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Abstract: This study presents a method for computing likelihood ratios (LRs) from multimodal score distributions, as the ones
produced by some commercial off-the-shelf automated fingerprint identification systems (AFISs). The AFIS algorithms used to
compare fingermarks and fingerprints were primarily developed for forensic investigation rather than for forensic evaluation
purposes. Thus, in some of those algorithms, the computation of discriminating scores is speed-optimised. In the case of the
AFIS algorithm used in this work, the speed-optimisation is achieved by performing the comparison in three different stages,
each of which outputs scores of different magnitudes. As a consequence, all scores together present a multimodal distribution,
even though each fingermark-to-fingerprint comparison generates one single score. This multimodal distribution of scores might
be typical for other biometric systems or other algorithms, and the method proposed in this work can be also applied to those
cases. As a result, the authors propose a probabilistic model for LR computation that presents more robustness to overfitting

and data sparsity than other traditional approaches, like the use of models based on kernel density functions.

1 Introduction

Score-based biometric systems have been recently proposed as a
source of information for evidence evaluation in forensic cases [1,
2]. The aim is to use the automated fingerprint identification
system (AFIS) technology primarily to exploit the distinctiveness
of the fingermarks, and subsequently to evaluate the strength of
evidence in the form of score-based likelihood ratios (LRs). This
approach has been used for example in [1, 2] and was proposed as
an alternative and complementary way of extracting information
from fingermark-to-fingerprint comparisons in forensic cases,
aiding the forensic examiners conducting their analysis. It also
makes the AFIS scores interpretable in a Bayesian probabilistic
framework. Typical commercial ‘off-the-shelf” (COTS) AFIS
algorithms producing scores are primarily developed to support the
process of selection of candidates for forensic investigation and not
intended for the use in forensic evidence evaluation [3]. In any
case, the ultimate aim is to discriminate the comparisons where the
fingermark and the fingerprint come from the same source or from
different sources, and therefore the information extracted by these
systems can be used to evaluate the strength of evidence by means
of LRs. In this work, we use an AFIS algorithm, which was
optimised to perform a large number of comparisons in the shortest
time possible (speed-optimisation). Due to this optimisation, each
fingermark-to-fingerprint comparison is performed in one of three
different output stages, depending on the quantity of information in
accordance, which results in scores of different magnitudes,
together forming a multimodal score distribution. Thus, the scores
generated by the AFIS algorithm are structured in three regions
(Ry, Ry and Rj). The rationale of this comparison process is
sketched as follows:

* Region 1 (R;). This is the first stage of the comparison. Here, a
quick comparison is performed. If the AFIS algorithm finds very
few minutiae in agreement between the mark and the print, a
score of —1 is produced, and the process ends. If this is not the
case, the comparison proceeds to the second stage.
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* Region 2 (R,). This is the second stage of the comparison. All
the comparisons performed in this stage are assigned score
values in the range between 0 and 300. This value of 300 is not
chosen or tuned, but fixed by the system. A computationally
light comparison is performed. If low similarity is observed
between the mark and the print, the score is produced and the
comparison ends. If this is not the case, the comparison proceeds
to the third stage.

* Region 3 (R3). This is the third stage of the comparison. All the
comparisons performed in this stage are assigned score values
greater than 300. Again, this value of 300 is not chosen or tuned,
but fixed by the system. At this stage a full comparison with
higher computational burden is performed to produce the score.

As described above, each fingermark-to-fingerprint comparison
finally outputs one single score. Depending on the stage in which
the score is produced, it will respectively project into regions R,
R, or R3. Scores projected into regions Ry and R, will be referred
to as early-outs.

The score outputs of the three different stages of the AFIS
algorithm used are illustrated in Fig. 1, where the multimodal
distribution of the scores is illustrated.

Table 1 summarises possible values of the scores in the three
stages of the AFIS algorithm. As the contribution of this paper is
the LR model from the AFIS scores as in [1, 2], the description of
the score computation algorithm used by this particular AFIS
algorithm is out of the scope of this paper, and therefore the system
will be used as a black-box. In this paper, fingermarks with 8-
minutiae configurations are used, and we have not observed a
dramatic difference in behaviour of the distribution of scores for
fingermarks with configurations down to 5 minutiae and up to 12
minutiae [4]. It is true that different AFIS (or other biometric
systems) might of course provide scores of different magnitudes,
but the AFIS used here illustrates the problem of multimodal score
distributions, and the proposed method is general for any
multimodal distribution of scores coming from any biometric
system.
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Fig. 1 Histogram of scores produced by the AFIS algorithm used in this paper

The early-outs process of computing scores has been used in
the past by some COTS AFIS systems in order to improve
computational efficiency in large database searches. Consequently,
it is expected that researchers and forensic scientists performing
evidence evaluation from AFIS scores will typically face
multimodal score distributions. Moreover, from our experience, it
has been observed that some of the freely available fingerprint
systems sometimes present a high concentration of scores having
the same, characteristically lowest value. In this context, typical
baseline methods for computing LRs from multimodal score
distributions rely on kernel density functions (KDFs) [1, 5].
However, as it will be explained below, this approach is prone to
overfitting, not robust to the lack of data, and not well suited in
situations where many scores present the same single value (like in
region 1, in our case).

