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A B S T R A C T

Deductive verifiers require intensive user interaction in the form of writing precise specifications, thereby
limiting their use in practice. While many solutions have been proposed to generate specifications, their
evaluations and comparisons to other tools are limited. As a result, it is unclear what the best approaches
for specification inference are and how these impact the overall specification writing process. In this paper we
take steps to address this problem by providing an overview of specification inference tools that can be used
for deductive verification of Java programs. For each tool, we discuss its approach to specification inference
and identify its advantages and disadvantages. Moreover, we identify the types of specifications that it infers
and use this to estimate the impact of the tool on the overall specification writing process. Finally, we identify
the ideal features of a specification generator and discuss important challenges for future research.
1. Introduction

Deductive verification is a technique that can help to develop
reliable systems, even in the presence of features such as exceptions,
concurrency and unbounded data. In deductive verification, the user
needs to provide a program and a specification describing the intended
behavior of the program. Given such a program and specification,
a program logic is used to prove that the program adheres to the
specification. However, as with all powerful techniques, this comes
at a cost. For deductive verification, the user is required to provide
specifications, typically expressed as annotations in the code.

The specifications can be separated into two groups: (1) the main
specification describing the expected behavior of the program, and
(2) auxiliary annotations which are needed by the computer to solve
the proof, such as loop invariants to reason about loops. Ideally, the
main specification of the program is independent of the actual im-
plementation and could be reused for different implementations. Such
specifications are typically written in the contracts of public methods.
Auxiliary specifications can be closely related to the implementation
as different implementations may require different proof steps. These
specifications are typically found within methods themselves or as
contracts of private methods. In this work, we focus on the generation
of both the main and the auxiliary specifications.

Proving the correctness of a program with a deductive verifier,
is typically an iterative process. The user starts by providing a pro-
gram and its specification to the verifier. The verifier will then report
whether the program adheres to the specification or not. If the program
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does not adhere to the specification, then the user needs to reflect to
determine whether there is a bug in the program or in the specification.
After repairing the bug, the user repeats the process to see whether the
program can now be proven correct.

This verification process requires significant amounts of effort from
the user. Especially finding the right specifications can be very difficult.
Previous case studies have shown that the specification writing burden
can become as big as 10:1 (10 lines of specification per 1 line of
code) which hinders (Baumann et al., 2012; Beckert and Hähnle, 2014;
Hähnle and Huisman, 2019) the adoption of deductive verification.

To alleviate the specification writing burden on the user, a com-
monly proposed solution (Filliâtre and Marché, 2007; Gurov et al.,
2017; Huisman and Monti, 2020; Knüppel et al., 2018; Scheben, 2014)
is to generate (part of) the required specifications. However, it is
currently unclear what the best approach for inference is as tools use
their own benchmarks for evaluation and do not measure their impact
on the overall specification writing process. As a result, it is impossible
to compare the results of the various tools.

To address this problem, we provide an overview of the state-of-
the-art specification inference tools. We include tools that generate
specifications for deductive verifiers, such as preconditions and post-
conditions, and that support inference for Java programs. For each tool
we describe the techniques that are used to generate specifications and
the type of specifications that they can infer (Section 3). Next, we use a
taxonomy and its analysis described in Lathouwers and Huisman (2022)
to estimate the impact of each tool (Section 4) on the overall specifica-
tion writing process. We first identify the type of specifications that the
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tool infers, and then look up how often these types of specifications are
expected to occur. This provides an estimate of the maximum impact
of each tool on the complete specification writing process. Combining
all these results allows us to identify which types of specifications can
be inferred and where the gaps are in the current state of the art. We
use this to outline features of an ideal specification inference tool in
Section 5, thereby providing practical recommendations for the future
development of inference tools. Related work, including some tools that
were not included in this survey because of our selection criteria, is
discussed in Section 6. Finally, we discuss open research problems in
Section 7 and conclude in Section 8.

To summarize, the contributions of this paper are:

• An overview of specification inference tools for Java programs
that infer specifications for deductive verifiers;

• An analysis of the impact of the specification inference tools on
the overall specification writing process;

• Practical recommendations for the future development of infer-
ence tools by discussing what an ideal inference tool looks like;
and

• A list of open research problems for specification inference.

2. Background

In this section we will briefly introduce different types of specifica-
tions that are commonly used in deductive verification. Many deductive
verifiers are based on or use extensions of Hoare logic. In Hoare logic,
a program is typically specified as a triple of the form: {P}S{Q}. In
this triple, P is called the precondition, S is the program and Q is the
postcondition. The idea is that, if condition P holds, and we execute
the program S, then we can prove that Q holds after the execution
of the program. This assumes that the program terminates, thus it
only guarantees partial correctness. While there exist approaches that
reason about complete correctness, i.e. including termination, nearly
all specification inference tools focus solely on inferring functional
properties, which are used in both approaches. Pre- and postconditions
are typically described on a method-level meaning that if precondition
P holds when calling the method, then we can prove that postcondition
Q holds after executing the method. If the precondition does not hold
when calling the method, then nothing is guaranteed at the end of the
method.

If a postcondition expresses a property that should hold in the
case of exceptional behavior, i.e. a method terminates by throwing an
exception, this is called an exceptional postcondition.

A (class) invariant is a condition that is established during the
construction of an object and is afterwards maintained between method
calls.

A loop invariant is a specification that expresses a property for a
specific loop. This property should hold when entering the loop, as well
as after each loop iteration.

Assertions are similar to assertions in program code; they express
that a property should hold at the location of the assertion.

For more extensive definitions of these concepts, we refer the inter-
ested reader to Leavens et al. (2008) and Meyer (2002). Leavens et al.
(2008) describe the meaning of these concepts in the Java Modeling
Language (JML) (Leavens et al., 2006), a language that is often used for
the specification of Java programs. Meyer (Meyer, 2002) introduces the
fundamentals of the Design-by-Contract (DbC) approach which includes
the use of contracts to specify a program’s intended behavior.

Specifications are typically used to describe the behavior of a pro-
gram, e.g. to say whether the method is expected to terminate or
what the value of a variable is. However, there are also other types of
specifications, such as permission specifications (Lathouwers and Huis-
man, 2022) and frame conditions, which describe whether a method
has access to a variable. In JML (Leavens et al., 2006), such permis-
2

sions are described in assignable and accessible clauses at the
method-level. assignable clauses state that the method may assign
values to all locations named in the assignable clause. accessible
clauses state that the method may read values from all locations
named in the accessible clause. Several separation logic-based tools,
e.g. VerCors (Blom et al., 2017) and Verifast (Jacobs et al., 2011),
express the ability to access a variable through permissions which are
predicates that can be used in any other specification location such
as preconditions, postconditions and loop invariants. For example, the
precondition requires Perm(x, write) expresses that the method
can assign to variable x in VerCors’ specification language.

3. Overview of specification generators

In this section, we will provide an overview of the tools that are
available for the inference of annotations for deductive verification
of Java programs. We have selected tools that infer annotations for
Java programs, which allows us to use earlier work (Lathouwers and
Huisman, 2022) to estimate their maximum impact. Moreover, we
selected tools that generate annotations that can be used by deductive
verifiers or can be used with little additional effort. Tools that do not
fulfill these selection criteria, but that use interesting approaches or
infer other types of specifications, will be discussed in Section 6.

The inference tools that we will discuss are:

• Daikon
• eChicory
• DynaMate
• Agitator
• EvoSpex
• SLING
• ALearner
• DIG/SymInfer

• Strongarm
• KeY
• ‘‘Mining preconditions of

APIs in large-scale code
corpus’’

• Toradocu/Jdoctor
• C2S
• ChatGPT

We have divided these tools into three sections. Section 3.1 will
focus on tools that execute the program for the inference process. Sec-
tion 3.2 focuses on tools that rely on static inference techniques. And,
Section 3.3 focuses on tools that rely on natural language processing.

