s ∈ FU|s}. As discussed in Section 4.1, one has F ⊊ F ′. As a result, the
set of (ε,F ′)-RLDP mechanisms is strictly smaller than the set of (ε,F )-RLDP mechanisms.

Example 3. We continue Example 2 by taking ε = log 2. To obtain Γ̂ in Theorem 3, we need to
combine the defining inequalities of Γε in Definition 3, along with the defining equality ∑x Px = 1.
Regarding the inequalities, we have 24 = 16 inequalities of the form (3), as well as 4 inequalities
of the form vx ≥ 0. Together with the equality constraint, we obtain a 3-dimensional polytope in
RX = R4. Using a vertex enumeration algorithm, one finds that V consists of the rows of the
matrix V below, where the order of the columns is the order of the rows of Example 1. For each row
v, we can calculate µ(v), resulting in the vector µ below. Solving (46), we obtain the vector θ̂ below:

V =



0.0744 0.3227 0.5603 0.0426
0.2426 0.2426 0.4783 0.0364
0.3333 0.3333 0.1667 0.1667
0.1091 0.4737 0.2086 0.2086
0.0993 0.4310 0 0.4697
0.1121 0.4864 0 0.4015
0.3404 0.3404 0 0.3191
0.0770 0.3343 0.2944 0.2944
0.2234 0.2234 0 0.5531
0.4875 0.1434 0 0.3690
0.4360 0.1283 0 0.4358
0.4758 0.1400 0.1921 0.1921
0.3437 0.1011 0.2776 0.2776
0.1602 0.1602 0.6316 0.0481
0.1667 0.1667 0.3333 0.3333
0.3325 0.0978 0.5294 0.0403



, µ =



0.1152
0.0942
0.0087
0.0135
0.1097
0.0968
0.0723
0.0080
0.1240
0.0878
0.1014
0.0106
0.0076
0.1240
0.0075
0.1083



, θ̂ =



1.1899
0
0
0
0

0.7670
0
0
0
0

1.4134
0
0
0
0

0.6297



. (47)

We now obtain the privacy mechanism QPolyOpt as follows: each row of QPolyOpt corresponds to a
non-zero coefficient of θ̂, multiplied by its corresponding row of V. Thus, we obtain

QPolyOpt =


Qy1|s1,u1

Qy1|s1,u2
Qy1|s2,u1

Qy1|s2,u2

Qy2|s1,u1
Qy2|s1,u2

Qy2|s2,u1
Qy2|s2,u2

Qy3|s1,u1
Qy3|s1,u2

Qy3|s2,u1
Qy3|s2,u2

Qy4|s1,u1
Qy4|s1,u2

Qy4|s2,u1
Qy4|s2,u2

 (48)

=


0.0885 0.3840 0.6667 0.0507
0.0860 0.3731 0 0.3080
0.6162 0.1813 0 0.6159
0.2094 0.0616 0.3333 0.0254

. (49)

Note that indeed we have 4 = b ≤ a = 4. As for the utility, we have IP̂(X; Y) = µ · θ̂ = 0.4228.
However, the true utility is significantly lower, namely IP∗(X; Y) = 0.2804.

6. An Optimal Policy for F = PX

As PolyOpt mechanisms are obtained via vertex enumeration in a-dimensional space,
this can be computationally infeasible for larger a. Thus, there is a need for methods
that, given P̂ and F , can find (ε,F )-RLDP mechanisms with reasonable computational
complexity.
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In this section, we consider the case where F is maximal, i.e., F = PX . By itself, this
represents a situation where we want privacy for every possible probability distribution on
X . This scenario may not be very relevant in practice, but any protocol that we in find this
way is also (ε,F )-RLDP for any F . As we will see below, this allows us to find (ε,F )-RLDP
protocols in a computationally efficient manner.

We show that (ε,PX )-RLDP is almost equivalent to LDP. We exploit this to create SRR,
the RLDP analogue to GRR [5], the LDP mechanism that is optimal for ε ≫ 0. SRR only
depends on ε and X and not on P̂, and as such does not require an optimization procedure
to be found; this makes it a good choice when vertex enumeration is computationally
infeasible. The downside is that SRR has a stricter privacy requirement than PolyOpt, as it
takes F to be maximal; in Section 8, we investigate numerically to what extent this results
in a lower utility.

We start by giving a characterization of (ε,PX )-RLDP. Like LDP, this can be defined
by an inequality constraint on the matrix Q.

Proposition 3. Q satisfies (ε,PX )-RLDP if and only if for all y ∈ Y and (s, u), (s′, u′) ∈ X with
s ̸= s′ one has

Qy|s,u

Qy|s′ ,u′
≤ eε. (50)

Proof. Suppose that Q satisfies (ε,F )-RLDP with respect to PX . Let (s, u), (s′, u′) ∈ X
with s ̸= s′. Let P be given by

Px =

{ 1
2 , if x ∈ {(s, u), (s′, u′)},
0, otherwise.

(51)

Then, Pu|s = 1 and Pu′′ |s = 0 for all u′′ ̸= u; an analogous statements holds for Pu′ |s′ . It
follows that

Qy|s,u

Qy|s′ ,u′
=

Qy|s,uPu|s
Qy|s′ ,u′Pu′ |s′

(52)

=
∑u′′ Qy|s,u′′Pu′′ |s

∑u′′ Qy|s′ ,u′′Pu′′ |s′
(53)

=
PX∼P(Q(X) = y|S = s)
PX∼P(Q(X) = y|S = s′)

≤ eε. (54)

This proves “⇒”. On the other hand, suppose that
Qy|s,u

Qy|s′ ,u′
≤ eε for all s ̸= s′ and u, u′. Then,

for all s ̸= s′ and P, we have

PX∼P(Q(X) = y|S = s)
PX∼P(Q(X) = y|S = s′)

=
∑u Qy|s,uPu|s

∑u′ Qy|s′ ,u′Pu′ |s′
≤ eε. (55)

Hence, Q satisfies (ε,PX )-RLDP with respect to. F .

The proposition demonstrates that RLDP is very similar to LDP. The difference is that
the condition “for all x, x′ ∈ X ” from Definition 2 is relaxed to only those x and x′ for
which s ̸= s′.

Before moving on and introducing a new mechanism, note that Proposition 3 clearly
illustrates the reason that the setting in this paper cannot be modeled using the block-
structured approach from [12]. We see that if u ̸= u′, we still have a privacy constraint,
whereas in [12] this is not the case.

Next, we will introduce a mechanism that exploits the difference between LDP and
RLDP. Recall that a = |X |; then generalized randomized response [19] is the privacy
mechanism GRRε : X → X given by
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GRRε
y|x =

{
eε

eε+a−1 if x = y,
1

eε+a−1 otherwise.
(56)

This mechanism has been designed such that
GRRε

y|x
GRRε

y|x′
= e±ε for x ̸= x′, the maximal

fractional difference that ε-LDP allows. We will see that for RLDP we can go up to a
difference of e±2ε if x = (s, u) and x′ = (s, u′), as we typically only need to satisfy

Qy|s,u ≤ eεQy|s′ ,u′ ≤ e2εQy|s,u′ . (57)

We capture the intuition from the necessary condition (57) in a new mechanism called
secret randomized response (SRR). Recall that a1 = |S|, a2 = |U |.

Definition 4 (Secret randomized response (SRR)). Let ε > 0. Then, the privacy mechanism
SRRε : X → X is given by

SRRε
s′ ,u′ |s,u =


eε

eε+e−ε(a2−1)+a−a2
, if (s′, u′) = (s, u),

e−ε

eε+e−ε(a2−1)+a−a2
, if s′ = s and u′ ̸= u,

1
eε+e−ε(a2−1)+a−a2

, if s′ ̸= s,
(58)

It is clear that
SRRε

y|s,u
SRRε

y|s′ ,u′
∈ {e−2ε, eε, 1, eε, e2ε}, and the two extreme cases are only

possible when s = s′. Thus, we can conclude

Lemma 2. SRR satisfies (ε,PX )-RLDP.

Example 4. We continue Example 3. Although SRR is closely related to GRR, adopting it can still
have a significant impact on utility. For instance, in the setting of Example 3, we obtain

GRRε =


0.4 0.2 0.2 0.2
0.2 0.4 0.2 0.2
0.2 0.2 0.4 0.2
0.2 0.2 0.2 0.4

, SRRε =


0.444 0.111 0.222 0.222
0.111 0.444 0.222 0.222
0.222 0.222 0.444 0.111
0.222 0.222 0.111 0.444

. (59)

Then,

IP̂(X; GRRε(X)) = 0.0419, IP̂(X; SRRε(X)) = 0.1005, (60)

IP∗(X; GRRε(X)) = 0.0412, IP∗(X; SRRε(X)) = 0.0942. (61)

We see that adopting SRR more than doubles the utility. Compared to Example 3, we see that
the utility is still significantly lower than that of PolyOpt, but the advantage is that we obtain
SRR directly from ε, without having to take P̂ or F into account; this ensures a significantly faster
computation.