In this work, we propose a LR model which handles multimodal
score distributions, presents robustness to the lack of data and to
the observation of high concentrations of scores with the same
value. The method proposed is based on splitting of the score range
into three regions, and relies on the subsequent application of the
rules of probability to combine independent evidence evaluation
methods for the scores in each region. Also, a Bayesian solution is
proposed to provide robustness to the lack of scores in different
regions.

This paper is structured in the following way. In Section 2, we
introduce the datasets used. Section 3 is dedicated to the definition
of the evidence evaluation problem when multimodal score
distributions are present, and to the introduction of the baseline LR
method. In Section 4, we propose a new method to compute LR
values from multimodal score distributions. In Section 5, we
discuss the performance measures used and present the results in

Table 1 Different stages of the AFIS algorithm
Algorithm stage Score range
1 —early outs 1 -1

2 — early outs 2 [0, 300]

3 — full comparison >300

Table 2SS and DS training scores

Individual SS scores DS scores
person 1 8455 marks 1 print 8455 marks 200,000 prints
person 2 2751 marks 1 print 2751 marks 200,000 prints
person 3 4666 marks 1 print 4666 marks 200,000 prints
person 4 2206 marks 1 print 2206 marks 200,000 prints
person 5 3179 marks 1 print 3179 marks 200,000 prints
person 6 3758 marks 1 print 3758 marks 200,000 prints
62

Section 6. Finally, Section 7 is dedicated to the discussion and
conclusion.

2 Datasets used

Since it is notoriously difficult to find forensically relevant,
sufficiently large datasets with a reliable known ground-truth
regarding the origin of the samples, we decided to use a set of
simulated fingermarks [6]. Simulated fingermarks in this case refer
to series of image captures of a finger moving on a glass plate of a
fingerprint scanner [The fingerprint scanner used was the Smiths
Heimann Biometrics ACCO 13948 live scanner.] (the procedure is
described in detail in [6]), subsequently processed by degrading the
quality, adding noise and a background image simulating the
fingermarks recovered in a typical forensic scenario. 8-minutiae
configuration fingermarks from six individuals paired with their
corresponding fingerprints were used as our experimental dataset.

In order to train the LR models used for evidence evaluation,
AFIS training scores are needed [1]. The training scores, resulting
from the comparison of simulated fingermarks with the
corresponding ground-truth reference fingerprint captured from the
same individual in controlled conditions, are used for modelling a
same-source (SS) score distribution, which represents the
distribution of scores in comparisons where the fingermark and
fingerprint originate from the same individual (i.e. the same
source). AFIS training scores resulting from the comparison of
simulated fingermarks with a 200,000 fingerprint subset of a Dutch
police database are used to model the different sources (DS) score
distribution, which represents the distribution of scores in
comparisons where the fingermark and fingerprint originate from
different individuals. Therefore, for all of these training scores
(both SS and DS) the ground truth is known, because they have
been generated using fingermarks and fingerprints of known origin.
The number of fingermarks and fingerprints used for the LR model
training are summarised in Table 2.

The aforementioned probability distributions (SS and DS) are
used to compute the LR. In particular, they are used in combination
with the score in a case, as given by the biometric system. This so-
called evidence score, denoted as S, is the result of the comparison
between the fingermark in the case (of unknown origin) and the
fingerprint in the case (of known origin). We define evidence same
source (Sgg) as the evidence scores when the mark and the print
come from the same source, and evidence different source (Spg) as
the evidence scores when the mark and the print come from
different sources. Thus, the evidence score, regardless of whether it
is a Sgg or an Spg, is interpreted as a LR by the application of the
previously trained LR model. Sgg scores will be transformed into
SS LR values, and Spg will be transformed into DS LR values for
further performance evaluation. Therefore, this process is
sometimes referred to as a score-to-LR transformation. Details of
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this process and its implementation for this article will be given
below.

In our experiment, as the database size is limited, the evidence
scores will be obtained on a leave-one-out basis from the entire
training database (as in e.g. [7]). Thus, for Person 1, scores for the
evidence same source (Sgg) are obtained on a ‘leave-one-out’ basis
from the total available SS scores by comparing fingermarks of
Person 1 with the fingerprints of Person 1; and scores for the
evidence different source (Spg) are obtained from the AFIS scores
by comparing the fingermarks of Person 1 with the fingerprints
from the aforementioned Dutch Police database (200,000
fingerprint subset). This process is repeated for all the individuals
in the database. Using the ‘leave-one-out’ approach, in a given
comparison one of the fingermarks is chosen to play the role of the
crime-scene mark, and one of the fingerprints is chosen to play the
role of the fingerprint in the case. Then, the rest of fingermarks are
used to form training SS and DS score distributions for the LR
model training. This process is iteratively repeated for all possible
fingermark—fingerprint comparisons in the database.