For each tool we provide a brief explanation of the techniques that
are used to infer specifications as well as the advantages and disad-
vantages of the approach. We were able to successfully run Daikon,
EvoSpex, Strongarm, Toradocu and ChatGPT. For these tools, we also
reflect on our experiences of using the tools on some examples.

We prepared three examples to test each tool’s ability: a counter,
a binary search and an arraylist. The code of these examples can be
found in Listing 1 and Appendix A. The counter was chosen as it is
a very simple example using pre- and postconditions. Binary search
(see Listing 1) is slightly more complicated as it deals with arrays
and quantified statements over the elements. Arraylist is even more
complicated as its methods have some logical conditions and it uses
exceptions. Together they cover typical applications, ranging from easy
to logically complex.

We have verified each example beforehand with OpenJML which
provides us with a baseline of the specifications that would be needed
for verification (see Appendix A). The number of annotations used
for verification per example are as follows: 32 for the counter, 16
for the binary search, and 103 for the arraylist. The total number
of used annotations sums up to 151. Of these 151, 17 were re-
quired to avoid overflow and underflow warnings and four to avoid
PossiblyBadArrayAssignment warnings by OpenJML. The other
annotations include a wide variety of specifications, such as precon-
ditions, (exceptional) postconditions, loop invariants, class invariants,
assignable clauses, behavior clauses and decreases clauses.

To test the tools, each specification inference tool was provided the
code without annotations. We have also prepared Javadoc documenta-
tion and a test suite as this was required for some tools. The Javadoc
was written in the same style as the Javadoc for the List and ArrayList
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public class BinarySearchGood {

//@ requires sortedArray != null;
//@ requires 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i,j; 0 <= i < j < sortedArray.length; sortedArray[i] <=
↪ sortedArray[j];
//@ ensures 0 <= \result < sortedArray.length <==> (\exists int i; 0 <= i <
↪ sortedArray.length; sortedArray[i] == value);
//@ ensures \result != -1 ==> sortedArray[\result] == value;
//@ ensures \result == -1 <==> (\forall int i; 0 <= i < sortedArray.length; sortedArray[i] !=
↪ value);
//@ pure
public static int search(int[] sortedArray , int value) {

if (value < sortedArray[0]) return -1;
if (value > sortedArray[sortedArray.length -1]) return -1;
int lo = 0;
int hi = sortedArray.length -1;
//@ loop_invariant 0 <= lo < sortedArray.length;
//@ loop_invariant 0 <= hi < sortedArray.length;
//@ loop_invariant (\exists int i; 0 <= i < sortedArray.length; \old(sortedArray[i]) ==

↪ value) ==> sortedArray[lo] <= value <= sortedArray[hi];
//@ loop_invariant \forall int i; 0 <= i < lo; sortedArray[i] < value;
//@ loop_invariant \forall int i; hi < i < sortedArray.length; value < sortedArray[i];
//@ loop_decreases hi - lo;
while (lo <= hi) {

int mid = lo + (hi-lo)/2;
if (sortedArray[mid] == value) {

return mid;
} else if (sortedArray[mid] < value) {

lo = mid+1;
} else {

hi = mid-1;
}

}
return -1;

}
}

Listing 1: Binary search program that has been verified using OpenJML. Source: https://www.openjml.org/examples/bubble-sort.html
of Java 8. The test suite setup is inspired by the Daikon examples,
where there is one test class for each program. Each test class contains
one method for each method in the program. The ArrayList program
has some additional methods to trigger edge cases such as getting the
element of an invalid index. If input is needed to call a method, e.g. the
index to get an element from, then this is randomly generated. The test
suite will randomly choose which method to call.

The tools (Daikon, EvoSpex, Strongarm, Toradocu, ChatGPT) were
run using their default settings. Our experiences with these tools on the
three examples are discussed in the ‘‘Our experience’’ section of Daikon
(Section 3.1.1), EvoSpex (Section 3.1.5), Strongarm (Section 3.2.2),
Toradocu (Section 3.3.1) and ChatGPT (Section 3.3.3). Moreover, we
provide an overview of these results in Section 3.4. An artifact contain-
ing a Virtual Machine with Daikon, EvoSpex, Strongarm and Toradocu
installed, as well as the examples used to test each tool, is freely
available at:

https://doi.org/10.4121/9c83933e-8406-4e49-ac4d-1f8bb55ed988
An overview of all tools that are discussed in this section can also

e found in Appendix B. This overview includes the input that the tool
equires, a brief methodology description, the type of specifications that
he tool infers and whether the tool is publicly available.

.1. Dynamic techniques

In this section we discuss the tools that rely on running the pro-
ram to infer specifications, also known as dynamic techniques. Some
f these tools combine static and dynamic approaches to infer spec-
fications. This section includes the tools: Daikon, eChicory, Dyna-
3

ate, Agitator, EvoSpex, SLING, ALearner and DIG/SymInfer. We have
tested Daikon and EvoSpex on the counter, binary search and arraylist
examples.

3.1.1. Daikon
Technique. We start with arguably the most well-known specification
generator namely Daikon (Ernst et al., 2007). Daikon uses a dynamic
approach where it observes several program executions. During these
program executions it observes variables at specific points in the pro-
gram, by default the entry and exit points of a method. Depending
on the values of these variables at these points, Daikon will then
instantiate an invariant based on a built-in grammar. These generated
invariants are guaranteed to hold for the observed executions.

The Daikon grammar includes properties such as:

• x OP y where OP can be replaced by ==, !=, >=, >, <=, <
• x[i] OP x[i+1] where OP can be replaced by ==, !=, >=, >, <=,
<

• x[0] OP y[0] && x[1] OP y[1] && ... && x[n] OP y[n] where
OP can be replaced by ==, !=, >=, >, <=, <

• For each element in the sequence x[], x[i] OP y, where OP can
be replaced by ==, !=, >=, >, <=, <

• x % y == 0
• x == y ** 2
• x == Multiply(y,z)
• a != null ==> a.x == 0
• ax + by + c == 0
• x is a member of y[]

• x is a substring of y

https://www.openjml.org/examples/bubble-sort.html
https://doi.org/10.4121/9c83933e-8406-4e49-ac4d-1f8bb55ed988
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public class BinarySearchGood {
public static int search(int[] sortedArray , int value) {

if (value < sortedArray[0]) return -1;
if (value > sortedArray[sortedArray.length -1]) return -1;
int lo = 0;
int hi = sortedArray.length -1;
while (lo <= hi) {

dummy_call(lo, hi, sortedArray , value); int mid = lo + (hi-lo)/2;
if (sortedArray[mid] == value) {

return mid;
} else if (sortedArray[mid] < value) {

lo = mid+1;
} else {

hi = mid-1;
}

}
return -1;

}

public static void dummy_call(int lo, int hi, int[] sortedArray , int value) {}}

Listing 2: Binary search program that has been modified such that Daikon can infer loop invariants. The method dummy_call (line 21) and a call
to this method at the beginning of the loop (line 8) have been added.
/*@ requires lo >= 0; */
/*@ requires hi >= 0; */
/*@ requires sortedArray != null; */
/*@ requires (\forall int i, j; (0 <= i && i <= sortedArray.length -1 && 0 <= j && j <=
↪ sortedArray.length -1) ==> ((i+1 == j) ==> (sortedArray[i] < sortedArray[j]))); */
/*@ requires value != 0; */
/*@ requires lo <= hi; */
/*@ requires lo <= sortedArray.length -1; */
/*@ requires hi <= sortedArray.length -1; */
/*@ requires sortedArray[lo] <= sortedArray[hi]; */
/*@ ensures (\forall int i, j; (0 <= i && i <= sortedArray.length -1 && 0 <= j && j <=
↪ sortedArray.length -1) ==> ((i+1 == j) ==> (sortedArray[i] < sortedArray[j]))); */
/*@ ensures \old(lo) <= sortedArray.length -1; */
/*@ ensures \old(hi) <= sortedArray.length -1; */
/*@ ensures sortedArray[\old(lo)] <= sortedArray[\old(hi)]; */
public static void dummy_call(int lo, int hi, int[] sortedArray , int value) {}

isting 3: Specifications that were generated for the dummy_call method using Daikon. Equivalent pairs of pre- and postconditions are considered
o be loop invariants.
v
i
i
i

O
f
a
a
s
t
s
b
e
a
i
m

Unlike some other techniques, Daikon does not require any anno-
ations to start with. By default it generates invariants, preconditions,
ostconditions and assignable clauses. While it can technically infer
pecifications at any point in the program, assertions at other program
oints, including loop invariants, require the user to either modify the
ront end or to use a workaround. The workaround requires the user
o define a function (that does not do anything) to which they pass all
ariables of interest. Then the user should add a call to this dummy
rocedure at the location of interest, e.g. the top of a loop. An example
f this workaround is illustrated in Listing 2.

