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Abstract
The use of Artificial Neural Network (ANN) approaches has gained a significant role over the last decade in the field of 
predicting the distribution of effects triggered by natural forcing, this being particularly relevant for the development of 
adequate risk mitigation strategies. Among the most critical features of these approaches, there are the accurate geoloca-
tion of the available data as well as their numerosity and spatial distribution. The use of an ANN has never been tested 
at a national scale in Italy, especially in estimating earthquake-triggered landslides susceptibility. The CEDIT catalogue, 
the most up-to-date national inventory of earthquake-induced ground effects, was adopted to evaluate the efficiency of an 
ANN to explain the distribution of landslides over the Italian territory. An ex-post evaluation of the ANN-based susceptibil-
ity model was also performed, using a sub-dataset of historical data with lower geolocation precision. The ANN training 
highly performed in terms of spatial prediction, by partitioning the Italian landscape into slope units. The obtained results 
returned a distribution of potentially unstable slope units with maximum concentrations primarily distributed in the central 
Apennines and secondarily in the southern and northern Apennines. Moreover, the Alpine sector clearly appeared to be 
divided into two areas, a western one with relatively low susceptibility to earthquake-triggered landslides and the eastern 
sector with higher susceptibility. Our work clearly demonstrates that if funds for risk mitigation were allocated only on the 
basis of rainfall-induced landslide distribution, large areas highly susceptible to earthquake-triggered landslides would be 
completely ignored by mitigation plans.
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Introduction

The concept of landslide susceptibility defines the expecta-
tion of where landslides may occur in a given landscape, thus 
providing information on the spatial component of the land-
slide hazard definition (Varnes and the IAEG Commission 

on Landslides and Other Mass-Movements, 1984; Guzzetti 
et al. 1999; Lombardo et al. 2020a). The numerical expression 
of a landslide susceptibility corresponds to the probability 
of landslide occurrences within a given mapping unit (Lima 
et al. 2017; Broeckx et al. 2018; Lombardo and Mai 2018). As 
reported by Bird and Bommer (2004), earthquake-triggered 
landslides often cause the largest damage related to earth-
quakes and affect transportation routes inhibiting recovery 
and safety operations during emergency phases (Martino et al. 
2019; Mantovani et al. 2019). In detail, earthquake-triggered 
landslides caused more than 50% of the total worldwide losses 
due to landslides in the last decades (Petley 2012).

To preemptively reduce the risk associated with these 
processes, predictive models have been proposed to esti-
mate the distribution of earthquake-triggered ground effects 
scenarios (Sassa 1996; Jibson et al. 2000; Prestininzi and 
Romeo 2000; Romeo 2000; Wasowski and Del Gaudio 2000; 
Del Gaudio et al. 2003; Jibson 2007; Hsieh and Lee 2011; 
Lombardo and Tanyaş 2020, among others) representative 
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of a uniform hazard distribution or seismic shaking scenar-
ios. Out of several available options proposed to preemp-
tively estimate earthquake-triggered effects, the proposed 
approaches essentially boil down to two types: physically 
based approaches (Van Westen et al. 2006) and statisti-
cally based ones (Guzzetti et al. 2005). The first type of 
approach implies that slope stability analyses are performed 
to quantify safety factors (Martino 2016) and/or the expected 
seismically induced displacements of the landslide masses 
and include Newmark’s method (Del Gaudio and Wasowski 
2004). The recently proposed PARSIFAL (Probabilistic 
Approach to pRo-vide Scenarios of earthquake-Induced 
slope FAiLures) approach allows obtaining probability maps 
of expected Newmark’s displacements at regional scales 
(Esposito et al. 2016; Martino et al. 2018, 2019).

As regards the statistically based counterpart, the general 
framework is quite similar when data-driven (statistical and 
machine learning) models are used. Typically, a mapping unit 
is chosen between grid-cells and slope-units and a dichotomous 
status expressing the absence or presence of landslides (or 
0/1) is assigned. In a subsequent step, the binary status is 
fitted to a set of predictors chosen to represent predisposing 
factors of slope instability and the outcome of the modeling 
procedure is a probability (Amato et al. 2019). However, the 
algorithmic architecture one chooses to implement has notable 
repercussions on the performance each model provides. For 
instance, simple bivariate statistical models provide quite 
straightforward interpretation of the functional relations 
existing between factors and landslides (e.g. Weight of 
Evidence; Bonham-Carter 1989; Van Westen 2002; Martino 
et al. 2019). But, this is achieved at the expense of statistical 
rigour (the model does not assume any underlying probability 
distribution nor the interaction among explanatory variables) 
and performances. For instance, multivariate statistical 
routines assume that landslides are distributed over space 
according to the Bernoulli probability distribution (Lombardo 
et al. 2019). And, they allow to model linear relations (in the 
case of Generalised Linear Models; Ayalew and Yamagishi 
2005; Castro Camilo et al. 2017) or a combination of linear 
and nonlinear relations (in the case of Generalised Additive 
Models; Brenning 2008; Goetz et  al. 2011) between 
predisposing factors and landslides occurrences. These 
models offer excellent performance while keeping a clear 
interpretability at each step and for each model component 
(Lombardo et  al. 2014; Frattini et  al. 2010). Ultimately, 
machine learning methods provide equally and often even 
higher performance than the other two approaches mentioned 
above, this time though at the expense of the interpretability 
of each step. The reason behind this characteristic is due to the 
fact that machine learning algorithms are often based on the 
combination of highly nonlinear functions which are difficult 
to be individually and multivariately traced as the model 
evolves converging to the best solution (Liu et al. 2014; Zhou 

et al. 2016, 2018). Because of the high performance provided, 
the number of machine learning applications n landslide 
science rose in recent years (Marjanović et al. 2011; Huang 
et al. 2017; Zhu et al. 2017; Amato et al. 2021). And, Artificial 
Neural Networks (ANNs) (e.g.Ermini et al. 2005; Gomez and 
Kavzoglu 2005), including their more recent convolutional 
extensions (e.g. Wang et al. 2019) have demonstrated to be 
a valid tool for landslide susceptibility assessment. Neural 
networks (Hassoun et  al. 1995) are characterised by the 
possibility of modelling the relationship between independent 
and dependent variables in a complex non-linear way and are 
by nature prone to overparameterization of the model itself. 
These aspects lead to the advantages that ANN have the ability 
to model complex relations when these are not known a priori 
and in the fact that, thanks to overparameterization, they are 
very little sensitive to problems of collinearity (De Veaux and 
Ungar 1994) between independent variables (i.e. the internal 
dependence among variables that may cause that one variable 
explains the variability of another, or more than, one). Thus, 
ANNs approaches are particularly suitable for big data.

Most of the works that adopt ANN approaches to analyse 
earthquake-triggered landslide susceptibility perform analysis 
at a regional scale (Song et al. 2012; Umar et al. 2014; Zhou 
and Fang 2015) using input landslide inventories that are 
limited in time and space to single earthquakes (Tanya et al. 
2017; Shrestha and Kang 2019; Tanya and Lombardo 2020). 
A classical approach to perform earthquake-triggered landslide 
susceptibility analysis by means of ANN techniques usually 
sees, as a first step, inventorying landslides triggered by a 
selected large earthquake. Afterwards, a susceptibility model, 
driven by the inventoried landslides, is produced for the region 
hit by the selected earthquake (Song et al. 2012; Umar et al. 
2014; Zhou and Fang 2015; Shrestha and Kang 2019). As a 
result, the susceptibility analysis ends to have a relatively local 
impact, being hardly exportable to other seismic regions, even 
within the same country. This is mainly because the model is 
earthquake-specific. To generalize the model and make it more 
exportable, landslides triggered by other relevant earthquakes, 
even from surrounding regions, should be included in the 
starting inventory.

In this study, we performed a susceptibility analysis of 
earthquake-triggered landslides byimplementing an Artifi-
cial Neural Network approach for the whole Italian territory. 
Slope units have been adopted as mapping units (Alvioli 
et al. 2020; Titti et al. 2022a; Loche et al. 2022a). The input 
landslides inventory used to train the network has been 
accessed via the Italian Catalogue of Earthquake-Induced 
Ground Failures (CEDIT;Fortunato et al. 2012; Martino 
et al. 2014; Caprari et al. 2018), which collects ground 
effects caused by earthquakes occurred over the whole Ital-
ian territory from the XII century to present days. As far as 
the authors know, this represents the first study dealing with 
earthquake-triggered landslide (EQtLs) susceptibility for the 
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whole Italian territory. To clearly evaluate and present the 
achieved results, we quantified the ANN classification per-
formances through commonly adopted metrics, and we gen-
erated the first Italian EQtLS susceptibility map. Besides, 
we investigated the importance of the predictors performing 
a Permutation Feature Importance (PFI) of single predictors 
and explored how the classification performance varies by 
selecting all the possible combinations among predictors 
groups (i.e. terrain, seismic, geothematic, hydrological, and 
anthropic predictors). Ultimately, we checked the obtained 
susceptibility map for every Italian administrative region, by 
using an additional landslide dataset, which was not included 
during the ANN training phase. The resulting percentage of 
unstable territory for every Italian region has been computed 
to highlight priorities in land management practices at more 
local scales other than the national one.