3 LR computation from multimodal AFIS scores

In order to describe multimodal distributions of scores for evidence
evaluation, KDFs have been explored in different previous works
[1, 5]. The use of this method can be justified if the scoring
mechanism (in our case, the AFIS comparison algorithm) produces
the scores in a continuous range, with a smooth probabilistic
distribution. However, our situation is different. The selected AFIS
comparison algorithm outputs scores in three different ranges, one
of it presents a single value, which causes poor performance of the
KDF method in our case, as we will show below.

The regions in which the score range is divided by the AFIS
algorithm are not overlapping. Therefore, a score cannot be
observed in two regions simultaneously. We exploit this fact in our
proposed method. It is based on splitting the score range in a way
that a LR can be computed for each of the three score regions
independently.

As a consequence of the strategy of splitting the score range,
there are some of the regions where the number of scores reduces
significantly. In particular, the majority of the SS scores are
expected to be into region 3, leaving a few SS observations for
regions 1 and 2. A similar situation occurs with the DS scores,
where the majority of the scores project are expected to be into
regions 1 and 2, leaving a few observations for region 3. The
situation where no SS or no DS score is observed creates an
unstable behaviour, resulting in LR values of unreasonable
magnitudes, including the values of 0 or co. We propose a solution
to this instability below.

3.1 LR computation

The LR approach, firstly considers the definition of the relevant
hypotheses, or propositions, in a forensic case. These propositions
are typically two, and referred to as the prosecution proposition
(supporting that the suspect has a relationship with the crime) and
the defence proposition (supporting the opposite). We can shape
the prosecution and defence propositions at different inference
levels depending on the investigation scenario [8] — the source
level (where we inquire regarding the source of origin of the
fingermark), the activity level (where we inquire regarding the
activity that led to the transfer of the fingermark onto the crime
scene) or at the offence level (the highest level, not commonly
addressed by forensic examiners, but by the trier-of-fact, as it
usually implies direct association between the offence and the
fingermark).

At the source level, for the SS proposition we can further
inquire whether the fingermark found on the crime scene is coming
from a particular finger of the suspected individual or any finger of
the suspected individual (finger/person level propositions). For the
DS proposition we can inquire, whether the mark is coming from a
different finger of a suspected individual, from a particular finger
of any other individual in the available database (conditioning on a
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particular finger is not common for the DS proposition), or any
finger of any other individual in the database.

For simplicity, we address simpler (and less informative)
propositions at the source level [A change at the level or specificity
of the propositions induces a change in the LR model.], namely:

H, (SS): The fingermark and the fingerprint originate from the
same finger.

H; (DS): The fingermark and the fingerprint originate from
different fingers.

Under these propositions, the SS and DS training score
distributions can be obtained from a probabilistic model. These
distributions will be used to compute the LR for the given evidence
score §'in a case.

For the AFIS used in this work, the distributions of SS and DS
scores are not only multimodal, but the score distributions
observed in each region also vary in their shape, mainly due to the
three-different-stages of the scoring process of the AFIS.
Moreover, in most of the cases, the majority of the SS scores
projects into R3 region, because the comparison showing a higher
score tends to be the SS comparison resulting in a score >300.
Conversely, the majority of the DS scores projects into R; and R,
regions, because a comparison showing a lower score tends to be a
DS comparison and results in a score <300.

In the forensic literature, different strategies have been
proposed for calculating LRs from continuously distributed AFIS
scores. In the field of score-based biometric recognition [1, 2, 9—
12], the following general LR model has been defined (example
shown in Fig. 2):

_fSIH) _ f(Amx, py)IH,.S,) "
i~ FSTH,) ~ Fmx, py)IA,.S,) )

where for the fingerprint evidence evaluation datasets are defined
in the following way:

SO — in the equation stands for the probability density function of
continuous scores.

S=A(mx, py) — an evidence score between the fingermark mx
found on the crime scene and the fingerprint py of the suspect.

S, — a set of training scores obtained from comparing the training
set of simulated fingermarks of the suspect with the reference
fingerprint of the suspect.

S, — a set of training scores obtained from comparing the crime
scene fingermark and a subset of the fingerprints from the
population database used in the model (in this case a subset of
operational 10-print card database of individuals not related to the
marks, and provided by the Dutch Police). This subset, counting
20k individuals (200,000 fingerprints), was chosen based on the
fact that the features extracted from the fingerprints in this subset
have been manually (human) verified.