If you apply such a workaround, Daikon will generate pre- and
ostconditions for the dummy procedure (see Listing 3). Daikon’s doc-
mentation mentions that it will generate (identical) pre- and postcon-
itions. These identical pre- and postconditions can then be (manually)
ransformed into loop invariants. However, it is unclear from the docu-
entation what to do with pre- or postconditions for which there is no

dentical counterpart. In this work, we will only interpret a generated
pecification as a loop invariant if there is a pair of equivalent pre- and
ostconditions.

dvantages and disadvantages. The advantages of Daikon are that (1)
t is easy to install and use, (2) it takes only a short time to infer
pecifications (in our experience), and (3) it can automatically add the
pecifications to your program.
4

The disadvantages of Daikon are that (1) it can only derive in-
ariants that are expressible in the built-in grammar, (2) the inferred
nvariants are dependent on the quality of the executed tests, and (3)
t may infer incorrect specifications (i.e. actual behavior instead of
ntent).

ur experience. Using Daikon, we generated 158 specifications, 20
or counter, 11 for binary search and 127 for arraylist. The aver-
ge runtime, measured over 5 runs, for counter, binary search and
rraylist were 27, 9 and 11 s respectively. Of the 158 generated
pecifications, 29 of them could be found in the baseline specifica-
ions. This covers 19% of the baseline specifications. Of the generated
pecifications, 83 (53%) were wrong, and 47 (30%) were correct
ut unnecessary. For the generated loop invariants we only counted
quivalent pre- and postcondition pairs and disregarded the other
dditional clauses that were generated. The generated specifications
ncluded preconditions, postconditions, invariants, loop invariants and
odifies1 clauses. It generated mostly specifications such as this.

list != null and \result == -1. It also managed to generate several

1 These are equivalent to assignable clauses.
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annotations with quantifiers such as (\forall int i, j; (0 <= i
&& i <= sortedArray.length-1 && 0 <= j && j <= sortedArray.
length-1) ==> ((i+1 == j) ==> (sortedArray[i] < sortedArray
[j])));.

Moreover, it takes into account some built-in keywords of JML such
s \result, \old and \typeof.

Sometimes the inferred specifications were incorrect or not as pre-
ise as one would like, either because of the limited test suite or because
f the limits of the grammar. For example, for a contains method of
n ArrayList it inferred that the size of the list would always be zero.
t also inferred \result >= 1 && \result <= sortedArray.length
1 instead of sortedArray[\result] == value || \result == -1,
ven though there is a test case for the contains method with an element
hat is not in the list.

The workaround for generating loop invariants can be a little con-
using. The documentation of Daikon indicates that it should generate
dentical pre- and postconditions for the dummy procedure. However,
ot all generated pre- and postconditions were identical. For example,
or the binary search example Daikon generated only one set of iden-
ical pre- and postconditions. Another three specification pairs were
dentical except for an \old keyword around one or more variables.
side from these, it also produced additional preconditions that did not
ave any equivalent corresponding postcondition. Specifications from
his last category were disregarded and not included as loop invariants
n our examples.

Finally, we note that some specifications would probably be written
ifferently if they were written by a user, which impacts readability
f the specifications. Users often write this.value == \old(this
value)+1 whereas Daikon generated this.value - \old(this.
alue) - 1 == 0. While these are equivalent, the Daikon-generated
ersion may be harder to read for users.

.1.2. eChicory
echnique. After the success of Daikon, several tools were developed
hat either depended on or extended it. The first of these tools that we
iscuss is eChicory (Alsaeed and Young, 2018), an extension of Daikon.

Daikon, specifically the Chicory instrumentation, assumes that the
ariable tree structure does not change after a method is invoked. As
result, the set of variables it tracks is static, and it can only track

alue changes of variables known at invocation. eChicory improves
pon this by also regularly evaluating the variables structure. This
llows eChicory to also derive specifications about dynamically estab-
ished relations, e.g. the relation between a view and model in the
odel-view-controller pattern.

dvantages and disadvantages. The main advantage of eChicory in ad-
ition to Daikon is that it can derive specifications about dynamically
stablished behaviors.

The main disadvantages are the same as those for Daikon namely
1) it can only derive specifications expressible in Daikon’s built-in
rammar, (2) the inferred invariants are dependent on the quality of
he test suite, and (3) it may infer the actual behavior of the program
s opposed to the intent.

ur experience. While eChicory is available, we were unfortunately
nable to run it successfully on our examples because it could not find
r load the main class.

.1.3. DynaMate
echnique. DynaMate (Galeotti et al., 2014) combines three different
echniques to provide fully automatic verification of programs. The user
eeds to provide the code and method contracts (pre- and postcondi-
ions). DynaMate will then first use a test generator (EvoSuite (Fraser
nd Arcuri, 2011)) to generate several executions. These executions
re passed to two dynamic invariant detector techniques (Daikon, Gin-
yn) which use them to find loop invariant candidates. Daikon uses, as
5

entioned before, a grammar to generate loop invariants. Gin-Dyn was f
esigned as part of DynaMate. It is based on the idea that ‘‘loop invari-
nts can often be seen as weakened forms [of] postconditions" (Galeotti
t al., 2014). Gin-Dyn takes the provided postconditions and syntac-
ically mutates them. The loop invariant candidates are tested to see
hether they are invalidated by any test runs. If a candidate was not

nvalidated, then the loop invariant is added to the program. This
rogram is then passed to the verifier ESC/Java2 (Chalin et al., 2006) to
ry and statically prove its correctness. If it could not be proven correct,
he process described above is repeated. EvoSuite will then be used to
enerate new tests that falsify the unproven loop invariant candidates.

dvantages and disadvantages. The advantage of DynaMate is that it
an take over part of the work that the user would typically do.
pecifically, the iterative process to find the correct loop invariants.
oreover, the loop invariants that are found are known to be provably

orrect.
This approach works well because it is limited to loop invariants,

hich can often be derived from postconditions. A similar approach for
ther types of specifications, such as preconditions, would probably be
ery difficult.

A disadvantage of the approach is that it may discard specifications
hat describe the intended behavior if the program has bugs. This is
aused by the selection procedure which discards invariants that are
nvalidated by test runs.

ur experience. While the source code and scripts are still available
hrough a project website, we were unfortunately not able to get
ynaMate working. The Makefile results in some errors and when

unning the commands manually, Daikon is unable to find any program
oint declarations and as a result no invariants are generated.

.1.4. Agitator
echnique. Agitator (Boshernitsan et al., 2006) was originally devel-
ped to support test practices rather than verification. It uses test-input
eneration to explore the program’s actual behavior. It combines this
ith a dynamic invariant detection algorithm, similar to Daikon’s
lgorithm, to find observations. These observations represent rela-
ionships between values that hold under various input values. Some
xamples are this.getName() != null and 0.0 <= this.getPrice
) <= 1000.0. These observations are shown to the user and the user
an then choose to turn an observation into an assertion. As such, it is
till up to the user to determine whether the observations describe the
ntended behavior.

dvantages and disadvantages. Agitator was developed while taking
he developer’s workflow into account, and has therefore been nicely
ntegrated into the Eclipse interface.