The power of SRR, beyond slightly improving on GRR, is that we can prove it max-
imizes IP(X; Y) for sufficiently large ε; the cutoff point depends on P. This is proven
analogously to the result of [5], where GRR is the optimal LDP mechanism for sufficiently
large ε.

Theorem 4. For every P, there is an ε0 ≥ 0 such that for all ε ≥ ε0, SRR is the (ε,PX )-RLDP
mechanism maximizing IP(X; Y).

The proof of this theorem follows the same lines as the proof of Theorem 14 of [5], in
which it is proven that GRR is the optimal LDP mechanism for sufficiently large ε. The
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proof is presented in Appendix A.6. This solves the problem of finding the optimal (ε,PX)-
mechanism, for sufficiently large ε. This strategy is similar to the proof of Theorem 3: one
can show that the rows Qy of the optimal (ε,F )-RLDP mechanism Q correspond to vertices
of a polyhedron, and the optimal weights assigned to these vertices are found using a
linear programming problem. Unlike in the case of Theorem 3, however, we can give an
explicit description of the set of vertices, and we can solve the linear programming problem
analytically.

Our result shows that if one wishes to satisfy (ε,PX )-RLDP, then SRR is a solid choice,
especially for larger ε, since it maximizes IP∗(X; Y) for sufficiently ε. Thus, we can optimize
IP∗(X; Y) without having to know P∗, with the caveat that the cutoff point for ‘large enough’
depends on P∗.

In [5], the optimal LDP mechanism in the high-privacy regime (i.e., ε ≪ 1) was also
found. In principle, we could also do this for (ε,PX )-RLDP, but this would not be of much
use, as the optimal mechanism would depend on P∗, which we assume to be unknown.

7. Independent Reporting

Section 5 demonstrated the need to find efficiently computable (ε,F )-RLDP mecha-
nisms with decent utility. In Section 6, we approach this problem by considering (ε,PX )-
RLDP instead, allowing us to analytically obtain the optimal mechanism. However, when
F is small, this overapproximation might result in a large loss of utility. In this section, we
describe independent reporting (IR), a different heuristic that takes the size of F into account,
while still being significantly less computationally complex than PolyOpt.

The basis of IR is to apply two separate LDP mechanisms R1 and R2 to S and U,
respectively, reporting both outputs.

Definition 5. Let Y1,Y2 be sets, and let Y = Y1 × Y2. Let R1 : S → Y1 and R2 : U → Y2

be probabilistic maps. Then, the independent reporting of R1 and R2 is the probabilistic map
IRR1,R2 : X → Y given by IRR1,R2(s, u) = (R1(s),R2(u)).

Suppose that Ri satisfies εi-LDP. The composition theorem for differential privacy [59]
tells us that IRR1,R2 satisfies (ε1 + ε2)-LDP. However, in the RLDP setting, U only indirectly
leaks information about S; therefore, we can get away with a higher ε2 compared to
the LDP setting. How much higher depends on the degree of relatedness of S and U,
which is captured by the possible values of P in F . The precise statement is given in the
following result:

Theorem 5. Let ε1, ε2 ∈ R≥0. For each s, let ds ∈ [0, ∞) be such that ds ≥ rads(F ). Furthermore,
define

d = min
{

2, max
s

(2ds) + max
s,s′

||P̂U|s − P̂U|s′ ||1
}

. (62)

Let δ2 = log
(

1 + 2(eε2−1)
d

)
. Suppose that R1 is ε1-LDP and that R2 is δ2-LDP. Then, IR is

(ε1 + ε2,F )-RLDP.

If S = U, then ||P̂U|s − P̂U|s′ ||1 = 2 for s ̸= s′, so d = 2 and δ2 = ε2. In this case,
Theorem 5 is the RLDP analogue to the well-known composition theorem for local differen-
tial privacy [59]. In general, δ2 ≥ ε2; this represents the fact the privacy requirement on R2

is less strict when S and U are only partially related. At the other extreme, if S and U are
independent in our observation, we have ||P̂U|s − P̂U|s′ ||1 = 0 for all s, s′. Still, we cannot
fully disclose U, since S and U might be non-independent under P∗. The term ds is present
in the definition of d to account for this possibility.

In order to prove Theorem 5, we need the following lemma:
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Lemma 3. Let Q : X → Y be an ε-LDP mechanism. Then, for all y ∈ Y and all P, P′ ∈ PX
we have

PX∼P(Q(X) = y)
PX∼P′(Q(X) = y)

≤ 1 +
eε − 1

2
||P − P′||1. (63)

Proof. Fix y, and let Qmax
y = maxx Qy|x and Qmin

y = minx Qy|x. By the ε-LDP property, it
holds that Qmax

y ≤ eεQmin
y . We hence find

PX∼P(Q(X) = y)− PX∼P′ (Q(X) = y) = ∑
x∈X

Qy|x(Px − P′
x) (64)

= ∑
x:Px≥P′

x

Qy|x(Px − P′
x)− ∑

x:P′
x>Px

Qy|x(P′
x − Px) (65)

≤
Qmax

y

2
||P − P′||1 −

Qmin
y

2
||P − P′||1 (66)

≤
(eε − 1)Qmin

y

2
||P − P′||1 (67)

≤ (eε − 1)PX∼P′ (Q(X) = y)
2

||P − P′||1, (68)

from which the lemma directly follows.

Proof of Theorem 5. We start by showing that d is an upper bound for ||PU|s − PU|s′ ||1. If
d = 2, this is certainly the case. Suppose d = maxs(2ds) + maxs,s′ ||P̂U|s − P̂U|s′ ||1. Then,
for all s, s′ ∈ S and P ∈ F we have

||PU|s − PU|s′ ||1 ≤ ||PU|s − P̂U|s||1 + ||P̂U|s − P̂U|s′ ||1 + ||P̂U|s′ − PU|s′ ||1 (69)

≤ ds + ds′ + ||P̂U|s − P̂U|s′ ||1 (70)

≤ d. (71)

Combining Lemma 3 with the fact that ε2 = log
(

1 + d(eδ2−1)
2

)
, it follows that for every

y2 ∈ Y2, we have

PX∼P(R2(U) = y2|S = s)
PX∼P(R2(U) = y2|S = s′)

≤ 1 +
eδ2 − 1

2
||PU|s − PU|s′ ||1 (72)

≤ 1 +
d(eδ2 − 1)

2
(73)

= eε2 . (74)

Given S, the random variables R1(S) and R2(U) are independent. It follows that for every
y1 ∈ Y1 and every y2 ∈ Y2, we have

P(R1(S) = y1,R2(U) = y2|S = s)
P(R1(S) = y1,R2(U) = y2|S = s′)

=
P(R1(S) = y1, |S = s)
P(R1(S) = y1|S = s′)

· P(R
2(U) = y2|S = s)

P(R2(U) = y2|S = s′)
(75)

≤ eε1+ε2 , (76)

where the last equality holds because of (74) and because R1 is ε1-LDP. This shows that
IRR1,R2 is (ε1 + ε2,F )-RLDP.

Theorem 5 establishes the privacy of independent reporting. To maximize the utility,
we need to determine how to divide the privacy budget ε between ε1 and ε2, and which
LDP mechanisms to use for R1 and R2. To answer both these questions, we first need an
expression for the utility of IR, which is given by the following theorem:

Theorem 6. For any P ∈ PX , one has

IP(IRR1,R2(X); X) = IP(R1(S); S) + IP(R2(U); U|R1(S)). (77)
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Proof. Since R1(S) and U are independent given S, and R2(U) and S are independent
given U and R1(S), we have

IP(IRR1,R2(X); X) = IP(R1(S),R2(U); U, S) (78)

= IP(R1(S); U, S) + IP(R2(U); U, S|R1(S)) (79)

= IP(R1(S); S) + IP(R2(U); U|R1(S)). (80)

We use Theorems 5 and 6 to find high-utility IR protocols that satisfy (ε,F )-RLDP,
given ε and F . To do so, we need to choose R1 and R2, and split the privacy budget
between them. Since the expression for the utility of IR in Theorem 6 contains a term
IP(R1(S); S), the R1 that maximizes this is GRR when ε is large enough; thus, we choose
R1 = GRR. The second term in the utility expression is

IP(R2(U); U|R1(S)) = Er

[
IU∼PU |R1(S)=r(R2(U); U)

]
. (81)

This is the expected value of an expression that is maximized for R2 = GRR, with the
caveat that the maximization only holds when ε is large enough, and what ‘large enough’
is depends on the distribution of U. Since this gives us a choice of R2 independent of the
distribution, we ignore this caveat and take R2 = GRR as well.