3.2 Baseline method — KDF

KDF is a common strategy used for handling univariate,
multimodal distributions, as it can be seen in [1, 5]. KDF is non-
parametric and has been shown to be prone to overfitting (see
Fig. 3), since the number of degrees of freedom of the model
increases with the data. Thus, dataset shift between the training and
the testing data can lead to a loss of performance of the LR
method, because the inference model overfits the training data.
Overfitting can even lead to so-called strongly misleading evidence
[13], i.e. LR values of high magnitudes that support the wrong
proposition in a case. These huge values are mainly due to the poor
description of the tails of the score distribution, an effect which is
aggravated with the lack of data.

In Fig. 3, we present two examples of erroneous behaviour of
KDF due to overfitting. The plot at the left-hand-side shows a LR
for an evidence SS score (Sgg =940 with LREgg) of a numerically
infinite magnitude. The plot at the right-hand-side illustrates an
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Fig. 2 Illlustration of the general LR model as used in this paper

-3

6210 a i : .
» KDF S8 distribution
55 —KDF DS distribution
§4 ---LREss (940) = Infinity
(o]
% 3 /LHESS (940) = Inf
|
£ :
5! y
= ]

OCIJ 560 1I0|00 lilOO 20b0 2500

which assumes that the probability of finding a score outside the
training score range is numerically close to zero.

4 Solution proposed

Although the KDF method can be appropriate in other scenarios,
the examples of LRs of extreme magnitudes and strongly
misleading evidence when applying the KDF to the AFIS score
distributions, as shown in Fig. 3, advocate for the use of an
alternative method in our case.

4.1 Multimodal LR method

Each fingermark-to-fingerprint comparison performed by the AFIS
system used results in one single score. This score can either
project to region 1, region 2 or region 3. The events of observing
the scores in a particular region (R, R, or R3) are therefore
mutually exclusive and exhaustive. Then, from (1), the following
expression can be derived: (see (2)) The density of a score will be
zero outside the region R; if the score is conditioned to be in region
R;. Thus, assuming that the evidence score S belongs to the region

352107
0 KDF SS DISTRIBUTION
6 4 —KDF DS DISTRIBUTION|
5ol ---LREds (1080) = 2.28e91 |
g
@ o ]
214 ;/LREDS (1080) = 2.2891
= v
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Fig. 3 KDF fit to the SS and the DS score distributions — examples of LR values with extremely high magnitudes: LREgs (left) and LRE pg (right)
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Fig. 4 Proposed LR model for multimodal distributions

example of a LR =10°! for an evidence DS score (Spg = 1080 with

R;, we obtain the following compact representation of (2), where
we replace LR with LR; to stress that the score for which we
compute the LR belongs to region R;:

_ f(SIR, H,) X P(R;1H,)

LR = FSTR. H yx P(R,1H,) G)

This expression considers that the rest of probability densities for
all regions will be zero outsidle R;  Moreover,
(P(R;|H)/(P(R;|H,)) is the ratio of probabilities of observing R;
scores given that the fingermark and the fingerprint originate from
the same finger over the probability of observing R; scores given
that the fingermark and the fingerprint originate from different
fingers. This way, different LR models can be defined for each
region, because we actually know in which region is located each
observed score (see Fig. 4).

We can now proceed with describing the models chosen for
each of the three regions. It should be noted that a variety of
models proposed in the literature were tested and a brief overview
of the models considered is summarised in Section 5.1.

4.1.1 Scores in region 3:

_ fSIR,H,)X P(R,|H,)

LREpg), which is supporting the wrong proposition in a very LR. = 4)
strong way. The main reason for the huge score magnitudes is the > f(SIR,H;)) X P(R,|H )
overfitting of the DS KDF density computed from the DS scores,
_ fSIH,)
~ f(SIHY)
2

_ f(SIR, H,) X P(R\H,)+ f(SIR,.H,) X P(R,|H,) + f(SIR, H,) x P(R,|H,)

~ f(SIR,H)X PR IH,)+ f(SIR,,H,) X P(R,|H,) + f(SIR,,H,) X P(R,|H,)
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From the histograms of the SS and the DS score distributions in
Fig. 5, we consider as a reasonable initial assumption that the
scores in Rz region can be well fitted to a Gaussian distribution.
The Gaussian model in region 3 yields our best performance
amongst the models considered.

F(SIR,H )X P(R,IH.)
LR, = SR Ay X PRIA) ®)

The DS score distribution in R, region appears to be skewed, and
the SS score distribution appears to be monotonically rising in this
region. Although different parametric and non-parametric data fits
have been tested for R, region scores [14], the Beta function was

chosen due to its computational simplicity, its limited range and its
flexibility; because R, region is limited, other distributions such as

Gaussian or Gamma with unlimited score ranges were rejected (see
Fig. 6). The Beta model in region 2 yields our best performance
amongst the models considered.