Material and methods

Italian morphotectonic settings

Italy is the European country most affected by landslides 
(Herrera et al. 2018), with over 620,000 landslides recorded 
in the framework of the IFFI dataset, the most complete and 
detailed landslides inventory existing in Italy (Trigila et al. 
2013). The main triggering factors for landslides in Italy 
are intense rainfalls and earthquakes. And in recent years, 
anthropogenic factors such as road cuts have been assumed 
to also play an increasing role. From 1999 until December 
2019, almost two billion Euros were dedicated by Italian 
institutions to interventions for landslide risk mitigation, 
which great majority was realised within or close to areas 
classified with a high landslide hazard (link here). This high-
lights the high relevance that the classification of the ter-
ritory assumes to establish remediation funding priorities. 
Italy is also characterised by active geodynamics related to 
the geological evolution of the two major mountain chains, 
i.e. the Alps in the north and the Apennines throughout the 
peninsula, as testified by the distribution of earthquakes and 
volcanic activity. More specifically, the Alps’ chain shows a 
double-verging growth, involving the exhumation of meta-
morphic rocks. Conversely, the Apennines chain consists 
of a single-east-verging belt, mostly characterised by thin-
skinned tectonics. As a consequence, earthquakes show 
prevalent compressional focal mechanisms at the fronts of 
the two chains and extensional mechanisms along the Apen-
nines backbone (Carminati et al. 2010). The highest magni-
tude seismic events, with peak ground acceleration (PGA) 
values higher than 0.225 g and a return time of 475 years, are 
expected in the central-southern Apennines, Calabria region 
(on the southwest of the Italian peninsula), in the southeast-
ern part of Sicily island and in the north-eastern sector of 

the Alps chain. Medium to low seismic acceleration values 
(PGA up to 0.225 g) are expected with a return time of 475 
years along the entire Alpine Arch, along the entire western 
Italian coast and the peri-Adriatic regions (eastern Italian 
coast). Ultimately, ttablehe Sardinia island is the only sector 
with very low seismic hazard (link here).

CEDIT catalogue

The EQtLs susceptibility model we built in this study is based 
on data collected in the CEDIT catalogue (Prestininzi and 
Romeo 2000; Fortunato et al. 2012; Martino et al. 2014, 2019, 
2020a, b; Caprari et al. 2018), which is available online at (link 
here). The CEDIT collects all the ground-failure effects pro-
duced by earthquakes that occurred in Italy taking information 
from historical documents and literature, especially in the case 
of earthquakes that occurred before 1980, while ground effects 
induced by more recent events have been surveyed directly 
on the field by the CERI (Research Centre for the Geological 
Risks of Sapienza University of Roma) working group (see 
Martino et al. 2017, for more details on the standard catalogu-
ing procedure). Among the many information contained in the 
CEDIT, the error estimation assigned to each ground effect 
location according to the following scheme (Martino et al. 
2014) was found particularly useful for this work:

•	 Class 5: high-quality location from historical documents 
or GPS measurement with any or negligible associated 
error;

•	 Class 4: location coordinates with an average error of 
1 km;

•	 Class 3: location coordinates with an average error of 
3 km;

•	 Class 2: location coordinates with an average error of 
10 km;

•	 Class 1: location coordinates with an average error of 
30 km.

The EQtLs were extracted from the CEDIT catalogue and 
were split into two different subsets (Fig. 1):

1.	 An “Input dataset” containing 1545 landslides, all belonging 
to the georeferencing class 5. These were induced by the 
earthquakes that occurred in Italy from 1908 to 2018.

2.	 A “Check dataset” containing 465 landslides with georef-
erencing classes ranging from 1 to 4, induced by all the 
earthquakes contained in the CEDIT catalogue, and 54 
landslides belonging to the georeferencing class 5, induced 
by earthquakes that occurred in Italy before 1908.

With the aim to provide the susceptibility analysis with 
a high-quality geolocalised dataset, we used the Input 
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dataset for the training and cross-validation-test cycles 
of the neural network, whereas we used the Check data-
set to perform an a-posteriori and independent verifica-
tion of the EQtLs susceptibility map of Italy. The spa-
tial distribution of the two here considered datasets (i.e. 
earthquake-induced landslides for Input and Check) are 
shown in Fig. 2.

Model building strategy

Mapping unit

A mapping unit in landslide science is considered to be 
a geographical object upon which the landscape is parti-
tioned (Carrara 1988). The vast majority of the landslide 

Fig. 1   Bar chart showing the 
distribution of the type of 
EQtLs for Input dataset (a) and 
for Check dataset (b), together 
with the georeferencing class 
distribution for the Check 
dataset only (b). “Generic Land-
slides” means that the landslide 
type is not known

Fig. 2   a Spatial distribution of EQtLs belonging to the Input dataset and b of EQtLs belonging to the Check dataset, coloured on the basis of 
their georeferencing class
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susceptibility literature is based on regular mapping units 
shaped as a squared (e.g.Jibson et al. 2000; Steger et al. 
2020) or hexagonal (Avolio et al. 2013; Lupiano et al. 
2018) lattice. However, when it comes to statistically 
based applications, the way these units are used is gener-
ally flawed for a few reasons. These have been extensively 
described in Reichenbach et al. (2018) and we direct the 
reader to this article for more details. Most of these issues 
do not affect a valid alternative represented by a slope unit 
(SU) partition which is mapping units bounded by ridges 
catchment/sub-catchment divides and streamlines (Carrara 
et al. 1991, 1995). SUs are able to capture the variability 
of the landscape associated with the failure process, by 
maximising homogeneity of slope steepness and aspect 
within a single unit and heterogeneity of the same between 
adjacent SUs (Alvioli et al. 2016; Titti et al. 2021). On the 
other hand, a SU choice requires an additional step which 
corresponds to the aggregations or upscaling of properties 
that are represented over space with a much higher reso-
lution. Oftentimes, mean and standard deviation values 
are extracted for numerical properties at the scale of the 
single SU (e.g. Guzzetti et al. 2006). But, these could also 
be expressed via different summary distribution metrics, 
e.g. such as quantiles (Amato et al. 2019). Similarly, it is 
not standardised the way categorical properties such as 
lithology or land use are aggregated at the SU scale and 
different approaches can be found in the literature (e.g. 
Castro Camilo et al. 2017; Schlögel et al. 2018).

In this study, we select a SU partition of the Italian 
territory. In addition to the above-mentioned reasons, for 
such a large study area, choosing a small regular lattice 
would have inevitably produced several tens of millions of 
grid-cells. The alternative of seeking a reasonable size of 
the dataset would have instead produced grid-cells which 
would have been individually very coarse, neglecting any 
geomorphological representation of the landscape under 
study. The SUs we used were made available by Alvioli 
et al. (2020) at the following address (link here). In Fig. 3, 
we summarised the distribution of all the SUs’ planimetric 
areas, ranging from approximately 0.1 to 10 km2.

To support the analyses in this study, we assigned 
unstable conditions’ labels to SU intersected by landslides 
contained in the Input dataset while we assigned a stable 
label to all the others.

Predictor variables

To support the modeling protocol at a scale comparable to the 
whole Italian territory, we selected a broad set of predictors 
aimed at expressing properties known or assumed to influ-
ence landslide occurrences. InTable 1 in the Appendix, we pro-
vide a general overview of these predictors by grouping them 
into geological, seismic, anthropic, terrain, and hydrological 

macro-classes. Before describing these properties, we stress 
to the reader that in order to aggregate each predictor at the 
SU scale, we used the mean and standard deviation criterion 
for continuous properties as well as the dominant class for cat-
egorical properties. And we recall that, if collinearity among 
predictors, which may negatively affect the model by inflating 
the variance estimates (McElroy and Jach 2019), exists, ANNs 
are able to handle it by spreading the estimated weights over 
the collinear variables to take into account the different noise 
levels, taking actually advantage in terms of predictive perfor-
mance. Therefore, we have chosen to keep the whole predictor 
set which consists of 167 layers (more details will be provided 
in “Artificial Neural Network”).

Geothematic predictors

We considered three geo-thematic properties, detailed below:

1.	 Landforms are specific geomorphic features on the earth’s 
surface which encompass both large-scale terrains such 
as plains or mountain ranges and small-scale characteris-
tics such as single hills or valleys (Jacek 1997). The work 
of Guisan et al. (1999) first and Jenness (2006) later has 
pioneered the automatic extraction of such features from 
DEMs. More recently, Jasiewicz and Stepinski (2013) have 
implemented an efficient automatic classification tool for 
landforms named geomorphon, which returns 10 terrain 

Fig. 3   Distribution of SU planimetric areas. The x-axis is plotted in 
a logarithmic scale to improve the figure readability. The 95% confi-
dence interval is calculated as the difference between the 97.5 and the 
2.5 percentiles of the SU area
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morphologies in 10 classes: (1) flat, (2) summit, (3) ridge, 
(4) shoulder, (5) spur, (6) slope, (7) hollow, (8) footslope, 
(9) valley, (10) depression. In this study, we used geor-
mophon to initially calculate the ten landforms, and in a 
subsequent step, we have aggregated this information at 
the SU scale by assigning to a given mapping unit the class 
with the largest planimetric extent.