One of the unique things about Agitator is that it leaves it up to the
ser to determine whether the proposed observations should become
ssertions. This can be considered an advantage, as the chosen asser-
ions will describe the intended behavior instead of the actual behavior.
owever, one can also consider this a disadvantage as it requires more

nteraction from the user. In any case, it proposes possible assertions
hich the user may either not have found or would have taken longer

o find.
In the evaluation described in the paper (Boshernitsan et al., 2006),

t is mentioned that 11% of the observations were useful invariants. It
s unclear whether the proposed workflow, which includes generating
est inputs, running tests and selecting assertions, is more time efficient
han writing the specifications as is typically done.

Agitator generates assertions instead of annotations and thus will
equire some additional work to transform the assertions into contracts.

ur experience. There does not seem to be a publicly available artifact

or Agitator.
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3.1.5. EvoSpex
Technique. EvoSpex (Molina et al., 2021) aims to address a limita-
tion of Daikon namely the grammar used to infer specifications. It
specifically aims to generate more complex properties for reference-
based implementations such as structural constraints and membership
properties.

EvoSpex starts by generating tests (bounded exhaustively) for the
given program. These tests are then executed during which it observes
the program state. This provides valid (corresponding to actual behav-
ior) pre and post states of the program. These states are then mutated to
obtain invalid (not corresponding to observed behaviors) pre and post
states. Given these valid and invalid pre/post states, it uses a genetic
algorithm to generate a postcondition that satisfies the valid states and
does not satisfy the invalid states.

Advantages and disadvantages. Starting with the positives, EvoSpex is
less affected by specific values observed in executions compared to
Daikon. Moreover, it is able to generate some more complex properties
for reference-based implementations. Whether this is useful, depends
on the program for which one wants to infer specifications.

The disadvantages are that (1) EvoSpex takes more time than
Daikon to infer specifications, (2) it may infer actual behavior as op-
posed to intent, and (3) while it can generate more complex properties
than Daikon in some cases, it is still limited by its genetic algorithm
operators and may not generate e.g. complex arithmetic properties.

Our experience. When running EvoSpex on the examples, several er-
rors occurred, including an stmfootnotesize IndexOutOfBoundsExcep-
tion, a FileNotFoundException and a ClassCastException, due to which we
were unable to generate specifications for the constructor of Counter
(Counter()) and three methods of the ArrayList example (ArrayLis
(), enlarge() and add()). In total, EvoSpex generated 25 annota-
tions, 8 of which also occurred in our baseline specifications. These 8
postconditions covered 4% of all baseline specifications. If we compare
it to the 30 postconditions in the baseline, it covered 20%. It generated
6 (24%) incorrect specifications, and 11 (44%) correct but unnecessary
specifications.

All specifications generated by EvoSpex for our examples were
postconditions and seemed relatively simple. It does support keywords
similar to \old and \result.

EvoSpex generates less specifications as well as less complex specifi-
cations than Daikon for our examples. It seemed capable of generating
most required postconditions for the counter which was our easiest
example. However, for the binary search example it was only capable
of generating a simple null check on the class itself. For the Arraylist
example, the generated postconditions were all related to the size of
the list or a null check for the list array. It did not include any
postconditions about elements of the array.

The specifications can be verbose as a result of using a genetic
algorithm. For example, take this specification that was generated for a
method that decreased a counter by a given value: ensures this_pre
.value != this.value - this_pre.value - 1 + this.value + thi
.value + this_pre.value + 1 + 1. This is equivalent to ensures
this_pre.value!=3*this.value+1 as some of the additions/nega-
tions cancel each other. These additions/subtractions can be traced
back to the numeric addition/subtraction operator that is used in
the genetic algorithm. If one wants to use EvoSpex in practice, it
can therefore be useful to implement a rewriter which simplifies
expressions.

There are some minor inconveniences in the current implementation
that makes EvoSpex less nice to work with. It has a limited support for
the language, for example, properties over arrays are not yet supported.
As a result, EvoSpex is unable to generate a lot of the more interesting
postconditions for the binary search and arraylist example. While the
annotations are expressible in JML, they are not generated in this
format so some manual translation is needed. And, it does not have
the ability to automatically add the specifications to your program. We
also ran into several exceptions while running the tool caused by a bug
6

in one of the libraries that is used.
3.1.6. SLING
Technique. SLING (Le et al., 2019) is a tool that aims to find as-
sertions for dynamically allocated data structures. Specifically, they
target shape properties (over heap variables) and equality constraints
(over stack variables). They do not generate disjunctive properties or
numerical relations. Unlike most other tools, SLING infers properties in
separation logic.

SLING expects four things as input: the program, a location of
interest, a set of predefined predicate templates and a set of sample
inputs (or test suite). Given these inputs, SLING first runs the program
on the provided sample inputs. During these runs, it captures mem-
ory information at the location of interest in the trace. It iteratively
analyzes these traces to compute properties that should hold at the
location of interest. For each pointer variable, it generates a separation
logic predicate using the predefined templates. This models the memory
region related to this variable. Next, it checks whether this candidate
predicate holds in the observed runs. If so, it uses this information to
improve the analysis in the next iteration. Specifically, when it found a
predicate, this typically describes only a part of the observed heap. This
process is repeated until the all explored memory regions have been
described. Finally, the candidate assertion is presented to the user.

Advantages and disadvantages. The main advantage of SLING is that
it can infer shape properties, which many other tools do not support.
And, it can infer properties in separation logic, as opposed to the usual
predicate logic.

Some disadvantages of SLING include that it may infer actual behav-
ior instead of intent and it relies on predefined templates. Moreover,
finding assertions can take quite some time. In SLING’s evaluation (Le
et al., 2019) these times range from 10 s to over 14 min, this includes
program execution, trace collection and invariant inference.

Finally, there are some features that limit the applicability of SLING.
Many verifiers that use separation logic target concurrency and they use
permissions to express access to variables. These permissions are often
intertwined with the assertions because the specifications need to be
self-framing. SLING, however, does not support concurrency nor does
it infer permissions. SLING may also introduce existentially quantified
variables which tend to be difficult for the backend solvers. Nonethe-
less, while these are some practical hurdles, the inferred specifications
can be a good starting point for developers.

Our experience. We were unable to successfully install all dependencies
of SLING, specifically LLDB v3.8 released in 2016, and thus we could
not test the tool.

3.1.7. ALearner
ALearner (Pham et al., 2017) tries to infer specifications with lim-

ited test cases and limited usage of techniques such as symbolic execu-
tion. It specifically tries to infer assertions in methods. As input it takes
a Java program and a set of test cases.

Given the input, ALearner first executes the test cases to collect
program states. These program states are separated into failure cases
and correct cases based on whether the test fails or runs successfully.
Given such a set of program states, a classification algorithm is used
to find a candidate assertion such that all cases are correctly classi-
fied. ALearner supports two classification algorithms. One is based on
predefined templates, and boolean combinations of these, inspired by
Daikon. Some of the predefined templates are x*y = z, x != c and x
> 0. The second algorithm uses Support Vector Machine (SVM) to find
assertions in the form 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ ≥ 𝑘. After the classification
algorithm has been run, we are left with a candidate assertion. This
assertion is often not correct due to the limited test set. Therefore, as
a final step, ALearner uses active learning to improve the candidate
assertion. The idea behind active learning is to generate new feature
vectors (i.e. set of program states). The authors aim to generate feature
vectors near the classification boundary. To achieve this, they select

assertions closely related to the candidate assertion. It then takes the



The Journal of Systems & Software 211 (2024) 111972S. Lathouwers and M. Huisman

e
i
l
a
e

a
i
c
a
T
s

O
f

3
T

program and enforces a program state corresponding to the selected
assertion. Next, the test cases are run on the mutated program resulting
in a new set of program states. This new set of program states is
added to the previously collected set of program states. Finally, the
classification algorithm can be used to find a new candidate assertion.
This process is applied iteratively until the assertion converges.

Advantages and disadvantages. An advantage of ALearner is that its
valuation seems to indicate that it is capable of inferring better spec-
fications with less test cases compared to Daikon thanks to the active
earning approach. This active learning approach does introduce some
dditional overhead, on average it takes 40 s to find an assertion (Pham
t al., 2017).