4.1.3 Scores in region 1: From (3), and for region 1, we have

_ JGIR,H,) X P(R1H,) ©
'~ f(SIR,H,)) X P(R,1H,)

As mentioned in Section 1, all of the scores observed in the R
region present one particular value of the score (—1) assigned by
the AFIS algorithm. Nevertheless, the scores in this region also
carry evidential information, and as such should not be excluded
from the evaluation. For example, if the majority of training scores
in region 1 are DS scores, an evidence score belonging to region 1
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should provide support towards the DS proposition. The proposed
model implicitly considers this, as it will be shown.

Equation (6) considers the ratio of densities f(SIR,,H,) and
f(SIR,H,). However, as the only possible value of the score is —1
for both densities, it can be shown that, by integrating over a
limiting small region around the —1 value in both numerator and
denominator densities, their ratio can be accurately approximated
to one. Therefore, (6) further simplifies to the ratio of probabilities
of observing a score in R; region under either of the propositions
(P(R,IHP))/(P(R,IHd)). Hence, the scores in region R; possess
certain evidential value, despite the fact that all of them share the
same value.

With this model, let's assume that a very few number of SS
training scores are observed in R; region, and that they are mostly
DS training scores. If we observe an evidence score of —1 (in R;
region), the LR should then support the defence hypothesis. This
happens if LR = (P(R,|H p)/P(RIIH ). In addition, the apparent
solution to the —1 scores of ignoring them because all of them have
the same value appears to be a waste of the discriminating
information, given by the fact that in R; there are mostly DS
scores.

4.2 Robustness to the lack of scores in a region

In our proposed model, we have to consider the following
probability ratio for each region R;:

P(R;|H,)
P(RTH,)

These are the probabilities of observing a score in the ith region,
respectively, under the prosecution and the defence propositions.
Even if a wealth of training data is available, we can encounter a
situation when we have very limited number of scores in a region
under one of the propositions (or no scores at all). This effect may
cause instabilities in the LRs obtained by the model due to the lack
of training scores. We exemplify this below.

4.2.1 Effect of the lack of scores in a region: Assigning P(R;|
H,) and P(R;|H,) to each of the different regions R;, i=1,2,3 needs
to address robustness to the sparsity of the scores in the training
dataset. In order to illustrate this, we start with a simplified
example, where we divide the score axis into two regions R; and
R, — a binary division. We consider for illustration the scores under
the assumption that H; is true, but this example can be analogously
applied to the scores under the assumption that H,, is true.

In order to assign the probability P(R;|H;) that a given score
will be observed in the region R;, we need previous knowledge
regarding the observations of scores in each of the regions, i.e.
some training observations. Those observations are taken from the
training scores Sy, being N, the number of scores observed under
the defence proposition, in the following way. Let
R,= {R;,...,RZ"} be a sample of random variables, where R}{z
represents the region in which the jth DS training score was
observed. In this binary example, the possible outcomes of each R}{z
are R; and R,. Then, the outcome of R{, will be the region in which
the jth score in Sy is observed. Thus, the training observations are
the particular values of each of those random variables. We assume
that variables R, = {R;, ...,Rg"} are identically distributed
according to a Bernoulli distribution, where the probability of
observing a score in R; is precisely P(R;|H;). Moreover, we assume
that the variables are conditionally independent given the model.

Then, it can be shown that the maximum likelihood rule to assign
the probability that a score will be observed in R; is as follows:

M;
P(R;1H,) = N, 0
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where M; is the number of DS scores in the training set observed in
R; and the Nis the number of observations of the scores under the

defence proposition. If the training scores become sparse, and the
training scores under H; contains zero score observations in R;, i.e.

M;=0, we get the following:

P(RIH,) PRIH,) PR|H,)
P(RIH) ~ MJN, ~ O0/N, _ % ®)

In this particular case, it results in the undesirable effect of
producing an unrealistic strength of evidence: a LR of infinite
value. An analogous derivation results in a null LR for SS scores
observed in a region where no SS scores have been observed
before.

An outcome of LR=0 or o is very likely to occur if no score,
either SS or DS, is observed in one of the regions. The problem
arises particularly in R; region, where the SS scores are quite rare,
but can likewise occur in R, or R3 regions.