2.	 Similarly, we have assigned to each SU the predomi-
nant lithological type. This geological information was 
retrieved from the Geological Map of Italy at 1:500,000 
scale. This map was based on 1:100,000 and 1:50,000 
national geological cartography or geological maps 
(Tacchia et al. 2005). Overall, after the aggregation step, 
21 lithology classes have been assigned to SUs across 
the whole Italian territory. Table 2 in the Appendix 
offers a description of each class.

3.	 The predominant soil type was assigned to each SU on 
the basis of the European Soil Map compiled by the 
European Commission—Joint Research Centre (Finke 
and Montanarella 2001). In this map, soil type classes 
are classified according to the World Reference Base 
(WRB) system, which consists of a two-levels terminol-
ogy. The first level defines the Reference Soil Groups 
whereas the second level is nested within the first and 
consists of a set of principal and supplementary quali-
fiers (for more details, see link here). In this study, SUs 
have been classified on the basis of 91 soil type classes, 
which have been used for modeling purposes and mainly 
belong to the Reference Soil Groups reported in Table 3 
in the Appendix.

Concerning the categorical predictors, slope units have 
been labelled with “1” in correspondence with the predomi-
nant classes of geomorphon, soil type and lithology, and “0” 
for all the other classes.

Seismic predictors: distance to seismogenic features

Seismic information has been considered in the form 
of Euclidean distance to the nearest active fault and the 
Euclidean distance to the nearest seismogenic source. 
Specifically, for each SU, the mean distance value and its 
standard deviation have been computed. Data required to 
produce these predictors have been accessed from the Ital-
ian Database of Individual Seismogenic Sources (DISS) 
catalogue (link here), which continuously updates the 
study on the Italian seismogenic sources. An Individual 
Seismogenic Source is obtained by parameterising the 
geometry and kinematics of large active faults considered 
capable of generating earthquakes with a magnitude (Mw) 
greater than 5.5 (Basili et al. 2008; DISS-Working-Group 
2018). This corresponds to an active fault that has accu-
mulated some displacement in the recent past and can be 

considered very likely to produce a new offset in the near 
future (link here).

Terrain predictors

Concerning Terrain predictors, we used the 20m DEM 
released by the Italian Institute for Environmental Research 
in 2013 (link here). And, for each slope unit, we calculated 
the mean value and the standard deviation of the following 
derivatives:

•	 Elevation (e.g. Ayalew and Yamagishi 2005) can be con-
sidered a proxy for climate-related characteristics (e.g. 
ground temperature or even the precipitation itself when 
high ridges play the role of meteorological barriers). 
And, its standard deviation per slope unit mimics the 
signal of surface roughness.

•	 Eastness and Northness, these are computed as the sine 
and cosine of the aspect expressed in radians, respec-
tively (Lombardo et al. 2018). These are two linear com-
ponents of the nonlinear slope exposition signal, a com-
mon proxy for strata attitude and localised dry/wet soil 
conditions.

•	 Slope gradient (Zevenbergen and Thorne 1987) expresses 
the potential gravitational forces acting over a given 
slope.

•	 General, Longitudinal, and Tangential Curvatures 
(Evans 1980; Wood 1996); Planar and Profile Curvatures 
(Heerdegen and Beran 1982). Plan and profile curvatures 
carry the signal of the potential soil availability, and 
potential small-scale hydraulic and gravitational forces 
(Ohlmacher 2007). Conversely, cross-sectional curvature 
measures the curvature perpendicular to the downslope 
direction. As a result, it detects small-scale features 
such as channels. Longitudinal curvature plays a similar 
role but parallel to the downslope direction (Patel and 
Sotiropoulos 1997).

•	 Topographic Positioning Index (TPI, De Reu et al. 2013) 
measures the difference between the elevation of a focal 
cell and the average elevation within a predetermined 
radius.

•	 Topographic Roughness Index (TRI, Riley et al. 1999) 
expresses rough terrain conditions.

•	 Topographic Wetness Index (TWI, Beven and Kirkby 
1979) expresses the terrain’s tendency to retain water at a 
given location, as a function of local slope steepness and 
upslope contributing areas. Therefore, it conveys infor-
mation related to potential high pore pressure conditions 
distributed over the landscape or the presence of open 
floodplains.

•	 The area of each slope unit (ASU) controls the availability 
of potential material to fail.
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Anthropic predictors: distance to roads

An ideal situation to inform any predictive model of the 
potentially destabilising effect of road cuts would be to col-
lect the exact location and height of the cut. However, such 
information is available only for the location component and 
no height characteristics can be accessed for the whole Ital-
ian road network. For this reason, we opt to compute the 
Euclidean distance from roads at buffers equal to 5, 10, 50, 
and 100 m. Subsequently, a series of statistical metrics of the 
distances to roads have been calculated for each SU, namely 
the mean, maximum, and minimum distance of the unit from 
the closest road and the portion of the territory extending 
within certain distance ranges. Therefore, the following sta-
tistics have been calculated for every slope unit using the 
Zonal Statistics Plugin, in QGis 3.10.4 (Graser 2016).

•	 Count: the count of the number of pixels at a < 100-m 
distance;

•	 Sum: the sum of the pixel distance values;
•	 Mean: the mean distance;
•	 Min: the minimum distance;
•	 Max: the maximum distance;
•	 Range: the range (max–min) of distance;
•	 Majority: the most represented distance within a slope 

unit;
•	 Count < 5: the count of the number of pixels at a < 5 m 

distance.

Hydrological predictors: distance to watercourses

The Euclidean distance from watercourses has been com-
puted similarly to the road network case. This time though, 
we extracted ten equally spaced (100 m wide) buffer zones 
from 0 up to 1000 m from each streamline. The same sum-
mary statistics calculated for the distance from the road net-
work have been computed also for the hydrological network 
with respect to each slope unit.

Artificial Neural Network

The used ANN architecture was previously proposed in 
Amato et al. (2021) and has been here optimised to perform 
a binary classification between stable and unstable slope 
units. Stable slope units are those SUs with no EQtLs while 
unstable SUs contain at least one landslide of the Input 
dataset. The ANN training is performed on balanced class 
datasets (Titti et al. 2022b). The used network is a “shal-
low” ANN whose architecture is a two-layer fully connected 
feed-forward network. For the hidden layer, a sigmoid acti-
vation function has been considered. The output layer is a 
“softmax layer”, in which the outputs are normalised into 
probabilities proportional to the exponentials of the input 

values (Fig. 4). The network is trained by scaled conjugate 
gradient backpropagation. To limit any overfitting effect an 
“early stopping by validation” training criterion has been 
adopted. The classification process associates a probabil-
ity value, from 0 to 1, to each slope unit to be suscepti-
ble to EQtLs. In order to be correctly trained to distinguish 
between stable and unstable slope units, the ANN needed to 
learn from samples of both classes. We set a fixed number 
of samples per class (equal to the number of all the slope 
units with landslides). Therefore, the Input dataset counted 
644 positives (i.e. slope units with landslides) and an equal 
number of negatives (i.e. slope units without landslides), the 
latter chosen randomly from the larger number available. 
The Input dataset was then split as follows: 70% of samples 
were used to train the network, 15% was used for validation 
and 15% as the test dataset. The training dataset is used to 
optimise the weights and the bias assigned to each node 
of the ANN. After each step of the iterative training, the 
ANN classification is applied also on the validation dataset 
and the classification performances on the two datasets are 
monitored. As the classification performance continues to 
improve on the training dataset but worsens on the validation 
dataset, the training process is early stopped and overfitting 
of the model is avoided. Finally, the test dataset is a com-
pletely independent dataset used to test the reproducibility of 
performances obtained on the first two sets. In order to build 
a statistically significant distribution of the classification 
results and performance metrics, we replicated the train-
ing procedure 100 times. To ensure the maximum statistical 
independence, for each of the 100 replicates, the training, 
validation, and test datasets are recreated from scratch as 
described before. Furthermore, the initial values of ANN 
weights and biases are randomly changed. Fixed the ANN 
architecture, some of the operating network hyperparam-
eters, and in particular, the number of nodes in the hidden 
layer, have been tuned to achieve the best and more reliable 
performances. In the “tuning” tests, the ANN performance 
was calculated as True Positive Rate (TPR, or Recall). TPR 
is the ratio between the number of true positives (i.e. those 
samples correctly predicted by the model as belonging to the 
given class) and the sum of true positives and false negatives 
(i.e. those samples that the model predicted as not belonging 
to a given class while they belong). A number varying from 
1 to 6 nodes in the hidden layer has been tested. It resulted 
in a TPR increase as the number of nodes increased. The 
number of nodes was finally set to 4 as being the smallest 
number of nodes, which still produced a significant increase 
in performance. At the end of each of the 100 training repli-
cates, the ANN was run on all the SUs, covering the whole 
national territory. The mean of the probability values out-
put from the 100 classification replicates, as well as their 
standard deviation, was calculated and was used to plot the 
Earthquake-induced Landslide Susceptibility Map of Italy.
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Performance assessment: validation routines