While the active learning approach of ALearner allows it to refine
ssertions in many cases and helps it overcome lacking test cases, it
s still dependent on the availability of certain test cases as it is not
apable of inferring sufficiently complex conditions. The active learning
lgorithm also relies on running the program to find new data points.
his means that an incorrect program may lead to ‘incorrect’ program
tates and thus incorrect specifications.

ur experience. While the code is still available, we could not success-
ully run it on our examples.

.1.8. DIG/SymInfer
echnique. DIG (Nguyen et al., 2014b), also known as SymInfer, is

a tool focused on inferring invariants that describe a numerical rela-
tion between program variables, especially nonlinear invariants. This
includes invariants such as max(x,y) <= z - 4 and q * y + r == x.

To start, the user needs to mark the locations in the code for which
they want to infer invariants. Given the code with target locations, DIG
uses symbolic execution to obtain a set of symbolic states. It then uses
several algorithms for inferring different kinds of invariants.

The first algorithm is used to find nonlinear equalities up to degree
2 (𝑥2). This algorithm generates terms, e.g. 1, 𝑎, 𝑎2 for all the available
variables. These are combined with unknown coefficients to form an
equality of the form 𝑐1 + 𝑐2 ∗ 𝑎 + ⋯ + 𝑐𝑥 ∗ 𝑦2. It then observes
several concrete executions and uses these concrete values to solve the
equation to get the coefficients. The found invariants are further refined
in a loop where counterexamples are used to refute candidates and find
new equations.

The second algorithm focuses on inferring inequality invariants. The
algorithm enumerates octagonal terms, e.g. 𝑥− 𝑦 and 𝑚𝑖𝑛(𝑥, 𝑦, 𝑧). Then,
it uses an SMT solver to find the smallest upper bound and largest lower
bound for each term.

The third algorithm focuses on inferring invariants for arrays. It can
find relations among array elements of the form 𝐴 = 𝑏1𝐵1+⋯+𝑏𝑛𝐵𝑛+𝑐
where 𝐴, 𝐵𝑖 are distinct arrays whose elements are real-valued and
𝑏𝑖, 𝑐 are coefficients. The approach is similar to the first algorithm,
where several variables are created and the tool looks for equality
relations among these variables. It can also find nested array relations,
e.g. A[i][j] == B[i+1][C[D[3j]]. To find nested array relations, it
uses a similar approach to the second algorithm. It first enumerates
possible array nestings. Then, it identifies relations among individual
array elements using reachability analysis. Finally, this information is
encoded into a satisfiability problem and solved using an SMT solver.

Finally, the tool post-processes the candidate invariants, removing
violated and redundant ones.

Advantages and disadvantages. The main advantages of DIG is that it
can infer nonlinear numerical invariants, which tend to be difficult for
other tools. Because it focuses on this specific type of invariant, its
applicability is limited as not all programs need nonlinear numerical
invariants.

The main disadvantages is that it relies on the code for inference,
meaning that it might infer invariants that are incorrect if the code is
incorrect.
7

Our experience. DIG provides a Docker container with the necessary
dependencies installed. Unfortunately, the Docker container does not
support specification inference for Java at the time of writing. Thus, we
were unable to successfully run DIG on our examples. We can however
briefly reflect on our experience in preparing the examples as required
for the tool. To use DIG, the user needs to manually indicate, in the
code itself, where the invariants should be inferred. Specifically, the
user defines an empty function which is called at the target location.
The variables in scope at this location should be passed to this function
as arguments as these are used by DIG to find invariants. In terms of
user experience, this makes the code cluttered and this is not something
one would like to have in a production environment.

3.2. Static techniques

This section discusses tools that use static approaches. This means
that these tools do not execute the program for the specification in-
ference process. This includes Houdini, Strongarm, KeY and ‘‘Mining
preconditions of APIs in large-scale code corpus’’. Of these tools, we
were only able to test Strongarm on the three prepared examples.

3.2.1. Houdini
Technique. Houdini (Flanagan and Leino, 2001) was originally devel-
oped for annotating legacy, unannotated programs. Given an unanno-
tated program, Houdini first generates many candidate annotations.
These candidates are generated based on heuristics. For example, it
generates invariants that express that fields of a reference type cannot
be null: //@ invariant f != null. It then uses ESC/Java to try and
prove them. If a candidate cannot be proven to hold, it is discarded.
Houdini can infer invariants, preconditions and postconditions.

Houdini has also been extended to guess specifications for libraries
(Flanagan and Leino, 2001) in case the user does not have access to the
source code of the library. The authors provide a pessimistic and op-
timistic approach for guessing specifications. The pessimistic approach
makes assumptions such as ‘‘all pointers returned by library methods
may be null" (Flanagan and Leino, 2001). This approach resulted in
many false alarms. The optimistic approach makes assumptions such as
‘‘all pointers returned by library methods will be non-null" (Flanagan
and Leino, 2001). As pointers may be null, this can cause Houdini to
miss some runtime errors. Nonetheless, the optimistic approach was
preferred by the authors as it could still detect other runtime errors.

Advantages and disadvantages. Houdini only reports assertions that
could be proven if used to analyze a program. Moreover, it will report
many of the simple properties that are likely to be true.

Houdini is limited in the kinds of properties it can report. It does
not report disjunctions, numeric inequalities or properties such as:
\forall int i; 0 <= i <= expr ==> f[i] != null. It may also re-
port annotations that are subsumed by others such as x != -1 and
x > 0. Finally, Houdini’s runtime can be quite long. The authors report
a runtime of 62 h for 36,000 lines of Cobalt (Flanagan and Leino,
2001). They were, however, optimistic about improvements to this in
the future.

Our experience. The original implementation of Houdini is no longer
available. However, similar approaches have been implemented, e.g. in
Boogie (Barnett et al., 2006) and GPUVerify (Betts et al., 2012). We
have not evaluated these tools as they do not adhere to our selection
criteria, i.e. they do not support inference of specifications for Java
programs in a format usable by deductive verifiers.

3.2.2. Strongarm
Technique. Strongarm (Singleton et al., 2018) is a specification infer-
ence tool that specifically targets strongest postconditions. Given a
precondition, which can be the default true, it computes the strongest
postcondition. This strongest postcondition is then simplified thereby

removing duplicate statements and tautologies from the postcondition.
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Advantages and disadvantages. Unlike some other tools, Strongarm aims
to minimize the size of the generated specifications. As a result, the
inferred specifications are quite succinct which makes them nice to use
for both users and tools.

The inferred specifications are relatively simple and Strongarm does
not seem capable of inferring more complex specifications such as
stating what the result of a search method over an array should be.

Our experience. While the code of Strongarm was merged into Open-
JML (Cok, 2014), it seems to be currently unavailable for use2. Instead,

e have used a virtual image with a pre-installed version of Strongarm
hat was provided by the authors.

We tried Strongarm both with the default precondition true as well
s with the preconditions necessary for verification. We did not observe
ny significant differences between the generated specifications in
hese two cases.

Strongarm generated 60 annotations in total: 11 for the counter,
0 for the binary search and 39 for the arraylist. Of the 60 generated
nnotations, 23 of the annotations also occurred in the set of baseline
nnotations for verification. Thus 38% of the generated annotations
ere useful and necessary, covering 15% of the required annotations. It
id not generate any incorrect specifications. All the other annotations
t generated were correct but not required for verification in our base-
ine. A large part of the generated annotations consisted of behavior
lauses and also keywords: 16 out of 60.

Strongarm is capable of inferring behavior clauses (which many
ther tools do not support), preconditions, postconditions and assignable
lauses. Most of the generated specifications were comparisons between
ariables and/or values such as requires 0 <= index and ensures
\result == false. It was also capable of inferring specifications

that used built-ins such as \old, \result and .length for arrays. It
was not able to find exceptional postconditions or more complicated
postconditions that use quantifiers.