4.2.2 Bayesian solution: In forensic science, the apparent
problem of assigning probabilities when no observations are made
in the training data has been studied for example in [15]. We
propose a Bayesian solution to assign P(R;|H,) and P(R;|H,). We
start from the above binary example, where a maximum-likelihood
rule was considered. Under the same assumptions, if we instead
consider that the parameter of the Bernoulli distribution has a
uniform prior distribution (in the [0, 1] range), it can be shown that
the solution inferred is the predictive distribution, which takes the
following form:

P(R,|H,) M+ 1 )
PETN4+2

A full derivation is tractable, and can be found in [16] [Equations
(6.66) to (6.73)]. The result is known as the Laplace's rule of
succession [17]. For the sake of simplicity the application of this
rule on our dataset will be demonstrated in R; region, where all the
scores reach the value S=—1. Recall the binary example, where in
Ry region we obtained LR =o0 because there were no scores
observed in the training data in this particular region. Suppose a
number of DS training scores Ny =20 and that none of these scores
are observed in region 1, thus AM;=0. Then, according to the
previously proposed maximum-likelihood rule, we would obtain
PRIH) =M/N=0/20=0 and the LR would be infinite.
However, with the Bayesian uniform prior on the Bernoulli's
parameter (Laplace rule of succession), we get the
PRIH) =M+ 1)/(N+2)=1/22~0.05, which with an
increasing number of training scores N; will be asymptotically
approaching zero, but will provide a non-zero numerical value. The
interpretation of this result is that, additionally to the training data,
a uniform prior for the model parameters forces to consider always
at least an observation of one score in each of the regions under
each of the propositions. Therefore, if H, is true, we have to
consider N, + 2 scores for the two regions, and the scores observed
in each region will be at least one. An analogous derivation
provides equivalent interpretation for the case when H,, is true.

4.2.3 Generalisation to more than two regions: The problem
addressed in this work requires a generalisation with respect to the
rule of succession for the binary example, because we are dividing
the score range into more than two regions. That means that the
. N, . .
variables {R;,...,Rdd} will now have more than two possible

outcomes. Therefore, their distribution cannot be a Bernoulli
distribution. The generalisation to more than two possible
outcomes, say Q possible regions, involves the assumption that the

variables {R;,...,R;Vd} follow a multinomial distribution.

Moreover, since there are now Q parameters for this multinomial
model, the prior distribution of the model parameters will be a
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Dirichlet distribution. Under these conditions, the derivation of the
predictive distribution P(R;|H,) for each of the regions can be

found in [18]. It generalises the rule for more than two regions and
provides the following result for the predictive distribution:

PRIH) =it

(i d)_Nd+Q (10)
or in the case of three regions as in the model proposed in this
paper, we have

M;+1

Again, the analogous derivation produces a similar result for the
case where H,, is true.

In our method, (11) will be used in all three regions to assign all
the probabilities P(R;| H p) and P(R;|H,). This is because in case

where both SS and DS scores are present, the probabilities do not
change significantly with respect to the maximum-likelihood
solution. On the other hand, in the cases where there are zero
scores of either SS or DS, it will make the model more robust and
will help to avoid, results of LR =0 or .

One can argue that a system providing LR =0 or o is the best
that can be achieved if always correct. However, when the quantity
or quality of the data is limited, a system providing LR =0 or o is
not desirable, since such an output underestimates or overestimates
the strength of evidence. In practice, those extreme LR values are
the consequence of artefacts of the score modelling method and do
not provide a realistic strength of evidence.

The motivations for the use of the Laplace rule of succession
and its generalisation are thoroughly justified in [16, 17].

5 Performance measures

We will measure the performance of the KDF baseline and the
proposed multimodal LR method, mainly focusing on their
accuracy and their discriminating power. The accuracy was defined
in [4, 19] as the closeness of agreement between a LR computed by
a given method and the ground truth status of the proposition in a
decision-theoretical inference model. The discriminating power
was defined in [4, 19] as the performance property representing the
capability of a given LR method to distinguish amongst forensic
comparisons where different propositions are true. As it can be
seen in [7, 19-21], empirical cross-entropy (ECE) curves and log
LR cost (CllIr) are increasingly accepted measures of accuracy, the
latter being a summarising measure of the former.

To measure the discriminating power, it is increasingly popular
to use detection error trade-off (DET) curves [22] and its
summarising measure, the equal error rate (EER). The DET curve,
a Gaussian-wrapped version of the receiving operation
characteristic (ROC) curve, is a two-dimensional plot of false
acceptance versus false rejection rates. The linearity of the DET
curve increases as the log-LR distributions become more normal.
The closer the curve to the coordinate origin, the better the
discrimination capabilities of the model [22]. Other methods
increasingly used are Clr™? (minimum Cllir) and ECEMin
(minimum ECE) curves [6, 19].

Alongside the ECE and DET curves, a Tippet plot [13, 19, 23]
showing the rates of misleading evidence for the prosecution and
defence propositions (RMEP/RMED) will be presented, since they
are also popular for LR-based evidence evaluation methods [24,
25].