In the case of binary classification, a probability threshold 
is set to associate a particular sample to one of the two pos-
sible classes. The most appropriate way to investigate the 
discriminatory capabilities of a binary classifier for each 
possible value of the discrimination threshold between 0 and 
1 is commonly the receiver operating characteristic (ROC; 
Rah-mati et al. 2019) plot. ROC plots report the TPR on the 
y-axis and the false positive rate (FPR or fall-out) on the 
x-axis. FPR is defined as the ratio between false positives 
and all the negatives, namely false positives + true nega-
tives. False positives are samples classified as belonging 
to the class of interest while they were not, whereas true 
negatives are those samples correctly predicted by the model 
as not belonging to the class of interest. The Area Under 
the Curve (AUC) is strictly linked to the shape of the ROC 
curve, and it is a good proxy of the overall capability of 
a model to distinguish between two classes, regardless of 
what classification threshold is chosen. AUC assumes values 
between 0 and 1, gradually increasing with the classification 
capabilities of the model. If AUC is 1, the model is perfectly 
able to distinguish between positive class and negative class 
(Hosmer and Lemeshow 2000).

In this study, a probability threshold of 0.5 has been cho-
sen to classify each slope unit as stable or unstable. This 
choice is confirmed by examining the point of the average 

ROC corresponding to a threshold value of 0.5 (as also 
reported in Fig. 5a). This point is the closest one to a TPR 
equal to 1 and an FPR equal to zero. Once the threshold 
value has been chosen, it is possible to further investigate 
the obtained discrimination capabilities by the means, for 
instance, of a Confusion Plot (Rossi and Reichenbach 2016; 
Lombardo et al. 2020b). Conversely to ROC (and AUC), the 
Confusion Plot is a threshold-dependent method to evaluate 
classification performance. It shows, fixed the classification 
threshold, the value of TPR as a function of the correspond-
ing TNR for each of the 100 ANN replicates, allowing to 
evaluate the statistical robustness of the classification to dif-
ferent training, validation, and test datasets. In model perfor-
mance evaluation, TNR stands for True Negative Rate and 
is the ratio between the number of true negatives and the 
sum of true negatives and false positives. In this study, TNR 
refers to the success rate in classifying slope units as belong-
ing to the “stable” class, and TPR refers to the “unstable” 
one. Besides Confusion Plot and ROC (plus AUC), which 
are considered good indicators of the general performance 
of a model and commonly adopted in the scientific literature 
(Lombardo and Mai 2018), the performance obtained by 
the network in this study has been evaluated also represent-
ing the importance assumed by each predictor during the 
classification by performing a Feature Importance analysis. 
This procedure highlights those predictors that gave a major 
contribution to the success of the susceptibility analysis. To 

Fig. 4   Schematic diagram of the 
ANN architecture
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make this, the Permutation Feature Importance (PFI) was 
adopted. The method is based on the assumption that a ran-
dom variation of the value of an important predictor has a 
negative impact on the performance of the model greater 
than that of the random variation of a less important pre-
dictor (Putin et al. 2016). The permutation allows the ran-
dom variation of the predictor while preserving the natural 
distribution of the values of the predictor itself (Gao et al. 
2020). In the current study, the PFI was applied to each of 
the predictors. The model reduction, i.e. the PFI score of a 
predictor, was calculated as the ratio between the TPR of the 
non-permuted model and the TPR of the permuted model. 
FPI scores were evaluated for each of the 100 ANN repli-
cates thus allowing the evaluation of a statistical distribution 
of the predictors’ importance. Also, we grouped the 167 pre-
dictors into 5 groups (Road, Hydro, Geo, Terrain, Seismic; 
see Table 1 for more details) and we investigated how the 
network performance varies by running the classification 20 
times with each of all the possible different combinations of 
the five groups. Finally, the susceptibility map was verified 
by means of a comparison with the Check dataset, and for 

each Italian administrative region, an additional check TPR 
was calculated, as well as the percentage of territory clas-
sified as unstable.

Results

Table 4 shows the average values and standard deviation 
of the TPR, TNR, and AUC general performance indica-
tors obtained through the 100 ANN replicates. The results 
are reported for the three types of datasets we considered, 
namely training, validation, and test. Furthermore, we also 
report the values obtained for the dataset composed of the 
sum of the three subsets (All). The results in the table show 
high performances for the three indicators considered. The 
average values for the three datasets are also comparable, 
demonstrating that the approach followed is able to limit 
any evident overfitting effect and the consequent loss of 
generality in the slope unit classification phase. Very lim-
ited values of the standard deviations also demonstrate the 
robustness of the method, which is able to obtain comparable 

Fig. 5   a ROC of each of the 100 ANN replicates with, in red, the 
resulting average. Circles represent different classification thresholds. 
Also, AUC mean and standard deviation values are reported. b TPR/

TNR confusion plot of the 100 ANN replicates for a 0.5 classifica-
tion threshold. The mean and standard deviation of TPR and TNR are 
reported

Table 1   Performance of the 
ANN after 100 replicates. 
For each indicator, mean and 
standard deviation are provided

Mean TPR SD TPR Mean TNR SD TNR Mean AUC​ SD AUC​

Train 0.86 0.02 0.85 0.02 0.92 0.01
Validation 0.83 0.03 0.84 0.03 0.91 0.02
Test 0.81 0.04 0.79 0.03 0.89 0.02
All 0.85 0.02 0.84 0.02 0.91 0.01
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performances regardless of the specific datasets used in each 
of the 100 replicates.

Considering the comparability of the performances 
obtained on the three training, validation, and test datasets, 
for the following results, it was considered appropriate to 
report those obtained on the overall dataset composed by 
the three.

Figure 5 a shows (in grey) the ROC obtained for each of 
the 100 replicates of the ANN training. The average ROC is 
shown in red. In this study, AUC = 0.91 has been reached 
on average, with a standard deviation smaller than 0.02 (see 
Fig. 5a and Table 4). Besides the best classification thresh-
old that resulted in being about 0.5, in Fig. 5a, the TP and 
FP rates related to other eight different thresholds (from 0.1 
to 0.9) are indicated by the means of black circles in order 
to allow a deeper and direct interpretation of the EQtLs sus-
ceptibility probability value that the model associates to each 
SU. As an example, by choosing a threshold value of 0.8 a 
very low FPR (about 0.06) is obtained, meaning that only 
a very limited fraction of the stable SU would be wrongly 
classified as unstable. As a result, those SUs that have been 
classified with a probability higher than 0.8 to be suscep-
tible to EQtLs, are statistically very significantly likely to 
have actually experienced landslides/be true positives. Fig-
ure 5 b shows, for the 100 ANN replicates, the values of the 
TPR parameter according to the TNR parameter. Mean and 
standard deviation ranges are also reported for both TPR 
and TNR. On average the classification has a very similar 
success rate for both classes (about 0.84) with a small stand-
ard deviation (0.02), demonstrating that the classification 
is carried out with the same accuracy for both classes. The 
low value of the standard deviation and the absence of cor-
relation between the values of TPR and TNR also make it 
possible to assert that the results obtained are robust with 
regard to the statistical representativeness of the samples 
considered and the absence of bias introduced.

Susceptibility mapping

After every training replicate, the ANN was applied to all 
the slope units of Italy and 100 susceptibility values for each 
SU have been generated. The mean susceptibility of each 
SU, and its standard deviation, after 100 replicates has been 
considered to produce the EQtLs susceptibility map of Italy 
(Fig. 6a).

In the EQtLs susceptibility map of Italy, flat lowland 
areas have been taken out from the classification and 
resulted in grey colour. Orange to red areas represent mod-
erately to highly susceptible slope units (probability > 0.5), 
while green to blue areas have been classified as stable. Sus-
ceptible areas are frequent in the northeastern part of Italy 
and along an NW-SE-oriented longitudinal belt that cor-
responds to the Apennine mountain chain. In particular, red 

areas are located in correspondence with the epicentral area 
of historically strong earthquakes and a moderate density 
of unstable slope units is present in the Calabria region, the 
most southern region of the Italian peninsula. Conversely, 
most of the western side of the peninsula and of the alpine 
region, in the north, are lowly susceptible to being affected 
by EQtLs. Also, the south-east and the two main Italian 
islands, Sicily and Sardinia, are widely blue-coloured. The 
standard deviation of the resulting classification (Fig. 6b), 
associated with the mean susceptibility of every SU, is very 
low (< 0.1) in correspondence with the high susceptibility 
SUs in central Italy and in the north-east, as well as for most 
of the highly stable areas. In general, the standard deviation 
of the susceptibility is low (0.1–0.18) for the overall Italian 
territory. Higher values are present in limited spotted loca-
tions and more concentrated in the Calabria region.