Having chosen R1 and R2, we are only left with the division of the privacy budget. If
we choose ε2, then by Theorem 5 the privacy parameters of R1 and R2 are ε1 = ε − ε2 and
δ2 = log

(
1 + 2(eε2−1)

d

)
, respectively. It follows that to find a high-utility IR protocol, we

have to solve the following optimization problem:

maximizeε2 IP

GRRε−ε2(S), GRR
log
(

1+
2(eε2−1)

d

)(U); S, U

 (82)

subject to ε2 ∈ [0, ε].

This optimization problem is only 1-dimensional. While it is not straightforward to
express the complexity of solving this in O-notation, our experiments in Section 8 show
this can be quickly performed numerically, and significantly faster than PolyOpt.

Example 5. We continue Example 4. Having found rads(F ) and P̂U|s1
, P̂U|s2

in Example 2, we
conclude that, in Theorem 5, we have

d = min
{

2, 2 · max{0.6107, 0.3061}+
∣∣∣∣∣∣∣∣(0.4118

0.5882

)
−
(

0.3133
0.6867

)∣∣∣∣∣∣∣∣
1

}
= 1.4591. (83)

It follows that δ2 = log
(
1 + 2

1.4591 (e
ε2 − 1)

)
= log(1.3707eε2 − 0.3707). For a given value of ε2,

the matrix corresponding to IR(GRRlog(2)−ε2 , GRRδ2) is the Kronecker product(
2e−ε2

2e−ε2+1
1

2e−ε2+1
1

2e−ε2+1
2e−ε2

2e−ε2+1

)
⊗
(

1.3707eε2−0.3707
1.3707eε2+0.6293

1
1.3707eε2+0.6293

1
1.3707eε2+0.6293

1.3707eε2−0.3707
1.3707eε2+0.6293

)

=
1
C

( 2.7414−0.7414e−ε2 2e−ε2 1.3707eε2−0.3707 1
2e−ε2 2.7414−0.7414e−ε2 1 1.3707eε2−0.3707

1.3707eε2−0.3707 1 2.7414−0.7414e−ε2 2e−ε2

1 1.3707eε2−0.3707 2e−ε2 2.7414−0.7414e−ε2

)
, (84)

where C = (2e−ε2 + 1)(1.3707eε2 + 0.6293). We now wish to optimize its utility, i.e., find the
ε2 ∈ [0, log 2] that maximizes IP̂(X; Y). The optimum occurs at the boundary ε2 = log(2), for
which IP̂(X; Y) = 0.0755. Notice that now ε1 = 0, so R1 = GRR0 is completely random: its
output does not depend on the input. In other words, the optimal IR protocol in this case does not
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transmit any direct information about S at all, only indirectly through GRRδ2(U). In this case,
we have

QIR =


0.3517 0.1483 0.3517 0.1483
0.1483 0.3517 0.1483 0.3517
0.3517 0.1483 0.3517 0.1483
0.1483 0.3517 0.1483 0.3517

. (85)

Regarding the ‘true’ utility, we have IP∗(X; Y) = 0.0718. Interestingly, QIR yields less utility than
SRR. As we will see in Section 8, this is typical for small S and U .

8. Experiments

In order to gain insight into the behavior of the different mechanisms, we performed
several experiments, both on synthetic and real data. We compared the three mechanisms
introduced in this paper (PolyOpt, SRR, and IR). Throughout, we let F be a confidence
set for a χ2-test, i.e., for a Rényi divergence with α = 2. We used the results of Section 4
to find explicit expressions for Lu|s(F ) and (an upper bound for) rads(F ). Recall from
Section 3 that

F =

P ∈ PX : D2(P̂||P) ≤ log

1 +
F−1

χ2,a−1(1 − β)

n

, (86)

where Fχ2,a−1 is the cumulative density function of the χ2-distribution with a − 1 degrees
of freedom, and β ∈ (0, 1) is a chosen significance level. Throughout the experiments, we
took β = 0.05, unless otherwise specified.

We used IP̂(X; Y) as a utility metric, divided by H(X) to obtain the normalized mutual
information (NMI). We used this rather than IP∗(X; Y), as the aggregator only has access
to the former. In fact, while P∗ is known for the synthetic data, this is not the case for real
data, so we cannot even use IP∗(X; Y) as a utility metric.

We compared our methods to two existing approaches, each with a slightly different
privacy model. First, we compared to an LDP mechanism, to see to what extent the RLDP
framework offered a utility improvement over regular LDP. As the LDP mechanism, we
chose GRR, because it optimizes IP(X; Y), our privacy metric, in the low-privacy regime [5].
Second, we compared to the non-robust optimal mechanism of [3]. This mechanism is
obtained in a manner similar to PolyOpt, and is the optimal mechanism that satisfies (in
our notation) (ε, {P̂})-RLDP. In other words, it is optimal in the scenario where one knows
P∗ precisely. We shall refer to this mechanism as NR (non-robust). Typically, we would
expect NR to have a higher utility than our RLDP mechanisms, (because it only needs to
satisfy privacy with respect to. one distribution) and GRR to have worse a utility (because
LDP is stricter than RLDP).

8.1. Adult Data Set

We performed numerical experiments on the adult data set (n = 32,561) [60], which
contains demographic data from the 1994 US census. Some examples, where we used
different categorical attributes from the data set as S and U, are depicted in Figure 2.
We omitted PolyOpt from the larger two experiments, as the space complexity became
unfeasible: for occupation vs. education, the polyhedron Γ̂ was 240-dimensional and was
defined by 57,840 inequality constraints; to find its set of vertices Matlab needed to operate
on a 57,840 × 57,840 matrix, whose size (24.7 GB) exceeded Matlab’s maximum array size.
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Figure 2. Experiments on the categories sex, race, education, occupation, relationship and native-country
of the adult data set. Numbers between brackets indicate a1 and a2 ( SRR, PolyOpt,
IR, GRR, NR). (a) S = sex (2), U = race (5), (b) S = race (5), U = sex (2), (c) S = occ. (15),
U = edu. (16), (d) S = native country (42), U = relationship (6).

We can see that PolyOpt clearly outperformed IR and SRR in the first two experiments,
especially in the high-privacy regime (low ε). Similarly, IR outperformed SRR in the high-
privacy regime, but was slightly overtaken for high ε. This is interesting, since SRR satisfies
a stronger privacy guarantee, as it provides privacy for all adversary assumptions, so
we expected it to offer less utility than IR. An explanation for this is that IR is forced to
transmit S and U separately, and so it can be less efficient than SRR, which does not have
this restriction. At any rate, the difference between IR and SRR in the low-privacy regime
was only marginal compared to the advantage of PolyOpt over both. In the second two
experiments, where PolyOpt was infeasible, we can see that IR clearly outperformed SRR.
Overall, we see that, especially in the low-privacy regime, PolyOpt was the preferable RLDP
mechanism, followed by IR and SRR. Furthermore, we can see that, in all experiments, GRR
performed the worst, and the best RLDP mechanism significantly outperformed GRR. This
shows that adopting RLDP as a privacy metric results in significantly better utility over
LDP. Conversely, NR outperfored the RLDP methods, although the difference between NR
and PolyOpt was marginal for higher ε. As for PolyOpt, NR was computationally out of
reach for larger |X |.

8.2. Synthetic Data

To study the robustness of our method with respect to utility (Section 8.4) and privacy
(Section 8.3), we also needed experiments in which P∗ was known. For this, we considered
experiments on synthetic data. For this, we first randomly created a probability distribution
P∗ on X , where X was the same as in the experiments on the adult data set. The distribution
P∗ was drawn from the Jeffreys prior on PX , i.e., the symmetric Dirichlet distribution with
parameter 1

2 . From P∗, we then drew n = 32,561 elements of X , which we used to obtain
the estimate P̂; this estimate was then used to create the privacy mechanisms. We carried
this out 100 times, and we averaged the NMI of these 100 distributions. The results are
shown in Figure 3. The results were similar to those of the experiments of the adult data
set: PolyOpt outperformed IR, which outperformed SRR, for small |X | SRR could overtake
IR in the low-privacy regime. Furthermore, GRR was the worst overall, while NR was the
best overall, but only by a small margin.
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Figure 3. Synthetic experiments with n = 32561 and β = 0.05 ( SRR, PolyOpt, IR,
GRR, NR). (a) a1 = 2, a2 = 5, (b) a1 = 5, a2 = 2, (c) a1 = 15, a2 = 16, (d) a1 = 42, a2 = 6.