Unlike other tools, Strongarm is capable of distinguishing cases,
derived from if-statements in the method. These are very helpful though
sometimes a bit too precise. For example, in the generated annotations,
it distinguished three separate cases in which the binary search returns
-1:

• The length of the array is smaller than 1
• The value is larger than the last element in the array
• The value is smaller than the first element in the array

However, these cases can all be combined into one case (when the
element is not in the array) thereby resulting in a clearer specification.

Strongarm is also capable of generating specifications with nested
behavior clauses. While these may technically reduce the specification
length (in terms of line numbers), we find that these make the spec-
ifications harder to understand. An example of a nested specification
generated by Strongarm can be found in Listing 4.

3.2.3. KeY
Technique. There have been several projects about specification infer-
ence that implemented their technique in KeY.

The first project (Weiß, 2009) aims to infer loop invariants by
combining symbolic execution with predicate abstraction. As input it
expects the program, and optionally a set of predicates 𝑃 . It then exe-
cutes the loop symbolically, which results in a formula that represents
the loop. Next, it approximates this formula by using predicate abstrac-
tion. It computes an abstraction of the formula using (conjunctions of)
the elements in the provided finite set 𝑃 . If no predicates are provided
as input, the technique will use heuristics to derive some predicates. For
example, it may use the postcondition to derive a loop invariant if it
is a quantified statement over the same range as the loop. This process

2 A comment in the code seems to indicate that it is currently broken.
8

of computing an abstraction of the loop is repeated until a fix-point
has been reached. This technique is only applied to loops without loop
invariants.

The second project (Wasser, 2017) continues with the idea of
combining symbolic execution and abstraction (Weiß, 2009). This work
specifically moves towards better support for Java including non-
standard control flows such as mutual recursion and break statements.
To achieve this, they introduce new abstract domains for several types
including arrays. This technique is then used to infer specifications for
loops and recursive method calls.

The third project (Tabar et al., 2022), specifically focuses on infer-
ring loop invariants that express the (absence of) data dependences.
This is also an extension of the work by Weiß (2009). They symbolically
execute a program to find an invariant candidate. Then, assuming this
candidate, they execute the loop body once more. If the candidate holds
at the end of the loop, then it is valid. If it was not valid, then there is an
invariant from the beginning of the loop and a (different) invariant at
the end of the loop. These will then be combined into the least common
abstraction. This process is then repeated until a fix-point is reached.
The candidates are always conjunctions of pre-defined predicates that
capture atomic data dependences between memory areas.

Advantages and disadvantages. Tabar et al. (2022) is unique in that
it focuses on finding loop invariants that express data dependences.
The strength of Weiß (2009), Wasser (2017) is that it shows how to
integrate symbolic execution and deductive verification in order to
infer specifications. The technique can be applied to any program if
suitable abstraction domains are available.

All of these approaches rely on symbolic execution of the program
code to derive specifications. Because of this, the inferred specifications
will reflect the actual program behavior, even if it is incorrect, instead
of the intended behavior.

Our experience. All of the projects seem to be implemented as pro-
totypes on branches of KeY. Unfortunately, the older implementa-
tions (Wasser, 2017; Weiß, 2009) have not been merged into the main
development branch and therefore seem to be lost. There is also no
publicly available artifact for (Tabar et al., 2022).

3.2.4. ‘‘Mining preconditions of APIs in large-scale code corpus’’
Technique. Where many projects focus on analyzing the project for
which you want specifications, Nguyen et al. (2014a) take a different
approach. The main idea behind this work is that preconditions of APIs
are expected to occur frequently in a large corpus whereas project-
specific conditions are expected to occur less often. They analyze a large
set of programs, all using the same API, to find preconditions for that
API.

As input, one needs to indicate the API methods that need to be
analyzed and provide projects that use this API. The tool first builds
a control-flow graph for each method that calls the API. This graph
is used to identify under which conditions an API method is called
(control dependency analysis). This provides a precondition for each
call site of the API method. As some of these are equivalent, the
preconditions are normalized to combine equivalent conditions. When
these are combined, the approach keeps track of each method that uses
the equivalent precondition. As some preconditions might be implicit in
the client code, the approach tries to infer some of these preconditions.
They specifically try to address (1) the difference between strict and
non-strict inequalities, (2) the difference between stronger conditions
that imply weaker conditions, and (3) dynamic dispatch. Next, the
preconditions are filtered to remove conditions that only occur once
and conditions that are rarely checked before calling the API. Finally,
the remaining preconditions are ranked into three separate lists, one for
the receiver object, one for the arguments and one for combinations of
them. The top-ranked preconditions are then reported to the user.
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public class BinarySearchGood {

/*+INFERRED
@ @ public normal_behavior

@ {|
@ requires !(value < sortedArray[0]);
@ ensures \result == -1;
@ {|
@ requires (value > sortedArray[sortedArray.length - 1]);
@ also
@ requires !(0 <= sortedArray.length - 1);
@ requires !(value > sortedArray[sortedArray.length - 2]);
@ |}
@ also
@ requires (value < sortedArray[0]);
@ ensures \result == -1;
@ |}
@*/

public static int search(int[] sortedArray , int value) {
...

}
}

Listing 4: Example showing nested specifications inferred by Strongarm for the binary search example.
a
t

f
t

A
i
T
a
o
A
n
m

m
o

f
f
‘

w
e
t

O
s
T
e
A
t
e
c
/
↪

i
/
↪

T
r
T

Advantages and disadvantages. The main advantage, as well as dis-
dvantage, is that this approach is used for a very specific type of
rogram, namely an API for which a large set of usage examples is
vailable. Depending on the project that you have, this can be very
aluable, e.g. to find specifications for a library, or infeasible, e.g. when
eveloping a new data structure.

It relies on the assumption that the APIs’ preconditions occur fre-
uently in the code where it is used. If an API is frequently misused,
his may result in incorrect specifications.

ur experience. There does not seem to be a publicly available artifact
or this project.

.3. Natural language processing

The last category of tools that we discuss are tools that use natural
anguage processing techniques. This includes Toradocu, also known as
doctor, C2S and ChatGPT. We have tested Toradocu and ChatGPT on
he counter, binary search and arraylist example.

.3.1. Toradocu/Jdoctor
echnique. Unlike many other tools, Toradocu (Blasi et al., 2018) de-
ives specifications from programs’ Javadoc documentation. It can
enerate preconditions for parameter values, postconditions and ex-
eptional postconditions. The generated specifications are executable
rocedures as opposed to annotations.

Given code with Javadoc, Toradocu extracts the Javadoc tags @param
@return and @throws and the natural language comments that

ollow them. Next, it parses the natural language comments to iden-
ify the propositions (subject-predicate) pairs. These propositions are
atched to a Java element based on pattern, lexical and semantic
atching. Pattern matching can match common phrases such as ‘‘is
ositive’’ and ‘‘is not null’’ to corresponding Java expressions >0 and
= null. Lexical matching matches a subject or predicate to similarly
amed code elements (based on Levenshtein distance). For example,
n ‘‘if the comparator is null’’, ‘‘comparator" may be matched to the
arameter whose type is Comparator. Semantic matching (based on
ord Mover’s Distance algorithm) is used to find words that are se-
antically similar. For example, ‘‘vertex’’ and ‘‘graph’’ are semantically

elated and Toradocu may use this to find matches that could not be
ound through lexical matching as the words are not similar. Then, it
9

eplaces each subject and predicate with matching Java code. Using this w
pproach, Toradocu will produce a single translation for each Javadoc
ag.

Note that Jdoctor is another name used for Toradocu, specifically
or version 3.0. In the rest of this paper, we will simply refer to the
ool as Toradocu.

dvantages and disadvantages. A big advantage of Toradocu is that
t uses a source independent from the code to derive specifications.
his provides a source that describes the intent of the programmer
s opposed to the actual behavior of the program. This is of course
nly true if you are not using documentation generation techniques.
nother advantage is that it allows users to write specifications in
atural language instead of a formal specification language which is
ore difficult.