A point of novelty of this study is represented by the com-
parison of the landslide Susceptibility map of Italy with an 
EQtLs dataset that was not used to train the network.

The overlapping between checking landslides and unsta-
ble SUs has been evaluated to verify the correctness of the 
susceptibility map. In order to make the checking process 
reliable, a radius sized as the associated error has been 
taken into account around the less precisely georeferenced 
landslides. When more than half of the area of the resulting 
circle overlapped with unstable slope units, that landslide 
was considered a true positive (TP). Conversely, when the 
overlap was limited to less than half of the circle area, land-
slides were considered false negatives (FN). When some 
parts of the uncertainty circles included areas with no clas-
sification (e.g. lowlands or sea), only the portion overlapping 
with classified slope units was considered. Consequently, the 
checking TPR (C-TPR) has been calculated for every Ital-
ian region. On the basis of the susceptibility map, also the 
regional percentage of unstable territory has been computed. 
As a result, in most of the Italian regions, the number of TP 
was higher than FN, although not all the regions counted 
the same number of landslides from the checking dataset. In 
cases of regions with only a few (< 10) checking landslides, 
C-TPR generally reached very small values. Conversely, 
Friuli, Veneto, Emilia-Romagna, Tuscany, Abruzzo, Molise, 
Campania, and Basilicata show very good performances 
(C-TPR ≥ 70%) and a high number of checking landslides 
(> 14), which makes the resulting statistics quite reliable. 
In these regions, the percentage of unstable territory var-
ies from around 20–40% to more than 60%. Contextually, 
Lombardy, Latium, Sicily, and Calabria show low to very 
low C-TPR despite the good number of checking samples. 
In Calabria, 36% of the regional extent has been classified 
as unstable, while in the other three regions, the unstable 
territory is < 20%. Nevertheless, considering the low C-TPR 
values achieved, these percentages might have been probably 
underestimated.
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Fig. 6   EQtLs susceptibility map of Italy shown as a the mean estimated probability of EQtLs occurrence per SU, through the 100 ANN repli-
cates, and b as the standard deviation per SU associated with the mean shown in the larger panel to the left
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Predictors’ importance

PFI provided an interesting analysis of the importance 
that the single predictor had in order to achieve the final 
classification.

In Fig. 8, it can be seen that the ANN mainly relies on 
five predictors, all listed among Geothematic and Seismic 
ones. In particular, soil type (code 122), distance from seis-
mogenic sources (123), lithology (31), distance from active 
faults (125), and geomorphon (10) have the highest PFI 
score, respectively. The first terrain predictor in order of 
importance is represented by the mean tangential curvature 
of a slope unit (code 144). Its importance, however, varied 
significantly among the 100 replicates. Following, all the 
other predictors, such as other terrain predictors and the 
road-related ones, account for very little contribution to the 
classification and the associated PFI standard deviation is 
small. On the basis of the EQtLs susceptibility map, the 
a posteriori distribution of the classes of GEO predictors 
among the unstable slope units has been analysed at the 
national level in Fig. 9.

To make the chart clearer, only soil types with unstable slope 
units higher than 10% have been reported. Concerning soil 
types, slope units mainly covered by Dystric Cambisol resulted 
highly susceptible to EQtLs, and 75% of them have been clas-
sified as unstable, although they are not numerous (< 5000 in 
the whole national territory). In the WRB system, “Dystric” 
indicates a soil with base saturation of less than 50% at a given 
depth, and Dystric Cambisol is located in small parts of central 
and south Apennine, in seismically very active areas, which have 
been historically hit by strong earthquakes. Further, more than 
60% of the slope units composed of Rendzic Leptosol have been 
classified as unstable. Rendzic Leptosol is described as very 
shallow soils immediately overlying highly calcareous material 
and is quite frequent in Italy, particularly in central and south 
Apennine as well as in Friuli and Veneto regions. Almost 50% 
of slope units characterised by the main presence of Chromi-cal-
caric Luvisol have been classified as unstable. Chromi-calcaric 
Luvisol is defined by the WRB system as a reddish calcareous 
with a marked textural differentiation whose surface horizon 
was depleted of clay, which accumulated more in-depth. And, 
according to the pedological map of Europe, it is very rare in 
Italy. Finally, almost 40% of slope units were dominated by 
Lithic Leptosol, a very shallow soil with continuous hard rock 
within 10 cm from the soil surface (Table 3), resulted susceptible 
to EQtLs. In Italy, its occurrence is limited to central Apennine, 
between Latium and Abruzzo, and in Sicily island. Concerning 
lithology, 75% of slope units are mainly constituted by chaotic 
sedimentary complexes, and 50% of those composed by marls 
have been classified as unstable. The first lithology is composed 
of turbiditic sandstones and clays, locally with evaporites and 
limestones. It is mainly spread in central Italy, along the eastern 
side of the Apennine chain. The second type of rock is spread in 

central Italy and the north-west. Successively, 25–40% of arena-
ceous and limestone slope units resulted susceptible to EQtLs. 
Arenaceous formations crop out all over the Italian territory, 
mainly in mountain areas, while Limestones are spread in seis-
mic regions of central Italy, such as Umbria and Abruzzo, in the 
southern part of the Alps, and along the coasts of south Italy. 
Finally, metamorphic rocks, mainly granitoid gneiss, whose 
almost 20% of slope units are considered unstable, crop out only 
in the northern part of the Alps and in small parts of Calabria 
and Sicily regions. Concerning the slope morphology, valley, 
and concave slope units interestingly resulted to be relatively 
more unstable than slope units located in other parts of the slope. 
In detail, the 25–35% of hollow, valley, and depression slope 
units have been classified as unstable against the 15–20% of 
summit, ridge, spur, and slope classes. Finally, slope units which 
are linked with flat areas, such as flat, shoulder and footslope, 
are generally stable.

In this paragraph, the analysis of how the classification per-
formance changes varying the combination of groups of predic-
tors used by the ANN is also provided. Predictors have been 
grouped as Terrain, Seismic, Geo (i.e. Geothematic), Hydrologi-
cal and Roads (Anthropic) as described in “Material and meth-
ods.” All possible combinations made up of a variable number 
of groups have been taken into account (one group at a time up 
to all five groups together). For each of the possible combina-
tions among these groups, the ANN has been run 20 times, and 
the related AUCs have been calculated. Figure 10 shows the box 
plot of the AUC values distribution among the 20 replicates and 
for all the possible combinations of predictor groups.

Combinations are ordered by the medians of the AUC 
distributions. The background colour varies according to the 
quartiles of the distribution of the median AUCs calculated 
over the 20 replicas per combination. The median quartiles 
are at AUC values of 0.84, 0.88 and 0.89. Lower perfor-
mances (AUC < 0.84) are generally achieved with only one 
or two groups, or with 3-groups combinations that contain 
Hydrology and Roads but not Geo. Good performances 
(0.84 < AUC < 0.89) are achieved with all the 2-groups 
combinations that include Geo. In this regard, Geo+Seismic 
performs the best. Also, combinations with three or four 
groups achieve good performances. Finally, those combina-
tions of predictors groups whose AUC is entirely included 
in the dark red band and greater than the third quartile (AUC 
> 0.89) can be considered the best-performing ones. Among 
these, two 3-groups’ combinations are listed.

1.	 Geo + Seismic + Road
2.	 Geo + Seismic + Terrain

whereas the three 4-groups’ combinations are:

1.	 Geo + Seismic + Terrain + Hydrology
2.	 Geo + Seismic + Hydrology + Road
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3.	 Geo + Seismic + Terrain + Road

and only one combination exists with all five groups. 
From the analysis of the best-performing combinations, it is 
clear as Geo and Seismic predictors must be both considered 
in order to achieve a median AUC higher than 0.89, and that 
at least another group is also needed. The importance of Geo 
(i.e. lithology, soil type and geomorphon of slope units) and 
Seismic (i.e. distances from active faults and seismogenic 
sources) predictors was previously indicated also by the PFI 
analysis. Nevertheless, what and how many predictor groups 
are needed besides Geo and Seismic was not straightforward. 
Related to this, on the basis of the interquartile range and the 
median of AUC values, Geo+Seismic+Terrain+Road and 
Geo+Seismic+Terrain seem to perform slightly better than 
all the other combinations.

Figure 11 represents a heatmap of the mean AUC value 
obtained by adding one of the five groups of predictors to 
each of all their possible combinations.