8.3. Realized Privacy Parameter

In the previous subsections, we saw that NR had a (marginally) better utility than
PolyOpt. However, this is not a completely fair comparison, since NR was only designed
to give privacy for X ∼ P̂ and might result in a larger privacy leakage for X ∼ P∗. For
the synthetic data, P∗ was known, and we could measure the true privacy leakage. For a
protocol Q, we defined the realized privacy parameter ε∗ as

ε∗ = max
y∈Y ,

s1,s2∈S

PX∼P∗(Y = y | S = s1)

PX∼P∗(Y = y | S = s2)

= max
y∈Y ,

s1,s2∈S

∑u Qy|s1,uP∗
u|s1

∑u Qy|s2,uP∗
u|s2

.

Note that this becomes ∞ when there exist s, y such that PX∼P∗(Y = y | S = s) = 0. We
compared ε∗ for NR and PolyOpt: the results are shown in Figure 4, where we give the 25%
and 75% quantiles for both protocols, out of 100 considered distributions. As one can see ,
NR’s ε∗ was consistently greater than ε, while PolyOpt’s ε∗ was consistently lesser. This is
what we expected, as NR does not give privacy guarantees for P∗, but PolyOpt does when
P∗ ∈ F , which happens with 95% probability. Note that the privacy leakage was especially
bad for low ε: at ε = 0.075, the lowest value of ε we tested, the 75%-quantile of ε∗ of NR
was 0.3897, which is more than 5 times the desired privacy parameter. Overall, we can
conclude that NR gave marginally better utility, but this came at quite a privacy cost.

8.4. Utility Robustness

For the synthetic data sets (where we knew P∗), we also investigated the normal-

ized difference in mutual information IP̂(X;Y)−IP∗ (X;Y)
IP̂(X;Y) , to see to what extent we could use

IP̂(X; Y) as a utility metric in lieu of the true utility IP∗(X; Y). This is shown for the three
methods in Figure 5, at ε = 1.5. Overall, we can see that the difference was quite minor: for
all three methods, the difference in NMI, even at its most extreme, was less than 3% of the
NMI value. Furthermore, the differences were very symmetric, with the difference being
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positive and negative approximately equally often. We can conclude that we were justified
in using IP̂(X; Y) as a utility metric in the other experiments.
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Figure 4. Realized privacy parameter ε∗ on synthetic data. Shaded area is bounded by the 25%
and 75% quantiles ( Polyopt, NR). The green line depicts ε = ε∗. (a) a1 = 2, a2 = 5,
(b) a1 = 5, a2 = 2.
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Figure 5. Normalized difference in NMI for P̂ and P∗ on synthetic data (ε = 1.5), measured over
100 runs. Box denotes 25–75%-quantiles, whiskers denote minima and maxima. S = SRR, P = PolyOpt,
I = IR.

8.5. Impact of β

We also considered the impact of β on utility for synthetic data (fixing ε = 1.5). The
results are shown in Table 2, which are averages over 100 runs. Note that SRR does not
depend on β, since it assumes F = PX . Interestingly, we can see that the impact of β was
quite limited; changing β by a factor 100 had at most about 4% impact on NMI. This impact
was less for PolyOpt than for IR, and less for larger X . Overall, we can conclude that
by choosing β closer to 0, we can significantly increase the robustness of privacy without
making a considerable impact on utility.



Entropy 2024, 26, 233 25 of 40

Table 2. NMI for synthetic data for various values of β (ε = 1.5).

a1 = 2, a2 = 5 a1 = 5, a2 = 2

β 0.1 0.01 0.001 0.1 0.01 0.001

SRR 0.231 0.231 0.231 0.126 0.126 0.126
PolyOpt 0.727 0.723 0.719 0.374 0.372 0.370

IR 0.512 0.501 0.492 0.169 0.165 0.162

a1 = 15, a2 = 16 a1 = 42, a2 = 6

β 0.1 0.01 0.001 0.1 0.01 0.001

SRR 0.009 0.009 0.009 0.005 0.005 0.005
IR 0.055 0.053 0.051 0.052 0.052 0.052

9. Conclusions and Future Work

In this paper, we presented a number of algorithms that, given a desired privacy level ε,
an estimated distribution P̂, and a bound on the Rényi divergence Dα(P̂||P), return privacy
mechanisms that satisfy a differential privacy-like privacy constraint for the part of the data
that is considered sensitive, for all distributions P within the divergence bound. The first
class of privacy mechanisms, PolyOpt, offers high utility, but is computationally complex,
as it relies on vertex enumeration. The second class, SRR, satisfies a stronger privacy
requirement and is optimal in the low-privacy regime with reference to this requirement,
but as a result has less utility than mechanisms that do not satisfy this stronger privacy
requirement. The third class, IR, is a general framework for releasing the sensitive and
non-sensitive part of the data independently, and the optimal division of the privacy
budget between these can be found via 1-dimensional optimization; thus, the optimal IR
mechanism can be found quickly, while still offering decent utility. Furthermore, taking
RLDP rather than LDP as a privacy constraint, i.e., protecting only the part of the data
that is sensitive, significantly improves utility. In particular, we showed that the utility of
PolyOpt is close to the utility of the optimal non-robust privacy mechanism. In other words,
asking for robustness in privacy comes at only a small performance penalty in utility. At the
same time, we showed that not asking for robustness comes at a substantial privacy cost.

There are various interesting directions for future research to build upon the results
in this paper. One direction is to find analytical bounds on the performance gap between
PolyOpt and optimal mechanisms, in particular on the gap with reference to either the non-
robust optimal mechanism from [3] or with reference to an optimal robust mechanism. Note,
however, that for the moment we do not have any results on optimal robust mechanisms.
Another direction is to improve the performance of the low-complexity algorithms that have
been proposed. For instance, in independent reporting, one could change the underlying
LDP mechanism from GRR to an optimal mechanism. Since GRR is only optimal in
the high-privacy regime, we expect that there would be room for improvement in the
low-privacy regime. A significant challenge is incorporating optimal mechanisms along
the lines of [5]; however, these mechanisms depend on P∗ which is inaccessible in the
RLDP framework. Yet another interesting direction would be to incorporate robustness in
utility in addition to robustness in privacy. This would require finding a mechanism that
maximizes minP∈F IP(X; Y). The challenge in this is that IP(X; Y) is concave in P, which
makes minimizing it over F difficult. Finally, it would be interesting to apply the RLDP
framework to other models. In this work, we studied the model where X splits into a
sensitive part S and a non-sensitive part U. It would be interesting to also study the more
general case where X is correlated with the sensitive data S, or to apply RLDP to the models
that are studied in [12].
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

This follows from the following four lemmas, where the RHS of (24) is denoted FU|s:

Lemma A1. If α ̸= 1, then FU|s ⊂ FU|s.

Proof. Assume α < 1; the case α > 1 is handled analogously. Then, we rewrite Dα(P̂||P) ≤
B as

∑
x

P̂α
x

Pα−1
x

≥ eB(α−1). (A1)

Let C = eB(α−1). Then,

P̂α
s

Pα−1
s

∑
u

P̂α
u|s

Pα−1
u|s

= ∑
u

P̂α
s,u

Pα−1
s,u

(A2)

≥ C − ∑
s′ ̸=s

∑
u

P̂α
s′ ,u

Pα−1
s′ ,u

. (A3)

For s′ ∈ S \ {s} and u ∈ U , define Ps′ ,u|¬s =
Pu,s′
1−Ps

and P̂s′ ,u|¬s =
P̂u,s′
1−P̂s

. Then, (A3) can be
written as

P̂α
s

Pα−1
s

∑
u

P̂α
u|s

Pα−1
u|s

≥ C − (1 − P̂s)α

(1 − Ps)α−1 ∑
s′ ̸=s

∑
u

P̂α
s′ ,u|¬s

Pα−1
s′ ,u|¬s

. (A4)

Furthermore, P•|¬s = (Ps′ ,u|¬s)s′∈S\{s},u∈U and P̂•|¬s = (P̂s′ ,u|¬s)s′∈S\{s},u∈U form probabil-
ity distributions on (S \ {s})×U . As such, we have