A disadvantage is that the comments may contain ambiguities which
ay lead to incorrectly translated specifications. Moreover, some of the

riginal intent may be lost if the translation is inaccurate.
Another disadvantage is that Toradocu only generates translations

or specific Javadoc tags. As a result, it does not generate specifications
or, e.g. the effect of functions that do not return a value such as
‘enlarge’’ in our arraylist example.

As Toradocu produces executable procedures, some post-processing
ill be needed to obtain annotations from the generated output. How-
ver, as this is straightforward to do, we have included Toradocu in
his list of tools.

ur experience. For our examples, we wrote documentation in the same
tyle as the Javadoc for the List and ArrayList of Java 8. Unfortunately,
oradocu was not able to translate any of the documentation into
xecutable specifications, i.e. it did not generate any specifications.
fter contacting the authors, this seems to be a limitation of the

ool. They indicated that if we had written our documentation differ-
ntly, Toradocu would have been able to translate it. For example, by
hanging:
/@throws IndexOutOfBoundsException if the index is out of
range (index < 0 || index >= size())

nto
/@throws IndexOutOfBoundsException if index < 0 || index
>= size()

oradocu can then generate the condition args[0]<0 where args[0]
efers to the index variable which is the first parameter of the method.
his leads us to conclude that either the natural language processing

ould need to be improved, or one needs to be aware of what natural
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language is suitable (i.e. can be translated by Toradocu) to use with
this tool.

3.3.2. C2S
Technique. Similar to Toradocu, C2S (Zhai et al., 2020) uses documen-
tation written in natural language to derive formal specifications. C2S
generates pre- and postconditions for exceptional and normal behavior
in JML based on natural language comments in the code.

Given a method with comments, C2S first extracts the natural
language words. For these words, it looks up word-token pairs to
find tokens that might represent it. These word-token pairs have been
obtained by looking at natural language documentation (JDK docu-
mentation) and corresponding JML specifications.3 The selected tokens
are then assembled into a candidate specification based on grammar
rules and the context of the method. Finally, developer test cases are
used to filter the candidate specifications. This is achieved by turning
the specifications into assertions that can be checked in the provided
test cases. If an assertion is then violated, the specification is deemed
invalid and thus will be discarded.

Advantages and disadvantages. C2S not only translates Javadoc but it
also translates other natural language comments. This allows it to de-
rive specifications for methods without a return value, unlike Toradocu.
Moreover, its approach does not rely on matching specific patterns
therefore it seems capable of translating a wide variety of natural
language comments.

C2S uses a specification language grammar that describes the pos-
sible specification candidates. This grammar is relatively generic and
therefore seems like a good approach. It takes into account keywords
such as \old, \result and .length for arrays. However, this gram-
mar does not express all possible specifications. For example, existen-
tially quantified statements are not possible.

C2S uses test cases to filter specifications, therefore it can only
derive specifications that match the observed behavior, which may not
match the original intent.

Finally, one should reconsider using tools like C2S when using
documentation generation techniques. If documentation is derived from
code, and specifications are derived from this documentation, it is likely
that the specifications will describe the actual behavior of the code
instead of the original intent.

Our experience. There does not seem to be a publicly available artifact
for C2S.

3.3.3. ChatGPT
Technique. ChatGPT (OpenAI, 2022) has been introduced at the end of
2022 and has gathered lots of attention. It is a large language model
with which you can interact in a chat-like manner. This model has been
trained using Reinforcement Learning from Human Feedback (RLHF).
The approach is often explained as follows: ‘‘You can think of this as a
very advanced autocomplete — the model processes your text prompt
and tries to predict what’s most likely to come next’’.4

Advantages and disadvantages. ChatGPT provides an easy user interface
for specification inference. Moreover, it does not seem to be limited
to specifications expressible in pre-defined templates such as tools like
Daikon.

However, while it does not seem to be limited to pre-defined tem-
plates, it is unclear what the boundaries of ChatGPT’s capabilities are.
It should infer likely specifications based on other examples it has seen
before. But it is not clear what was included in the training data set,
and thus what examples it has been trained on. If one were to invent a
new algorithm or a new type of specification, it is unknown how good
the inferred specifications would be.

3 https://www.cs.ucf.edu/~leavens/JML/examples.shtml
4 Source: https://platform.openai.com/docs/quickstart/introduction.
10
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Similar to other tools, ChatGPT depends on the code to infer spec-
ifications. In most tools this introduces the possibility of inferring
incorrect specifications if the code is incorrect. ChatGPT may also infer
incorrect specifications, however, this can occur even when the code is
correct.

Aside from depending on the code, the prompt that is given to
ChatGPT also has significant influence on the results. As prompts have
a big influence on the results, the field of prompt engineering has
become popular. This field looks into how to optimally structure text to
generate AI models. Some examples of approaches that seem to improve
results include Chain-of-Thought prompting, where the large language
model solves a problem in a series of steps, and self-refine, where the
language model is prompted to reflect on its own solution and solve the
problem again. For users it is important to look into these techniques
to achieve optimal inference results.

Finally, we note that this is a very recent development. As such it
may not be the most stable approach5 and it may change significantly
in the future.

Our experience. ChatGPT is a relatively quick and very easy-to-use tool.
We have tested ChatGPT in several ways: (1) generating specifications
from scratch, (2) translating documentation to formal specifications,
and (3) generating from scratch with incorrect code.

First, we reflect on using ChatGPT to generate specifications when
given program code as input and the prompt: ‘‘I have some Java code,
can you annotate each function in the following examples with JML
(Java Modeling Language) Specifications’’.

ChatGPT inferred a variety of specifications including preconditions,
postconditions, invariants, loop invariants and assignable clauses. The
expressions ranged from simple expressions such as requires n >= 0
to nested expressions with quantifiers such as ensures (\exists int
i; 0 <= i && i <= \old(size); \old(list[i]) == o) ==> (size =
\old(size) - 1) && (\forall int j; i <= j && j < \old(size);
list[j] == \old(list[j + 1]));. This specification was generated
for the remove method of the Arraylist. It expresses that, if the element
that should be removed was present in the list, then the size decreases
by one and the elements after the removed element are all shifted a
place to the left.

In total, ChatGPT (GPT-4) generated 42 annotations, 15 for the
counter, 2 for the binary search and 25 for the arraylist. Of the gener-
ated annotations, 35 (83%) also occurred in our baseline specifications.
This covered 24% of the baseline specifications. It generated 6 incorrect
specifications, all for the arraylist example, which is around 14% of
all generated specifications. It generated a single specification that was
correct but not necessary.

Then, we used ChatGPT to translate English documentation to
formal specifications. We used the following prompt combined with
the program code: ‘‘Can you please translate the documentation in the
following program to formal JML (Java Modeling Language) specifi-
cations?’’. The results were very similar to the results of the previous
prompt. Moreover, we noted that ChatGPT did not strictly adhere to
the prompt. For example, it generated the precondition requires
initialValue >= 0 even though this was not specified in the docu-
mentation. Similarly, it generated pure and loop invariants that were
not described in the documentation. Other specifications that were
generated were not clearly related to the documentation. For the
remove method, described as ‘‘Removes the first occurrence of the
specified object from the list’’, it generated the following specification:
!contains(o) || (contains(o) && size == \old(size)-1).

Next, we discuss ChatGPT’s performance when given incorrect code
and prompted to annotate each function with JML specifications. We
introduced the following changes to our examples:

5 Some users claim to get worse results in newer versions with the same
ueries. It is unclear whether this is true.

https://www.cs.ucf.edu/~leavens/JML/examples.shtml
https://platform.openai.com/docs/quickstart/introduction
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Table 1
An overview of the inputs required for each tested tool as well as the average time needed for inference and the maximum reserved set size.