Each row contains one of the possible combinations and 
is sorted from top to bottom by the increasing number of 
groups. In each column, one of the five groups is present. 
The mean AUC obtained after 20 ANN replicates consid-
ering the combination in the row and the addition of the 
group in the column is reported in each cell of the heatmap. 
“Null” row and column respectively indicate that none of 
the possible combinations has been considered and that no 
groups have been added. Figure 10 confirms what has been 
previously seen in Fig. 10 that the higher the number of 
groups within a combination, the higher the performance. 
Nevertheless, not all the groups have the same effect. When 
the classification has been carried out taking only one group 
at a time (first row on the top), Terrain and Geo performed 
the best, with mean AUC = 0.84, and significantly better 
than Seismic (mean AUC = 0.79) although some of the Seis-
mic features resulted among the most important in the full 
model PFI analysis. Nevertheless, Terrain + Seismic reaches 
AUC > 0.9 only when Geo is added while, conversely, Geo 
+ Seismic reaches AUC > 0.9 also with Roads appearing 
that, when combined with Geo, Seismic provides a bigger 
contribution than Terrain. This led to infer that Terrain and 
Geo groups might bring partially overlapping information 
and that those brought by Seismic better combine with Geo 
than with Terrain features. In general, when the Geo group 
is added to whatever combination (second column from the 
left in Fig. 11), the mean AUC reaches 0.9 in seven cases 
and it never goes below 0.8. This means that the Geo predic-
tors have a high importance for the ANN and their presence 
ensures very good performances, whatever another group 
is added to the combination. Similarly, Seismic predictors 
allow reaching mean AUC ≥ 0.9 when added to six different 
combinations. Further, when they are present, performance 
decreases below 0.8 only in one case and the combination 

Geo + Seismic achieves AUC = 0.89. Conversely to Geo 
and Seismic, only four combinations that include Hydrologi-
cal predictors allow achieving a mean AUC of at least 0.9 
and, in all these cases, Geo is present. Also, two combina-
tions that include Hydrological predictors do not reach AUC 
= 0.8. Finally, five combinations containing Roads and five 
combinations containing Terrain reach a mean AUC = 0.9. 
This means that the probability to reach very good perfor-
mance by a combination that contains Road-related predic-
tors is the same as a combination that includes terrain pre-
dictors. However, when Roads is added to Geo and Seismic, 
AUC arrives at 0.91 and vice-versa, when Terrain is added 
to Geo and Seismic, AUC averagely arrives at 0.92. Add-
ing Roads to Geo + Seismic + Terrain brings a contribu-
tion lower than 0.01 while, adding Hydrology, performance 
decreases to 0.90. Besides, 0.92 is the highest mean AUC 
reached by the ANN and is due to the main contribution of 
Geo and, secondly, Seismic information. Terrain predictors 
would have a much higher importance, when grouped, than 
that resulting from the single predictors’ analysis. But its 
information might be partially provided also by Geo predic-
tors and, when combined with other groups, it accounts for 
slope units variability less than Geo group, ending to provide 
only + 0.03 to the combination Geo + Seismic. From this 
analysis, the key role of Geo and Seismic predictors is con-
firmed and emphasised. Also, a significant contribution of 
Terrain has been proven. At the same time, the non-signifi-
cance of distance to rivers as a predictor for EQtLs suscep-
tibility resulted and a not ignorable contribution to improv-
ing the classification performance given by the presence of 
roads. Finally, concerning what can be selected as the most 
performing combination among all the possible and tested 
ones, it should be noted that the differences between the 
mean AUC values for the three best median AUC combina-
tions, which are Geo + Seismic + Terrain, Geo + Seismic + 
Terrain + Road, and Geo+Seismic+Terrain+Road+Hydro, 
are not statistically significant (p-value = 0.86 with one-way 
ANOVA test).

Discussions

The sections below are meant to provide the reader with an 
overview of the strengths and potential weaknesses of the 
modeling protocol we implemented, these discussed both 
from the data as well as the modeling strategy perspectives.

Supporting arguments

ANN performance overview

The ANN performance was very good. In detail, after 100 
replicates mean AUC was 0.91 and the associated standard 
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deviation was 0.01. Considering that both positive and nega-
tive samples (i.e. slope units with and without landslides) 
within training, test, and validation datasets changed at every 
replicate, the very low standard deviation is an excellent 

result, which demonstrates the solid stability of the network. 
Also, the ability to distinguish between the two classes was 
high: averagely, TPR, namely the ability to correctly classify 
unstable slope units, was 0.85 while TNR, proficiency in 

Fig. 7   C-TPR value (in map), number of False Negatives and True Positives (red and green bars) per region with respect to the checking dataset. 
The dark bars represent the regional estimated percentage of unstable territory according to the susceptibility map

Fig. 8   Resulting scheme of the Permutation Feature Importance analysis. Predictors codes are provided in Table 1
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classifying stable slope units, was 0.84. Both metrics show 
a standard deviation lower than 0.02 after 100 replicates 
confirming the robustness of the classification. In particular, 
the classification error plot shows low standard deviations 

especially for those SUs classified as extremely stable (mean 
susceptibility < 0.25) or unstable (mean susceptibility > 
0.75), giving rise to high reliability of the final susceptibility 
model. These outputs fulfil the aim of the work to perform a 

Fig. 9   Distribution of slope 
units among the three geothe-
mathic variables classes: bars 
refer to the percentage of unsta-
ble slope units out of the total 
number of slope units, per class; 
diamonds indicate the total 
number of slope units, per class. 
a Refer to soil type classes. To 
make the chart clearer, only 
soil types with unstable slope 
units higher than 10% have been 
reported. b Refer to lithology 
classes and c to geomorphon 
classes
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robust susceptibility analysis of earthquake-triggered land-
slides at the national scale which, being trained on landslides 
distributed over more than one century and over the whole 
Italian territory, could serve as a basis to prioritise funds for 
remedial interventions at national to regional levels.

EQtLs susceptibility patterns

The EQtLs susceptibility map of Italy obtained by the means 
of the neural network approach was compared with a land-
slide distribution map of Italy derived from the IFFI inven-
tory, which reports landslides whose genesis is linked to 
rainfall, earthquake, snowmelt, and anthropic effects.

The comparison reveals an interesting output which 
regards the main distribution of earthquake-induced land-
slide all along a more internal portion of the Apennine 
Chain backbone (Fig. 12). As a result, the eastern coastal 
zone is less predisposed to landslide triggering due to 
earthquakes.

On the north, along the Alps Chain, the highest suscepti-
bility zone corresponds to the eastern area, namely parts of 
Veneto and Friuli regions, where seismogenic sources are 
more concentrated.

The average dimensions of the chosen mapping unit, i.e. 
0.7-km2 slope units, provide a detailed level of spatial reso-
lution to the susceptibility map, which represents an accurate 

model when observed at the regional scale and clearly iden-
tifies what are the more susceptible areas with respect to the 
more stable ones. In those regions where the a-posteriori 
model check reaches high performance (C-TPR > 70% in 
Fig. 7), such as Veneto, Tuscany, Friuli, Abruzzo, Emilia-
Romagna, Molise, Campania, and Basilicata regions, the 
produced EQtLs susceptibility map can be taken as a reliable 
instrument to drive the decision makers toward appropriate 
funding management, i.e. in order to provide priority lists 
of local interventions. The comparison between the overall 
landslides density map and the here presented EQtLs sus-
ceptibility map clearly indicates that areas highly susceptible 
to earthquake-triggered landslides might be not taken into 
account in the frame of landslide mitigation National funds 
since not necessarily exposed to a high generic landslide 
hazard, e.g. rainfall-induced. Contextually, in these areas, 
the likely dedicated funds for earthquake risk mitigation 
might tend to be used primarily for building reinforcement, 
keeping on ignoring the significant slope stability matter 
demonstrated with this study.