5.1 Comparison and selection of LR models for each region

In the proposed multimodal LR method, the choice of the model
for region 1 was straightforward and the calculation was based on
the proportion of the SS and the DS scores in this region [ (SS/
DS)]. The choice of Beta and Gaussian functions to describe the
score distributions in regions 2 and 3, respectively, is presented in
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Fig. 8 DET plots of the baseline KDF versus multimodal LR method

this section by analysing the results of the different models
considered.

Table 3 Comparison of different models for LR calculation

The methods considered for regions 2 and 3 include popular
approaches to score-to-LR transformation found in the literature.
Apart from modelling the scores with Gaussian and Beta functions,
linear logistic regression (LLR) and pool adjacent violators (PAV)
were applied to the scores of regions 2 and 3 [21]. The combination
of methods for this article was selected on the basis of the best
performance, evaluated using EER, Clir and CIIr™™, The complete
list of all methods tested is summarised in Table 3.

The choice of Beta distribution for region 2 and Gaussian
distribution for region 3 was based on the results presented in
Table 3 and the best performance of the multimodal model in this
configuration. Table 4 summarises the chosen model.

6 Results

Fig. 7 shows the Tippett plots for the baseline and for the proposed
multimodal LR method. Tippett plots present one minus empirical
cumulative distributions of LR values in the experiment. The
intersection of both curves with the logLR = 0 vertical line defines
the rates of misleading evidence (RME) for the DS and SS
propositions. The corresponding rates of misleading evidence (as
observed in Flg 7) are RMEPMULTIMODAL:3345; RMEPKDF:
3,6; RMEDMULTIMODAL:4’6; RMEDKDF:4,16. However, in
Fig. 7, we observe LRgg values of huge magnitude for the baseline
KDF method. This is due to the fact that the inverse cumulative
density function of the LRgg fails to converge in the bottom right
corner. The curve never converges, indicating that roughly 3% of
LR values are enormously high. In extreme cases the LR values
reach infinity. Please note that the log;((LR) values represented in
the curves (x-axis) have been limited for illustration purposes for
the baseline method. This instability in the strength of the LR
values is observed despite reporting similar rates of misleading
evidence for both models. LR values of similarly high magnitudes
have not been observed for the multimodal method, where the LR
values show more moderate strength for the SS proposition.

In Fig. 8, we present the DET plot of both methods compared,
in which the EER can be observed at the intersection of the DET
curves [22] and the x =y line in the plot. Another undesirable
effect, different from the one observed in the Tippett plots shown
earlier, is seen in DET plots for the KDF method in the form of a
clear deviation of the dashed curve from linearity in the top left
corner, which causes the false-acceptance rates to never approach
0%. This happens because some of the DS evidence scores
(roughly 0.1% of the total DS scores) yield extremely large LR
values, strongly supporting the wrong proposition. This again is a
highly undesirable effect, which has consequences on the reliability

Region 1 Region 2 Region 3 Discriminating power Accuracy

EER ClIrmin Clir
method combination oc(SS/DS) Beta Gauss 3.62 0.14 0.15
method combination oc(SS/DS) Beta PAV 3.69 0.14 0.15
method combination oc(SS/DS) Beta LLR 3.84 0.15 0.16
method combination oc(SS/DS) PAV Gauss 3.67 0.14 0.15
method combination oc(SS/DS) PAV PAV 3.77 0.14 0.15
method combination oc(SS/DS) PAV LLR 3.92 0.15 0.16
method combination oc(SS/DS) LLR Gauss 3.70 0.14 0.15
method combination oc(SS/DS) LLR PAV 3.79 0.14 0.15
method combination oc(SS/DS) LLR LLR 3.95 0.15 0.16

Table 4 Choice of the multimodal and the baseline
methods for the LR calculation

Region 1 Region 2 Region 3
MULTIMODAL method
oc(SS/DS)Bayesian Beta Gaussian

BASELINE method

KDF baseline for the entire SS and DS score distributions in all
regions
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of the LR values using the KDF method. Apart from this effect, we
observe improvement in the EER for the multimodal method,
indicating slightly better discrimination performance (EERgpg=
3878 and EERyurTiMopaL = 3,625, see Table 5). However, as
reported in previous work [21], it is apparent that measuring the
performance of a LR method solely using the EER becomes
insufficient.

In the ECE plots in Fig. 9, the performance of the two methods
is presented in terms of accuracy (solid line, the smaller the better).
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Fig. 9 ECE plots of the baseline KDF (left) versus multimodal LR method (right)

The value of Cllr is found at the intersection of the solid line and
the vertical line at prior log-odds = 0. Moreover, the discriminating
power can be seen in the so-called ECE™™ curve (dashed line, the
lower the better), and by CIIr™™ — found at the intersection of the
dashed line and the line at prior log-odds=0. The smaller the
distance between the solid and dashed curves, the better the
calibration of the method. Ideally, both solid and dashed lines
should be below the black dotted curve, which represents a neutral
reference system, which always assigns LR =1 to every evidence
score.