∑
u

P̂α
s′ ,u|¬s

Pα−1
s′ ,u|¬s

= e(α−1)Dα(P̂•|¬s ||P•|¬s) ≤ 1. (A5)

Applying this to (A4), we obtain

P̂α
s

Pα−1
s

∑
u

P̂α
u|s

Pα−1
u|s

≥ C − (1 − P̂s)α

(1 − Ps)α−1 (A6)

or

∑
u

P̂α
u|s

Pα−1
u|s

≥ Pα−1
s

P̂α
s

(
C − (1 − P̂s)α

(1 − Ps)α−1

)
. (A7)

To find the bound on ∑u
P̂α

u|s
Pα−1

u|s
, we have to minimize the RHS of this inequality. The

only unknown on the right is Ps. We find the minimum value of the right-hand side by
differentiating with respect to Ps, for which we obtain
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(α − 1)
Pα−2

s (1 − P̂s)α

P̂α
s

(
C

(1 − P̂s)α
− 1

(1 − Ps)α

)
. (A8)

Setting this equal to 0, we find Ps = 1−C−1/α(1− P̂s). Substituting this into (A7), we obtain

∑
u

P̂α
u|s

Pα−1
u|s

≥ (C1/α − (1 − P̂s))α

P̂α
s

(A9)

which can be written as

Dα(P̂U|s||PU|s) ≤ α
α−1 log

(
e(α−1)B/α − (1 − P̂s)

P̂s

)
, (A10)

showing that PU|s ∈ FU|s. Since P was chosen arbitrarily, we can conclude FU|s ⊂ FU|s.

Lemma A2. If α ̸= 1, then FU|s ⊂ FU|s.

Proof. Again we assume α < 1. Suppose that R ∈ PU satisfies Dα(P̂U|s||R) ≤ Bs. Let C be
as in (A1) and define γ = 1 − C−1/α(1 − P̂s); then,

1
α − 1

log

(
∑
u

P̂α
u|s

Rα−1
u

)
= Dα(P̂U|s||R) (A11)

≤ Bs (A12)

=
α

α − 1
log

(
e(α−1)B/α − (1 − P̂s)

P̂s

)
(A13)

=
α

α − 1
log

(
C1/αγ

P̂s

)
(A14)

which we can express as

∑
u

P̂α
u|s

Rα−1
u

≥ Cγα

P̂α
s

. (A15)

Define P ∈ PX by

Pu,s′ =

{
γRu, if s′ = s,
C−1/α P̂u,s′ otherwise.

(A16)

Then, PU|s = R, and

∑
u,s′

P̂α
u,s′

Pα−1
u,s′

= ∑
u

P̂α
u,s

γα−1Rα−1
u

+ ∑
u

∑
s′ ̸=s

C1/α P̂u,s′ (A17)

=
P̂α

s
γα−1 ∑

u

P̂α
u|s

Rα−1
u

+ C(α−1)/α(1 − P̂s) (A18)

≥ γC + C(α−1)/α(1 − P̂s) (A19)

= C. (A20)

As in the proof of Lemma A1, the condition ∑u,s′
P̂α

u,s′

Pα−1
u,s′

≥ C is equivalent to Dα(P̂||P) ≤ B.

Thus, we can conclude that P ∈ F and so R = PU|s ∈ FU|s. Since R was chosen arbitrary,
this shows FU|s ⊂ FU|s.
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Lemma A3. If α = 1, then FU|s ⊂ FU|s.

Proof. Let P ∈ F , and define P•|¬s, P̂•|¬s as in the proof of Lemma A1. Then,

D1(P̂||P) = P̂s ∑
u

P̂u|s log
P̂s P̂u|s
PsPu|s

+ (1 − P̂s) ∑
s′ ,u

P̂u,s′ |¬s
(1 − P̂s)P̂u,s′ |¬s

(1 − Ps)Pu,s′ |¬s
(A21)

= P̂sD1(P̂U|s||PU|s) + (1 − P̂s)D1(P̂•|¬s||P•|¬s) + P̂s log
P̂s

Ps
+ (1 − P̂s) log

1 − P̂s

1 − Ps
(A22)

= P̂sD1(P̂U|s||PU|s) + (1 − P̂s)D1(P̂•|¬s||P•|¬s) + D1(VP̂s
||VPs ), (A23)

where for p ∈ [0, 1], the random variable Vp is defined to follow a Bernoulli distribution
with P(Vp = 1) = p. Since D1 is non-negative and D1(P̂||P) ≤ B, we find

D1(P̂U|s||PU|s) =
1
P̂s

(
D1(P̂||P)− (1 − P̂s)D1(P̂•|¬s||P•|¬s)− D1(VP̂s

||VPs)
)

(A24)

≤ D1(P̂||P)
P̂s

(A25)

≤ B
P̂s

. (A26)

Thus, PU|s ∈ FU|s; since P ∈ F was chosen arbitrary, we can conclude FU|s ⊂ FU|s.

Lemma A4. If α = 1, then FU|s ⊂ FU|s.

Proof. Let R ∈ PU be such that D1(P̂U|s||R) ≤ B
P̂s

. Define P ∈ PX by

Pu,s′ =

{
P̂sRu, if s = s′,
P̂u,s′ if s ̸= s′.

(A27)

Then PU|s = R. Furthermore, in (A23) one has D1(P̂•|¬s||P•|¬s) = D1(VP̂s
||VPs) = 0, and

so D1(P̂||P) ≤ B. This shows that P ∈ F , and so R = PU|s ∈ FU|s. Since R was chosen
arbitrarily, we can conclude that FU|s ⊂ FU|s.

Appendix A.2. Proof of Proposition 1

We first prove the following two auxiliary lemmas. We only prove these for α > 1; the
other cases are handled analogously.

Lemma A5. Let x ∈ X , and define

ξ−(ρ) = inf
{

ξ ∈ (0, 1] : EB(ρ, ξ) ≤ 0
}

, (A28)

ξ+(ρ) = sup
{

ξ ∈ [1, (1 − ρ)−1) : EB(ρ, ξ) ≤ 0
}

, (A29)

where EB is as in Proposition 1. Then, minP∈F Px = P̂xξ−(P̂x) and maxP∈F = P̂xξ+(P̂x).

Proof. As in the proof of Lemma A1, define C = e(α−1)B; thus

F =

{
P ∈ PX : ∑

x′∈X

P̂α
x′

Pα−1
x′

≤ C

}
. (A30)
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Furthermore, define a function F by

F(ρ, ξ) = ρξ1−α + (1 − ρ)

(
1 − ρξ

1 − ρ

)1−α

− C, (A31)

with F(1, ξ) = ξ1−α − C the limit as ρ → 1. Then, EB(ρ, ξ) = 1
α−1 log

(
F(ρ, ξ) + e(α−1)B

)
−

B, so F(ρ, ξ) ≤ 0 ⇔ EB(ρ, ξ) ≤ 0. Thus, ξ−(ρ) = inf{ξ ∈ [0, 1] : F(ρ, ξ) ≤ 0} and the
analogous statement holds for ξ+(ρ). The P that yield the extremal Px lie on the boundary
of F ; hence, they either satisfy Px ∈ {0, 1}, or the equality

∑
x′∈X

P̂α
x′

Pα−1
x′

= C. (A32)

In the latter case, the extremal values of Px have to be stationary points of the Lagrangian
expression

Px + λ

(
∑
x′

P̂α
x′

Pα−1
x′

− C

)
+ µ

(
∑
x′

Px′ − 1

)
= 0. (A33)

Taking derivatives with respect to all Px, we find

1 + (1 − α)λ
P̂α

x
Pα

x
+ µ = 0, (A34)

∀x′ ̸= x : (1 − α)λ
P̂α

x′

Pα
x′
+ µ = 0. (A35)

It follows that Px = ( (α−1)λ
µ−1 )1/α P̂x =: ξ P̂x and Px′ = ( (α−1)λ

µ )1/α P̂x′ =: ψP̂x′ for all x′ ̸= x,
where ξ and ψ do not depend on x or x′. We can find ξ, ψ ∈ R≥0 by solving the joint set
of equations

C = ∑
x′

P̂α
x′

Pα−1
x′

(A36)

=
P̂α

x

Pα−1
x

+ ∑
x′ ̸=x

P̂α
x′

Pα−1
x′

(A37)

= P̂xξ1−α + (1 − P̂x)ψ
1−α, (A38)

1 = ∑
x′

Px′ (A39)

= P̂xξ + (1 − P̂x)ψ. (A40)