Predictors’ role

From predictors importance analyses, Geothematic and 
Seismic resulted in being the most important predictors, 
as largely supported in the literature by other susceptibility 

Fig. 10   Box plot of the AUC 
distribution among 20 replicates 
and for all the combinations of 
predictors groups. Combina-
tions are ordered by the medians 
of the AUC distributions. 
The background colour varies 
according to the quartiles of 
the distribution of the median 
AUCs calculated over the 20 
replicates per combination. The 
median quartiles are at AUC 
values of 0.84, 0.88 and 0.89
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analyses of EQtLs (Fan et al. 2019; Lombardo et al. 2019; 
Tanyaş et al. 2019; Loche et al. 2022b). From the PFI 
analysis, it resulted that soil type, distance from seismo-
genic sources, lithology, distance from active faults, and 
geomorphon are the most important predictors for the 
network and, as consequence, for the good result of the 
classification between stable and unstable slope units. 
As one can expect from an application on earthquake-
triggered landslides, distance from seismogenic sources 
and distance from active faults played a key role in the 
classification, demonstrating to well represent the slope 
units variability due to seismic predictors. In this regard, 
the seismogenic source represents the portion of a fault 
that is more likely to enucleate a Mw > 5.5 earthquake 
(Basili et al. 2008; DISS-Working-Group 2018). Neverthe-
less, landslides can occur even along the tip portions of a 
fault, after Mw < 5.5 seismic events or in correspondence 
with secondary segments; therefore, distances from both 
source and fault line have been considered. Taking into 
account seismogenic sources and active faults, the sus-
ceptibility analysis presented in this study resulted in an 

inclusive model that is not bound to some specific seismic 
events and can be applied to the whole National territory 
accounting for more local variability than that provided by 
the national PGA. Soil type resulted to be the most impor-
tant predictor from the PFI analysis. Statistically speak-
ing, this may be partially due to the fact that slope units 
have been characterised on the basis of 91 different soil 
types, giving rise to a high, detailed, pedological variabil-
ity. This represents an impressive quantity of data for the 
ANN to take useful information from in order to perform 
the classification. Related to this, lithology and geomor-
phon, which only count 21 and 10 classes respectively, 
might have provided lesser, albeit meaningful, informa-
tion, that resulted as third and fifth more important pre-
dictors, respectively, among all the considered ones. In 
percentage, the most unstable soil categories resulted in 
poorly developed pedotypes, generally thin, and derived 
from the alteration of rocky or highly calcareous bedrocks. 
This result is in line with what resulted from the analysis 
of the instability percentage per lithology class, which 
shows as calcareous and arenaceous formations, besides 

Fig. 11   Heatmap of the mean 
AUC values after 20 replicates 
for all the combinations of 
predictors groups. Combina-
tions are obtained by adding 
the group in the column to the 
combination in the row. Combi-
nations in rows are sorted from 
top to bottom by the increasing 
number of groups. In each col-
umn, one of the five groups is 
present. “Null” row and “null” 
column indicate that none of the 
possible combinations has been 
considered and that no groups 
have been added, respectively
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clayey and marly lithologies, are largely present within the 
unstable slope units. These results reflect the high abun-
dance of disrupted failures that affect rock masses during 
an earthquake, like rock fall, which also represents the 
most numerous landslide type in the Input dataset (Fig. 2). 
It is particularly relevant that slope units with prevalent 
Chromi-calcaric Luvisol, although they are very rare in 
Italy, are in percentage rather unstable. They are located 
in the Veneto region, within a restricted area quite close 
to a few landslides that occurred as a consequence of an 
earthquake that struck the region in 1936 and had an epi-
centre 60 km away. In this case, a clustering effect cannot 
be ruled out: it may have been the earthquake, with conse-
quent EQtLs, to occur in correspondence with areas with 
Chromi-calcaric Luvisol rather than the presence of this 
soil favouring the trigger of EQtLs.

Concerning lithology, 75% of slope units are mainly 
constituted by chaotic sedimentary complexes, and 50% of 
those composed by marls have been classified as unstable. 
The first lithology is composed of turbiditic sandstones 
and clays, locally with evaporites and limestones. It is 
mainly spread in central Italy, along the eastern side of 
the Apennine chain. The second type of rock is spread in 
central Italy and the north-west. Successively, 25–40% of 
arenaceous and limestone slope units resulted susceptible 
to EQtLs. Arenaceous formations crop out all over the 
Italian territory, mainly in mountain areas, while Lime-
stones are spread in seismic regions of central Italy, such 
as Umbria and Abruzzo, in the southern part of the Alps, 
and along the coasts of south Italy. Moreover, an explora-
tory analysis of the data highlights chaotic sedimentary 
complexes as the lithotype is mostly prone to slope fail-
ures. This may be due to the unstructured bond between 
constituents, which under seismic stresses tend to generate 
mass movements more than in other more cohesive/mas-
sive lithologies.

Concerning geomorphon, its importance may be linked to 
several aspects. Intuitively, slope morphology is strictly cor-
related with the probability of landslide occurrence. Related 
to this, geomorphon classes could properly represent the 
most important morphological features of a slope, account-
ing for the contribution given by the terrain predictors to the 
ANN, which did not result as important as one could expect. 
In particular, our analysis highlights that hollow, valley, and 
depression slope units have been classified as more frequently 

unstable than summit and ridge areas. This aspect can be 
partially linked with the presence of minor scarps along the 
slope (due to strata bedding, faults and fractures, terraces, and 
other natural reasons) and with the presence of roads in the 
lower part of the valley sides, as it occurs in many mountain-
ous regions of Italy. Martino et al. (2019) and Tanyaş et al. 
(2022) found out that the presence of road cuts at the bot-
tom of deeply incised V-shaped valleys played a conditioning 
role in the spatial distribution of EQtLs triggered in 2016 in 
Central Italy higher than road cuts located elsewhere. In this 
regard, from the analysis of the predictor group combination, 
the contribution of the distance from roads to the classifica-
tion performance resulted to be not negligible. And cases of 
EQtLs mostly occurred along slopes modified by road cuts 
are documented in the literature (Keefer et al. 2006; Delgado 
et al. 2015). Therefore, despite the role of roadcuts in favouring 
EQtLs occurrence is probably more appreciable in applica-
tions in small study areas, this study also contributes to the 
ongoing debate drawing attention to the potential importance 
of this predictor.

Opposing arguments: Validation routine 
through the Check data

The Italian EQtLs susceptibility map, albeit resulting from a 
robust iterative training-validation-test procedure, shows het-
erogeneous results between different regions from the compar-
ison with the Check EQtLs dataset, which was not used to train 
the ANN. This can be partially due to a low number of check 
landslides in regions like Piedimont, Aosta Valley, Liguria, 
and Apulia (Fig. 7). Nevertheless, Calabria and Sicily show 
low C-TPR in spite of a high number of checking landslides. A 
reason for this could be that, as shown in zoom 1 in Fig. 12, the 
Input landslides from which the ANN was trained are concen-
trated in the area of the Strait among these two regions, while 
the checking EQtLs are more spread over the regional terri-
tory. This may have led to a too-low-generalised training of the 
network. Further, the exact location of seismogenic sources in 
Calabria is an argument of debate in the scientific community. 
Considering the importance assumed by the Seismic predic-
tors in our analysis, their potential location’s uncertainty can 
significantly affect the accuracy of our model.

Ultimately, an ideal model should holistically include 
all the factors which are known to control the slope failure 
mechanisms. Therefore, one should theoretically build an 
analogous ANN by featuring soil moisture characteristics or 
at least a proxy of this property, usually expressed in terms 
of precipitation. However, our training dataset spans mul-
tiple earthquakes, even historical ones. For this reason, we 
did not include any information related to soil moisture and 
its preparatory effect for slope failures under seismic shak-
ing. It is our intention to fulfil this requirement for a subset 
of the data we considered here. Specifically, we are already 

Fig. 12   a Map of landslide density derived by the IFFI inventory. 
Each pixel is 5 × 5 km. b Earthquake-triggered susceptibility map of 
Italy produced in this study. c Map of active faults in Italy. Zooms of 
the maps in a and in b are shown in the upper and the lower bands, 
respectively. Circles represent the landslides of the Input dataset used 
in the ANN training process. Triangles represent the landslides of the 
checking dataset used for an ex-post evaluation of the susceptibility 
map

◂
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working on the earthquake sequence that affected central 
Italy in 2016. This case would offer a perfect stage to include 
soil moisture in the analyses.

Concluding remarks

This study represents the first example of susceptibility 
analysis to Earthquake-triggered Landslides built at the 
national scale in Italy by using an ANN approach. At this 
aim, we exploited the CEDIT catalogue, and we imple-
mented an ANN at the Slope Unit scale featuring predic-
tors that take into account predisposing factors of morpho-
logical, lithological, and seismotectonic characteristics of 
the Italian territory. To train the ANN, a sub-dataset made 
of 1545 EQtLs, most accurate in terms of geolocalisation, 
and related to strong earthquakes from 1908 to date, was 
extracted from CEDIT.

The ANN was optimised and trained for the classifi-
cation of Slope Units in terms of susceptibility to earth-
quake-triggered landslides, based on 167 predictors. The 
performances of the ANN have been evaluated by car-
rying out 100 training on independent datasets to assess 
its robustness. These produced a remarkable performance 
distinguishing between the stable and unstable SU classes. 
We also tested our model via an external dataset composed 
of 465 EQtLs, which were not featured in the model-build-
ing phase due to a lower geolocation accuracy. This ex-
post verification confirmed the overall suitability of our 
ANN analytical protocol.

The analysis shows that a large portion of the Italian 
national territory is highly prone to earthquake-triggered 
landslides. This is especially the case throughout the 

Apennine arc, where high susceptibility values are associ-
ated with more than 50% of Abruzzo, Marche, Molise, and 
Umbria and ∼ 25% of Tuscany, Emilia-Romagna, Campania, 
and Basilicata regions. Furthermore, high susceptibility val-
ues are associated with approximately 25% of the territory of 
the Friuli region, in the eastern sector of the Alpine arc. Con-
versely, north-western regions, Sicily, Sardinia, and most of 
Latium and Apulia appear to be quite stable with minor per-
centages of the territory characterised by susceptible slopes.