A clearly undesired behaviour of the baseline KDF method is
also shown in the ECE plots in Fig. 9 for the prior log odds smaller
than —2. In that particular range, the baseline model performance is
worse than that of the neutral system (which constantly returns LR
= 1), essentially resulting in much larger calibration loss than the
multimodal method. It also warns about the low reliability of the
baseline LRs if they are used in cases where the prior-log-odds are
below —2. This means that the baseline LR method is not reliable
for all possible forensic cases and should be used with caution. For
the baseline method we measured Cllr=0.19 and Clir™ir=0.15;
while for the multimodal method Clir=0.15 and ClirMin=0.14
(Table 5).

Fig. 9 also shows that the multimodal method presents much
better performance figures (ECE, ECE™ and calibration) than the
baseline method for the entire range of prior odds. Moreover, the
ECE curve of the multimodal method is always below that of the
neutral reference, as opposed to KDF. This means that the
multimodal method can be used for any range of the prior-odds,
and it will give useful information for decision-making.

Table 5 summarises the results presented graphically above.
The relative improvement of the multimodal method compared to
the baseline KDF achieved was approximately 21% for the Clir
and 6.5% for the EER. The performance improvement is relevant
and stable for all the performance measures presented.

To summarise the results, we can say that the proposed
multimodal LR method based on Gaussian and Beta distributions
outperformed the baseline KDF method. It must be noted that the
objective of this paper was not to find the best score distribution

Table 5 Comparative performance of the baseline KDF and
multimodal methods

LR method Performance
Discriminating power  Accuracy
EER Cl|ymin Clir

multimodal 3.62 0.14 0.15

baseline KDF? all regions 3.87 0.15 0.19

AThe performance of the baseline KDF method was only possible to be measured
after removing the extreme outliers (LR = infinity) and after setting a hard threshold at
log(LR) =30. As such, the reader is required to treat the over-optimistic results
produced by the KDF baseline method with a certain amount of moderation in mind.
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descriptions for the scores in each region, which can be achieved
by further optimisation or choice of different methods for
describing the score distributions. The objective of this paper was
to address the multimodal nature of the scores by the partitioning
of the score range. The resulting model has been shown to be more
robust than the baseline to overfitting and data sparsity. In this
sense, the splitting of the score range and the application of the
Bayesian solution proposed is the main contribution of this work,
since it can be used for any score-based biometric system, or any
comparison algorithm outputting one score per comparison. The
distributions selected to represent the data in different regions may
vary in different biometric modalities or systems (e.g. in [25] the
AFIS scores are reported to be better modelled by a log-normal
distribution), but if the scores present a multimodal distribution
with high concentration of scores in single-score ranges, this model
represents an attractive alternative.

7 Discussion and conclusion

The main drawback of the traditionally used KDF method for
modelling multimodal score distributions is its poor description of
the tails of the training score distributions, together with the
tendency to overfit them. The latter is mainly due to the high
number of degrees of freedom of the non-parametric model, which
increases with the increasing number and complexity of the
training data. Thus, when a dataset shift is present between the
training and testing data, as it typically happens in forensic science,
the performance seriously degrades. This effect aggravates when
the training data becomes sparse. Using a model based on KDF
distributions in our problem we observed LRs of enormous
magnitude supporting the correct proposition (e.g. LREgg = 10139,
LREgg =), and even supporting the wrong proposition (e.g.
LREpg =10°1). This not only indicates a poor or unrealistic
performance, in the context of forensic casework it also provides
an illusion of certainty that transcends reality and leads to a
misleading interpretation of the forensic evidence. In the ECE
plots, we observed a poor calibration of the baseline KDF method,
even worse than the neutral method in some cases.

In the method proposed, the SS and the DS score distributions
were split into three different regions (R, R, and R3) and modelled
independently. Thus, the entire score distribution is divided into
several simpler distributions that can be fit to simpler sub-models,
dramatically reducing the degrees of freedom of the resulting
model. As a consequence, the model generalises better to new,
previously unseen data. We used ECE plots and ClIr values to
evaluate the performance of the LR models, and observed a 21%
relative improvement in the accuracy of the multimodal method in
terms of ClIr with respect to the KDF baseline. We also observed
much better calibration of the multimodal method than for the
baseline KDF method for the whole range of the prior log;( odds.
The multimodal method improved the discriminating capabilities
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of the system in terms of EER (6.5% relative improvement of the
multimodal method over the baseline KDF).

Based on its improved performance and computational
simplicity, the multimodal LR method was used in [4] to evaluate
the coherence of the scores produced by an AFIS algorithm. The
proposed approach can be used in cases where multimodal score
distributions are observed, even in cases in which discrete score
regions are presented. Finally, it can be also used for any score-
based discipline, biometric or not.
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