Define ρ = P̂x. Then, (A40) implies ψ = 1−ρξ
1−ρ , and the condition ψ ≥ 0 is equivalent

to ξ ≤ ρ−1. Substituting this into (A38) shows that we find ξ by solving F(ρ, ξ) = 0 for
ξ ∈ (0, (1 − ρ)−1). Since F(ρ, 1) = 1 − C < 0 and F is strictly convex in ξ, there exists, at
most, one solution in (0, 1] and, at most, one in [1, (1 − ρ)−1). It follows that (A33) has, at
most, two stationary points, which must correspond to the minimal and maximal value
of Px. If the solution in (0, 1] exists, it is equal to ξ−(ρ), and this stationary point of (A33)
corresponds to the minimal value of Px, which is then equal to P̂xξ−(P̂x). If the solution in
(0, 1] does not exist, then the minimal value of Px is not attained on the boundary and is
equal to 0, which then is also equal to P̂xξ−(P̂x). Either way, we find

min
P∈F

Px = P̂xξ−(P̂x). (A41)

The proof for the maximal value of Px is analogous.
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Lemma A6. For X1 ⊂ X define P̂X1 := ∑x∈X1
P̂x. Then,

sup
P∈F

||P − P̂||1 = 2 max
X1⊂X :
X1 ̸=∅

P̂X1(ξ+(P̂X1)− 1). (A42)

Proof. For a given P, define X1 = {x ∈ X : Px ≥ P̂x} and X2 = {x ∈ X : Px < P̂x}. To
find the maximal value of ||P − P̂||1, we first maximize it for a given partition X1,X2 of X ,
and then we maximize over all partitions. Note that X1 = ∅ is impossible, and for X1 = X ,
we have P = P̂, which is certainly not optimal. Given X1,X2, one has

||P − P̂||1 = ∑
x∈X1

(Px − P̂x) + ∑
x∈X2

(P̂x − Px). (A43)

As before, the P maximizing this lies either on the boundary of the probability simplex or it
satisfies (A32). For the latter case, we have the Lagrangian expression

∑
x∈X1

(Px − P̂x) + ∑
x∈X2

(P̂x − Px) + λ

(
∑
x

P̂α
x

Pα−1
x

− C

)
+ µ

(
∑
x

Px − 1

)
= 0. (A44)

Taking derivatives, we find, analogously to (A34)–(A35), that there exist ξ, ψ such that
Px = ξ P̂x for all x ∈ X1 and Px = ψP̂x for all x ∈ X2. By definition of X1 and X2, we have
ξ ≥ 1 and 0 ≤ ψ < 1. Analogously to (A36)–(A40), these have to satisfy

P̂X1 ξ1−α + (1 − P̂X1)ψ
1−α = C, (A45)

P̂X1 ξ + (1 − P̂X1)ψ = 1. (A46)

From this point onward, this proof is analogous to that of Lemma A5. Let ρ = P̂X1 .
Expressing ψ in terms of ξ and substituting this means that to find ξ we have to solve
F(ρ, ξ) = 0 for ξ ∈ [1, (1 − ρ)−1), where F is as in the proof of Lemma A5. As before, at
most, one such solution exists, and when it does, it corresponds to the maximal value of
||P − P̂||1 (given X1). If it does not exist, then the maximal value of ||P − P̂||1 is obtained
at the boundary where P̂X1 = 1. Either way the maximum is obtained when ξ = ξ+(ρ),
which means that

||P − P̂||1 = ∑
x∈X1

(Px − P̂x) + ∑
x∈X2

(P̂x − Px) (A47)

= ∑
x∈X1

P̂x(ξ+(ρ)− 1) + ∑
x∈X2

P̂x

(
1 − 1 − ρξ+(ρ)

1 − ρ

)
(A48)

= ρ(ξ+(ρ)− 1) + (1 − ρ)

(
1 − 1 − ρξ+(ρ)

1 − ρ

)
(A49)

= 2ρ(ξ+(ρ)− 1). (A50)

This is the maximal value of ||P − P̂||1 given X1; we now find the overall maximum by
maximizing over all non-empty X1.

Proof of Proposition 1. In Lemmas A5 and A6, take U instead of X , P̂U|s instead of P̂,
and Bs instead of B. Then, by Theorem 1, the role of F is taken by FU|s. Thus, applying
Lemmas A5 and A6 gives us Proposition 1 directly.

Appendix A.3. Proof of Lemma 1 and Proposition 2

As in the proof of Proposition 1, since by Theorem 1 the projected set FU|s is defined
by a Rényi divergence as is F , it suffices to prove the analogous statements about F rather
than FU|s. Concretely, we prove the following:
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Lemma A7. Suppose α = 2 and define B̃ = eB − 1; let ξ± be as in Lemma A5. Then,

ξ±(ρ) =
B̃ + 2ρ ±

√
B̃2 + 4ρB̃ − 4B̃ρ2

2ρ(B̃ + 1)
. (A51)

Furthermore, the following hold:

1. Let xmin = arg minx∈X P̂x. If B̃ ≥ (1 − P̂xmin)
2, then the maximum in (A6) is attained at

X1 = {xmin}.
2. If B̃ < (1 − P̂xmin)

2 one has supP∈F ||P − P̂||1 ≤
√

B̃.

The formulas here look slightly different from those in Lemma 1 and Proposition 2.
We use this form because it makes the proof more convenient: replacing B̃ with eB − 1
throughout yields exactly the results of Lemma 1 and Proposition 2 for F instead of FU|s.

Proof. Consider the function F(ρ, ξ) from (A31) for α = 2 and C = B̃ + 1, i.e.,

F(ρ, ξ) =
ρ

ξ
+

(1 − ρ)2

1 − ρξ
− B̃ − 1. (A52)

Then, F(ρ, ξ) = 0 can be rewritten to a quadratic equation in ξ. Its two roots are ξ±(ρ), and
with some rewriting they can be expressed as in (31). For points 1 and 2, we note that

2ρ(ξ+(ρ)− 1) =
B̃ − 2B̃ρ +

√
B̃2 + 4B̃ρ − 4B̃ρ2

B̃ + 1
. (A53)

We can find its extremal values with respect to ρ by taking the derivative and setting it to 0,
i.e., by solving

− 2B̃
B̃ + 1

+
2B̃ − 4B̃ρ

(B̃ + 1)
√

B̃2 + 4B̃ρ − 4B̃ρ2
= 0, (A54)

which has a single solution ρopt = 1−
√

B̃
2 . Since (A53) is concave in ρ, this means that

this unique extremal value is a maximum. If B̃ ≥ (1 − 2P̂xmin)
2, then ρopt ≥ P̂xmin , and

ρ(ξ+(ρ) − 1) is decreasing in ρ on [P̂xmin , 1]. Since all possible values of P̂X1 lie in this
interval, it is optimal to take X1 such that P̂X1 is minimized, i.e., X1 = {xmin}; this proves
point 1. For point 2 we have (and also for general B)

sup
P∈F

||P − P̂||1 = 2 max
X1⊂X :
X1 ̸=∅

P̂X1(ξ+(P̂X1)− 1) (A55)

≤ 2ρopt(ξ+(ρopt)− 1) (A56)

=
B̃ − 2B̃ 1−

√
B̃

2 +

√
B̃2 + 4B̃ 1−

√
B̃

2 − 4B̃ (1−
√

B̃)2

4

B̃ + 1
(A57)

=
√

B̃. (A58)

Appendix A.4. Proof of Theorem 2

Let D = ∏s∈S Ds ⊂ RX . Thus, an element t ∈ D is of the form t = (ts,u)(s,u)∈X , and
for any s, we have (ts,u)u∈U ∈ Ds. For s1, s2 ∈ S , let Bs1,s2 ∈ RX×X be the matrix given by

Bs1,s2
(s,u);(s′ ,u′) =


1, if u = u′ and s = s′ = s1,
−eε, if u = u′ and s = s′ = s2,
0, otherwise.