The 0.7-km2 SU mean size is extremely detailed, even 
for a regional or provincial scale assessment. For instance, 
our susceptibility map would be a perfect addition to Civil 
Protection in order to design emergency plans at the provin-
cial level. Or it could be used at the level of each region to 
plan long-term risk mitigation actions and allocate funds. 
Our work demonstrates that if funds were allocated only 
based on rainfall-induced landslide distribution, large areas 
highly susceptible to EQtLs would be completely ignored 
by mitigation plans.

Nevertheless, the resolution of these mapping units is still 
far from the requirements for planning purposes, or for seis-
mic microzonation studies, at a municipal scale.

As regards future improvements we envision for this 
study, the main extension consists of scaling down the model 
to a greater spatial resolution focusing on a specific data-
rich sub-region, of particular interest. Here, we envision 
to run also a suite of physically based models, besides the 
ANN-base procedure and compare the two outputs in order 
to investigate potential differences, both in terms of strength 
and weaknesses, between each modeling routine.

Appendix. Predictors’ information

Table 2   List of the predictors assigned to each slope unit. Codes 
reported in “Predictors code and description” have been used to rep-
resent the results of the permutation feature importance. Predictors 

have been grouped as indicated in “Group” to perform the combi-
nation-group analysis. Terrain characteristics were calculated from a 
20-m Digital Elevation Model (DEM)

Group Code Description

Geothematic predictors
Geomorphon (10 classes) 10 Class of “geomorphon” which covers most of the area of the Slope Unit (SU)
Lithology (21 classes) 31 Lithology covering most of the SU area; it is taken from the geological map of Italy at a scale of 

1:50.000 or 1:100.000
Soil type (91 classes) 31 Type of soil that covers most of the area of the SU; it is taken from the ecopedological map of Italy at a 

scale of 1:250.000
Seismic predictors
Distance to seismic features 123 The average distance of a SU from the nearest seismogenic source

124 The standard deviation of the distance to the nearest seismogenic source
125 The average distance of a SU from the nearest active fault line (capable or not)
126 The standard deviation of the distance of a SU from the nearest active fault line

(capable or not)



Bulletin of Engineering Geology and the Environment (2023) 82:160	

1 3

Page 21 of 25  160

Table 2   (continued)

Group Code Description

Anthropic predictors
Distance to roads 127 Count of the pixels of a SU covered by any buffer of distance from roads. The buffer ranges are 10, 50, 

and 100 m
128 Sum of the buffer values of the pixels of a SU covered by any buffer of distance from roads
129 The buffer of distance from a road that takes up most of the area of the SU
130 The maximum value of the buffer of distance from a road within a SU
131 The average value of the buffer of distance from a road within a SU
132 The minimum value of the buffer of distance from a road within a SU
133 Range (max–min) of distance values from roads included in a SU
134 Count of the pixels of a SU that fall within 5 m of distance from roads

Hydrological predictors
Distance to watercourses 135 Count of the pixels of a SU covered by any buffer of distance from rivers. The buffer

ranges are 10, 50, and 100 m
136 Sum of the buffer values of the pixels of a SU covered by any buffer of distance from rivers
137 The buffer of distance from a river that takes up most of the area of the SU
138 The maximum value of the buffer of distance from a river within a SU
139 The average value of the buffer of distance from a river within a SU
140 The minimum value of the buffer of distance from a river within a SU
141 Range (max–min) of distance values from rivers included in a SU
142 Count of the pixels of a SU that fall within 5 m of distance from rivers

Terrain predictors
Curvature 143 The average Tangential Curvature of a SU

144 The standard deviation of the Tangential Curvature of a SU
145 The average Profile Curvature of a SU
146 The standard deviation of the Profile Curvature of a SU
147 The average Plan Curvature of a SU
148 The standard deviation of the Plan Curvature of a SU
149 The average Longitudinal Curvature of a SU
150 The standard deviation of the Longitudinal Curvature of a SU
151 The average General Curvature of a SU
152 The standard deviation of the General Curvature of a SU

Elevation 153 The average Elevation of a SU
154 The standard deviation of the Elevation of a SU

Exposure 155 The average Exposure of a SU from north to south
156 The standard deviation of the Exposure of a SU, from north to south
157 The average Exposure of a SU from east to west
158 The standard deviation of the Exposure of a SU, from east to west

Slope 159 The average Slope of a SU

160 The standard deviation of the Slope of a SU
Topographic Wetness Index 161 The average Topographic Wetness Index of a SU

162 The standard deviation of the Topographic Wetness Index of a SU
Topographic Position Index 163 The average Topographic Position Index of a SU

164 The standard deviation of the Topographic Position Index of a SU
Topographic Ruggedness Index 165 The average Topographic Ruggedness Index of a SU

166 The standard deviation of the Topographic Ruggedness Index of a SU
Area 167 SU areal extent
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Table 3   Description of the classes of the categorical predictor “Lithology”

Lithology Description

Volcanic rocks Ophilytes Lavas, pyroclastic rocks, and ignimbrites
Gabbri and anorthosites; Basalts, spilites, hyaloclastites; Serpentines, serpentines schists, and chloritoscists; 

Metabasites, eclogites, amphibolites, green stones s.l
Metamorphic rock Granitoid gneiss
High-grade metamorphic Acid granulites and biotitic-sillimantic granatiferous gneisses (at times with cordierite), with marbles, 

amphibolites
Mid-grade metamorphic Mica schists and paragneisses, amphibolites, phyllites, quartzites, and marbles
Low-grade metamorphic Phyllites with albitic paragneisses, porphyroids, marbles, and green schists
Intrusive rocks Granites, granodiorites, tonalites and rare diorites
Chaotic sedimentary complexes Sandstones (including turbidite) and clays, in places with evaporites and subordinately limestone
Arenaceous formations Sandstones and conglomerates, sometimes turbidites
Limestones Limestones, sometimes arenaceous, and marl metamorphosed into carbonate schists (marbles, phyllites, etc.)
Clayey schist Clayey schist, at times carbonaceous
Flysch Clayey and clayey-calcareous units often with turbidite character, sometimes including the lower Miocene
Conglomerates Clastic deposits locally with marl including, at times, the Carboniferous
Marls Pelagic facies marls, sometimes with flint
Evaporites Chalky-sulphurous formation
Organogenic limestone Debris and organogenic limestones, “bench” type
Clays Clays and marls, locally with holistostromes
Sands Conglomerates and sandstones, sometimes including the Upper Permian
Fluvial deposits Debris accumulations, alluvial and fluviolacustri deposits, current beaches
Glacial deposits Glacial deposits
Travertine Travertines (sometimes Holocene)

Table 4   Description of the reference soil groups compared in the classes of the categorical predictor “Soil type”

Soil type WRB code Description

Cambisols CM Soils with little or no profile differentiation—Moderately developed. Cambisols are developed in medium and fine-
textured materials derived from a wide range of rocks, mostly in alluvial, colluvial, and aeolian deposits

Regosols RG Soils with little or no profile differentiation—No significant profile development. Regosols are developed in unconsoli-
dated materials. Regosols are extensive in eroding lands, in particular in arid and semi-arid areas and in mountain 
regions

Luvisols LV Soils with clay-enriched subsoil—High-activity clays, high base status. The main characteristic is an argic horizon, a 
subsurface zone with higher clay content than the material above it. This typically arises as clay is washed downward 
by water and accumulates at greater depth

Andosols AN Soils distinguished by Fe/Al chemistry—Allophanes or Al-humus complexes. Andosols are generally quite young soils 
found in volcanic areas formed in volcanic tephra. Andosols are usually defined as soils containing high proportions 
of glass and amorphous colloidal materials, including allophane, imogolite and ferrihydrite

Calcisols CL Accumulation of moderately soluble salts or non-saline substances—Accumulation of secondary carbonates. Calcisols 
are developed in mostly alluvial, colluvial, and aeolian deposits of base-rich weathering material. They are found on 
level to hilly land in arid and semi-arid regions. The natural vegetation is sparse and dominated by xerophytic shrubs 
and trees

and/or ephemeral grasses
Leptosols LP Soils with limitations to root growth—Thin or with many coarse fragments. Leptosols are very shallow soils over hard 

rock or a deeper soil that is extremely gravelly and/or stony. Leptosols can be found on hard rocks or where erosion 
has kept pace with soil formation or removed the top of the soil. The very shallow, less than 10 cm deep, Lithic Lep-
tosols in mountain regions are the most extensive Leptosols on Earth

Fluvisols FL Soils with little or no profile differentiation—Stratified fluviatile, marine, and lacustrine sediments. Fluvisols are found 
on alluvial plains, river fans, valleys, and tidal marshes on all continents and in all climate zones. Under natural 
conditions, periodical flooding is fairly common. The soils have a clear evidence of stratification. Soil horizons are 
weakly developed, but a distinct topsoil horizon may be present
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