(A59)
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Then, we can rewrite (41) as

∀y, s1, s2 : max
t∈D

((Bs1,s2)TQy)
Tt ≤ 0. (A60)

Recall that for each s, we have Ds = {R ∈ PU : Ru ≥ Lu|s}. Since D = ∏s Ds, we can write

D =

{
t ∈ RX : ∀s, u : ts,u ≥ Lu|s, ∀s : ∑

u
ts,u = 1

}
(A61)

= {t ∈ RX : Φt + ϕ ≥ 0, Ψt + ψ = 0}, (A62)

where Φ ∈ RX×X , ϕ ∈ RX , Ψ ∈ RS×X and ψ ∈ RS are given, for s, s′ ∈ S and u ∈ U , by

Φ = idX , (A63)

ϕs,u = −Lu|s, (A64)

Ψs′ ;(s,u) =

{
1, if s = s′,
0, otherwise,

(A65)

ψs = −1. (A66)

Combining this with (A60), we find that Q satisfies (ε,F )-RLDP whenever

∀y, s1, s2 : max
t∈RX :

Φt+ϕ≥0,
Ψt+ψ=0

((Bs1,s2)TQy)
Tt ≤ 0. (A67)

Now fix y, s1, s2, and consider the linear programming problem that forms the LHS of (A67).
From the duality of linear programming, we know

max
t∈RX :

Φt+ϕ≥0,
Ψt+ψ=0

((Bs1,s2)TQy)
Tt = min

z∈RX ,w∈RS :
ΦTz+ΨTw=−(Bs1,s2 )TQy ,

z≥0

ϕTz + ψTw. (A68)

We focus on the linear programming problem of the RHS. The terms of this problem are
given by

ΦTz = z, (A69)

(ΨTw)s,u = ws, (A70)

((Bs1,s2)TQy)s,u =


Qy|s1,u, if s = s1,
−eεQy|s2,u, if s = s2,
0, otherwise,

(A71)

ϕTz = −∑
s,u

Lu|szs,u, (A72)

ψTw = −∑
s

ws. (A73)

The equation ΦTz + ΨTw = −(Bs1,s2)TQy can now be rewritten as

zs,u =


−Qy|s1,u − ws1 , if s = s1,
eεQy|s2,u − ws2 , if s = s2,
−ws otherwise.

(A74)
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Thus, the restriction z ≥ 0 translates to

ws1 ≤ −max
u∈U

Qy|s1,u,

ws2 ≤ eε min
u∈U

Qy|s2,u,

∀s ̸= s1, s2 : ws ≤ 0.

Furthermore, the objective function ϕTz + ψTw becomes

−∑
s

(
1 − ∑

u
Lu|s

)
ws + ∑

u
Qy|s1,uLu|s1

− eε ∑
u

Qy|s2,uLu|s2
. (A75)

Combining this with (A67) and (A68), we see that a sufficient condition for Q to be (ε,F )-
RLDP is if there exists a w ∈ RS such that

−∑
s

(
1 − ∑

u
Lu|s

)
ws + ∑

u
Qy|s1,uLu|s1

− eε ∑
u

Qy|s2,uLu|s2
≤ 0, (A76)

ws1 ≤ −max
u∈U

Qy|s1,u, (A77)

ws2 ≤ eε min
u∈U

Qy|s2,u, (A78)

∀s ̸= s1, s2 : ws ≤ 0. (A79)

Since ∑u Lu|s ≤ 1 for all s, it follows that the left-hand side of (A76) is minimal if each ws
attains its maximal value, subject to the constraints (A77)–(A79). Substituting this, we find
that the minimum of the left-hand side is equal to

(
1 − ∑

u
Lu|s1

)(
max

u1
Qy|u1,s1

)
− eε

(
1 − ∑

u
Lu|s2

)(
min

u2
Qy|u2,s2

)
(A80)

+ ∑
u

Qy|s1,uLu|s1
− eε ∑

u
Qy|s2,uLu|s2

= max
u1,u2∈U

[(
1 − ∑

u
Lu|s1

)
Qy|u1,s1

− eε

(
1 − ∑

u
Lu|s2

)
Qy|u2,s2

]
(A81)

+∑
u

Qy|s1,uLu|s1
− eε ∑

u
Qy|s2,uLu|s2

= max
u1,u2∈U

[
Qy|u1,s1

− eεQy|u2,s2
+ ∑

u
Lu|s1

(Qy|s1,u − Qy|s1,u1
)− eε ∑

u
Lu|s2

(Qy|s2,u − Qy|s2,u2
)

]
. (A82)

This has to be nonpositive for all choices of u1, u2, s1, s2, y; but this is true precisely if
Qy ∈ ΓL,ε for all y.

Appendix A.5. Proof of Theorem 3

This is essentially analogous to the proof of Theorem 4 in [5]; the main difference is
that the equivalent of Γ̂ is a hypercube, for which a vertex enumeration step is not needed.
Let Q be a mechanism such that Qy ∈ Γ for all y; then there exist αy ∈ R≥0, γy ∈ Γ̂ such
that Qy = αyγy. One has

IP̂(X; Y) = ∑
y

µ(Qy) = ∑
y

αyµ(γy). (A83)

Since Γ̂ is the convex hull of V , we can write γy = ∑v λy,vv for suitable constants λy,v.
Define θ ∈ RV

≥0 by θv = ∑y λy,vαy. Then,

∑
v

θvv = ∑
y

Qy = 1X . (A84)
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As such, the matrix Q′ ∈ RV×X defined by Q′
v = θvv defines a privacy mechanism Q′.

One has

IP̂(X;Q′(X)) = ∑
v

µ(Q′
v) (A85)

= ∑
v

θvµ(v) (A86)

= ∑
y

αy ∑
v

λy,vµ(v) (A87)

≥ ∑
y

αyµ

(
∑
v

λy,vv

)
(A88)

= IP̂(X;Q(X)), (A89)

where we use the fact that µ is convex. This shows that the Qy of the optimal mechanism
satisfying Theorem 2 are all of the form θv · v; hence, (46) yields the optimal mechanism.
To see that |Y| ≤ a, observe that the polyhedron described in (46) is defined by a equality
constraints, and |V| inequality constraints of the form θv ≥ 0. Hence, any vertex of this
polyhedron has at most a nonzero coefficients. Since the optimal mechanism corresponds to
such a vertex, and its output space Y corresponds to its nonzero coefficients, we conclude
that |Y| ≤ a.

Appendix A.6. Proof of Theorem 4

We follow the proof of Theorem 14 in [5]; however, we first need the following auxiliary
lemma.

Lemma A8. Let ε > 0, and let C ⊂ RX
≥0 be the positive cone defined by

C = {C ∈ RX
≥0 : Cs,u ≤ eεCs′ ,u′ for all s ̸= s′ ∈ S , u ∈ U}. (A90)

Define the sets V1,V2,V ⊂ RX
≥0 by

V1 =
{

v ∈ RX
≥0 : ∃s s.t.∀u : vs,u∈{e−ε ,eε};

∀s′ ̸=s,∀u : vs′ ,u=1

}
, (A91)

V2 =
{

v ∈ RX
≥0 : ∀x : vx∈{1,eε},

|{s:∃u s.t. vs,u=eε}|≥2

}
, (A92)

V = V1 ∪ V2. (A93)

Then V spans C as a positive cone, i.e.,

C =

{
∑

v∈V
θvv : θ ∈ RV

≥0

}
. (A94)

Proof. For every s ∈ S and u, u′ ∈ U , we have

Cs,u ≤ eεCs′ ,u ≤ e2εCs,u′ , (A95)

where s′ ∈ S \ {s} is arbitrary. Thus, in every C ∈ C two coefficients can differ by at most a
factor eε if they have different s, and at most a factor e2ε if they have the same s. On the
extremal rays of C, the inequalities become equalities. By rescaling by a positive scalar,
if necessary, we see that C is spanned by vectors of which each coefficient is in the set
{e−ε, 1, eε}. In other words, if V ′ = {e−ε, 1, eε}X ∩ C, then

C = Span(V ′), (A96)
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where Span refers to the span as in (A94). To determine V ′ we consider two situations:
either v contains both e−ε and eε as coefficients, or not.

Suppose v contains e−ε and eε, say vs,u = e−ε and vs′ ,u′ = eε. By (A90), we must have
s = s′, and by (A95), this means that vs′′ ,u′′ = 1 for s′′ ̸= s and any u′′. Thus, we define, for
any s ∈ S , the set

V ′
s =

{
v ∈ RX

≥ : ∀s′ ̸= s∀u : vs′ ,u = 1
}

. (A97)

It is straightforward to show that V ′
s ⊂ C, and by the discussion above any v ∈ V ′ containing

both e−ε and eε is in
⋃

s V ′
s.

Suppose v does not contain both e−ε and eε, then v ∈ V ′
2 ∪ V ′

3 where

V ′
2 = {1, eε}X , (A98)

V ′
3 = {e−ε, 1}X . (A99)

Furthermore, it is easy to see that V ′
2 ∪ V ′

3 ⊂ V ′. Thus, we conclude that

V ′ =

(⋃
s∈S

V ′
s

)
∪ V ′

2 ∪ V ′
3. (A100)

To obtain from V ′ to V , we throw out some vectors that are not needed to span C. We start
with V ′

s. Given s, define the set

Vs =
{

v ∈ RX
≥0 : ∀u : vs,u∈{e−ε ,eε};

∀s′ ̸=s,∀u : vs′ ,u=1

}
. (A101)

It is clear that Vs ⊂ V ′
s; we claim that

Span(Vs) = Span(V ′
s). (A102)

To see this, let v ∈ V ′
s \ Vs, and define v−, v+ ∈ RX

≥0 by

v+s′ ,u =


e−ε, if s′ = s and vs′ ,u = e−ε,
1, if s′ ̸= s,
eε, if s′ = s and vs′ ,u ∈ {1, eε},

(A103)

v−s′ ,u =


e−ε, if s′ = s and vs′ ,u ∈ {e−ε, 1},
1, if s′ ̸= s,
eε, if s′ = s and vs′ ,u = eε.

(A104)

In other words, v± takes all s-coefficients of v that are equal to 1 and changes them to e±ε.
Then, v+, v− ∈ V ′

s and

v =
1

eε + 1
v+ +

eε

eε + 1
v−. (A105)

Thus, v ∈ Span(V ′
s), proving (A102). We now consider V ′

2 and V ′
3. First note that V ′

3 =
e−εV ′

2, so
Span(V ′

2) = Span(V ′
3). (A106)

We furthermore claim that

Span

(
V2 ∪

⋃
s∈S

Vs

)
= Span

(
V ′

2 ∪
⋃

s∈S
Vs

)
, (A107)

where V2 is as in (A92). Note that clearly V2 ⊂ V ′
2. To see (A107), let v ∈ V ′

2 \ V2; this means
that there is at most a single (s, u) such that vs,u = eε. If no such (s, u) exists, then v = 1X ,
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the constant vector with all ones. This implies that eεv ∈ V2, showing that v ∈ Span(V2).
Now suppose that there is exactly one (s, u) such that vs,u = eε. Then,

vs′ ,u′ =

{
eε, if s = s′ and u = u′,
1, otherwise.

(A108)

But then we can construct v+ as in (A103) and v− as in (A104), and again we find

v =
1

eε + 1
v+ +

eε

eε + 1
v− ∈ Span(Vs). (A109)

This proves (A107). Combining (A102), (A106) and (A107) we obtain

C = Span

(
V ′

2 ∪ V ′
3 ∪

⋃
s∈S

V ′
s

)
(A110)

= Span

(
V2 ∪

⋃
s∈S

Vs

)
(A111)

= Span(V2 ∪ V1). (A112)

Proof of Theorem 4. We follow the proof of Theorem 14 in [5]. For C ∈ RX
≥0, define

µ(C) = ∑
x

PxCx log
Cx

∑x′ Px′Cx′
. (A113)

For y ∈ Y , let Qy = (Qy|x)x ∈ RX ; then the utility of a mechanism Q : X → Y is given by
IP(X; Y) = ∑y µ(Qy). Furthermore, µ is a sublinear function in the sense of Definition 1
of [5].

We fix an ε > 0. Furthermore, let C ⊂ RX
≥0 be as in Lemma A8. Then, a mechanism Q

satisfies (ε,PX )-RLDP if and only if each Qy is an element of C. Let V be the spanning set of
V of Lemma A8, and let D be the polytope spanned by V . If Q satisfies ε-SLDP, then every
column Qy is of the form θy · dy, where dy ∈ D and θy ∈ R≥0 are such that ∑y θydy = 1X .
Analogously to the proof of Theorems 2 and 4 in Section 7 of [5] (or, for that matter, our
proof of Theorem 3), one proves that the optimal Q is found by taking b = a, and taking
dy ∈ V for all d. Since

I(X; Y) = ∑
y

µ(Qy) = ∑
y

θyµ(dy) (A114)

we can find the optimal Q by solving the following optimization problem, where m ∈ RV

is the vector (µ(v))v∈V , and where A ∈ RX×V is the matrix whose v-th column is v:

maximizeθ∈RV m · θ

such that A · θ = 1X ,

θ ≥ 0.

From here, we follow Section 9.5 of [5]. The dual to the above problem is

minimizeα∈RX (1X ) · α

such that AT · α ≥ m,

α ≥ 0.

By duality, we have maxθ m · θ = minα(1X ) · α. We describe α∗ ≥ 0 and θ∗ ≥ 0,
depending on ε, such that for sufficiently large ε one has AT · α∗ ≥ m, such that m · θ∗ =
(1X ) · α∗ and Aθ∗ = 1X , and such that θ∗ corresponds to SRR, i.e., for each y ∈ Y = X



Entropy 2024, 26, 233 37 of 40

there is a v̂y ∈ V such that SRRε
y = θ∗v̂y

v̂y. Together, this proves that SRR is optimal for
ε ≫ 0.

More concretely, for y = (s, u) ∈ X , define v̂y by

(v̂y)s′ ,u′ =


eε, if (s′, u′) = (s, u),
e−ε, if s′ = s and u′ ̸= u,
1, if s′ ̸= s.

(A115)

Note that v̂y ∈ V . Furthermore, let θ∗ ∈ RV be given by

θ∗v =

{
1

eε+e−ε(a2−1)+a−a2
, if there is a y ∈ X such that v = v̂y,

0, otherwise;
(A116)

Then, SRR satisfies SRRε
y = θ∗v̂y

v̂y for all y ∈ X , and for each x ∈ X one has

(Aθ∗)x = ∑
v

Ax,vθ∗v (A117)

= ∑
v

vxθ∗v (A118)

=
∑y(v̂y)x

eε + e−ε(a2 − 1) + a − a2
(A119)

= 1, (A120)

which shows that Aθ∗ = 1X . Furthermore, define α∗ ∈ RX by

α∗s,u = c1µ(v̂s,u) + c2 ∑
u′ ̸=u

µ(v̂s,u′) + c3 ∑
s′ ̸=s,

u′

µ(v̂s′ ,u′), (A121)

where

c1 = −(a2−2)(a2−1)+(a−a2+1)(a2−2)eε+(a−2a2+1)e2ε+e3ε

(eε−1)(eε+1)(eε−a2+1)(eε+(a2−1)e−ε+a−a2)
, (A122)

c2 = a2−1+(a−a2+1)eε

(eε−1)(eε+1)(eε−a2+1)(eε+(a2−1)e−ε+a−a2)
, (A123)

c3 = −e2ε

(eε−1)(eε−a2+1)(eε+(a2−1)e−ε+a−a2)
. (A124)

A cumbersome but straightforward calculation shows that for all x, we have

m · θ∗ = (1X ) · α∗ = 1
eε+e−ε(a2−1)+a−a2 ∑

x
µ(v̂x), (A125)

v̂x · α∗ = mv̂x = µ(v̂x). (A126)

Furthermore, c1, c2, c3 ≥ 0, so α∗ ≥ 0. It remains to be shown that α∗ satisfies the dual
problem for ε ≫ 0, i.e., ATα ≥ m for sufficiently large ε. To this end, for v ∈ V , set

Fv = {x ∈ X : vx = eε}, (A127)

Gv = {x ∈ X : vx = 1}, (A128)

Hv = {x ∈ X : vx = e−ε}, (A129)

From the description of V in Lemma A8, we find that |Fv| ≥ 1 for all v, and |Fv| = 1 if and
only if there exist s, u such that v = v̂s,u. Now, write PFv = ∑x∈Fv Px and likewise for Gv,
Hv. For large ε, we have
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mv = µ(v) = eε ∑
x∈Fv

Px log
1

PFv + e−εPGv + e−2εPHv

(A130)

+ ∑
x∈Gv

Px log
1

eεPFv + PGv + e−εPHv

(A131)

+ e−ε ∑
x∈Hx

Px log
1

e2εPFv + eεPGv + PHv

(A132)

= (−PFv log PFv)e
ε +O(ε) (A133)

and furthermore

c1 = e−ε +O(e−2ε), (A134)

c2, c3 = O(e−2ε). (A135)

From this, it follows that

α∗x = c1µ(v̂x) + (c2 + c3)O(eε) (A136)

= −Px log Px +O(εe−ε), (A137)

Hence,

vTα∗ =

(
− ∑

x∈Fv

Px log Px

)
eε +O(ε). (A138)

For |Fv| ≥ 2, one has PFv log PFv > ∑x∈Fv Px log Px. This means that if v is not of the
form v̂x, one has vTα∗ ≥ mv for sufficiently large ε. Together with (A126), this shows that
ATα∗ ≥ m for sufficiently large ε; this concludes the proof.
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