Tool name Inputs ArrayList BinarySearch Counter
Time Max RSS Time Max RSS Time Max RSS

Daikon Program and test 12 s 112 MB 9 s 97 MB 28 s 106 MB
EvoSpex Program 2546 s 762 MB 96 s 105 MB 4 843 s 522 MB
Strongarm Program and optionally preconditions 4 s – 2 s – 2 s –
Toradocu/ Jdoctor Program with Javadoc comments 41 s 1855 MB 4 s 185 MB 39 s 1851 MB

ChatGPT (4.0) Program and prompt .. s – .. s – .. s –
• Renamed decrByN(int n) to incrByN(int n) in Counter
• Renamed decr() to decrByN() in Counter
• Changed implementation of decrByN() such that it always de-

creases the counter by 5 in Counter instead of decreasing by
n

• Renamed the class BinarySearchGood to RandomSearch
• Renamed the sortedArray variable to array in RandomSearch
• Initialize the size variable to 18379138 in ArrayList
• Renamed size() to ifjdsojo() in ArrayList
• Renamed contains(Object o) to notIn(Object o) in Ar-
rayList

• Renamed enlarge() to aggrandize() in ArrayList
• Renamed add(Object o) to removeOne(Object o) in Ar-
rayList

• Renamed isEmpty() to isNotEmpty() in ArrayList

These changes were chosen as they introduce several situations such
as (1) a situation where the implementation is correct but the name
does not match, (2) an erroneous implementation, and (3) a situation
where no information can be extracted from the names that are used,
e.g. that an input array is sorted. The following changes were observed
in ChatGPT’s output:

• The implementation of decr() (used to be in incr()) was
modified to decrease the counter and corresponding specifications
were inferred.

• Correct specifications were inferred for the method that was
renamed from decr() to decrByN()

• For the modified decrByN() method, where the implementation
reduces the counter by 5, it inferred specifications that indicated
that the counter was reduced by 5.

• For the RandomSearch example, it inferred correct specifications,
including that the array was sorted.

• It correctly inferred specifications describing how the size vari-
able is initialized in ArrayList

• It incorrectly places the start of a specification (/*@) at the
beginning of the ArrayList class

• The other renames in ArrayList did not seem to influence
ChatGPT as it inferred correct specifications for ifjdsojo(),
aggrandize(), removeOne(Object o), notIn(Object o),
isNotEmpty()

e observe that both implementation and the used names influence
hat specifications ChatGPT infers. Especially the implementation

hanges for the original incr() method were unexpected. When we
sked ChatGPT to not modify the existing code, it did not modify
he implementation of the original incr(), however it did rename a
ecrByN() method as there were two decrByN() methods resulting

in invalid Java code. When asked not to modify the implementation
for a second time, it also did not rename this method, however, it
no longer inferred useful specifications for some methods. Specifically
the decrByN() method had a pre- and postcondition that was true.

he postcondition of incrByN(int n) became true as well. Thus, we
dvise users to carefully check whether ChatGPT modified the code to
void introducing any errors.

Finally, we reflect on some general advantages and disadvantages
f using ChatGPT. While many tools are limited in the type of spec-
fications that they can infer, ChatGPT does not seem to share this
11
limitation. We could generate preconditions, postconditions, assignable
clauses, loop invariants and class invariants.

Another nice benefit of ChatGPT is that it can generate output in
different specification languages. Many tools only support JML specifi-
cations, but we could also generate VerCors-specific annotations with
ChatGPT.

One needs to be careful of how the prompt for ChatGPT is phrased.
ChatGPT will try to follow the prompt precisely, and may not generate
a type of specification if it is not requested. For example, if one
asks ChatGPT to ‘‘annotate each function in the following examples
with JML (Java Modeling Language) specifications’’, then it may not
generate class invariants as these are not part of the specifications for
functions.

We had significantly better results when using GPT-4 as opposed
to GPT-3.5. When using GPT-3.5, the specifications were not correctly
placed, e.g. a class invariant was placed inside a method. Moreover,
the generated specifications were more simplistic, e.g. no exceptional
postconditions and less quantified statements.

3.4. Summary of tested tools

Next, we provide a brief summary of the results of the tools that
we tested on the three examples (counter, binary search and arraylist)
namely Daikon, EvoSpex, Strongarm, Toradocu and ChatGPT.

Table 1 provides an overview of the requirements for using each
tool. This includes all the inputs needed to run each tool, the time it
took to infer specifications (average measured over 5 runs) as well as
the maximum reserved set size (RSS) that was observed. Maximum RSS
is the portion of memory that is used by a process in the main memory
at one time. During the measurements the swap was turned off.

The maximum RSS could not be measured for Strongarm and Chat-
GPT as they could not be run as a separate process in a terminal. While
we could not exactly measure the time ChatGPT took for inference, it
took around 30 s for the complete answer to be revealed.

In terms of time, EvoSpex is a strong outlier which uses a lot more
time for inference than the other tools. Toradocu uses the most memory
in all examples. For both cases, one should take into account that the
hardware on which ChatGPT is run is unknown. It is likely that it runs
on a more powerful computer than these other tools which can be run
on a laptop.

Aside from time and memory consumption of these tools, we also
reflect on the quality of the inferred specifications in Table 2. We
show how many specifications each tool generated, how many of these
were correct (and could be found in our baseline), how many were
correct but unnecessary (i.e. did not occur in our baseline), how many
were incorrect, and the overlap of the generated specifications with the
specifications we wrote for the examples.

Daikon generated the most specifications. EvoSpex and Strongarm
naturally cover less of the baseline as they only generate postcondi-
tions. ChatGPT had the best performance on our examples: the gen-
erated specifications had the largest overlap with the baseline (24%).
Moreover, it has the highest ratio of correct (and necessary) specifi-
cations (83%) compared to all specifications it generated. The other
tools generate more specifications that are wrong and/or correct but
not necessary for verification which will require more manual effort

from the user to correct.
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Table 2
An overview of the usefulness of the specifications generated with the tools we ran successfully compared to the baseline specifications.

Tool name Total # of
specifications

Correct Unnecessary Wrong Coverage of baseline

Daikon 158 29 (18%) 47 (30%) 83 (53%) 19%
EvoSpex 25 8 (32%) 11 (44%) 6 (24%) 4%
Strongarm 60 23 (38%) 37 (62%) 0 (0%) 15%
Toradocu/Jdoctor 0 – – – 0%
ChatGPT (4.0) 42 35 (83%) 1 (2%) 6 (14%) 24%
4. Impact evaluation of tools

Given all of the tools that have been discussed, the natural questions
that follow are ‘‘Which specifications cannot be generated yet?’’ and
‘‘Which parts of the specification writing process has the most room
for improvement?’’. Therefore, in this section, we will investigate the
impact of each tool on the specification writing process. We identify the
types of specifications that can be generated with the current state-of-
the-art specification inference tools. Moreover, we estimate the impact
of each tool on the specification writing process. This allows us to (1)
identify the types of specifications that cannot yet be generated, and
(2) quantify the impact of each tool on the overall specification writing
process.

For example, let us say we need 20 lines of specification to verify an
example. How many, in terms of % of overall required, specifications
can at most be generated by a tool? To estimate this impact, we will be
using results from Lathouwers and Huisman (2022). In Lathouwers and
Huisman (2022), a taxonomy was presented that identified the different
types of specifications that are used for deductive verification in Java
programs and they analyzed how often each type is expected to occur.

To identify the maximum impact of each tool, we first identify the
type of specification that the tool infers. We then look for the smallest
category in the taxonomy that includes all these specifications. If a
tool infers multiple types of specifications, then we look for a smallest
category for each type of specification that it infers. When we have
found this category, we look up the corresponding 95% confidence
interval in Lathouwers and Huisman (2022). These 95% confidence
intervals was calculated as follows: given a set of 54 randomly cho-
sen verified examples, the specifications were categorized according
to the taxonomy (Lathouwers and Huisman, 2022). Each example is
considered to be one data point, so it can reasonably be assumed that
they are mutually independent. Next, the sample mean and sample
standard deviation were calculated for each type of specification. We
then apply the central limit theorem which allows us to assume a
normal population distribution because the sample size is ≥ 30. Finally,
he two-sided t-test with a significance level of 0.05 is used to calculate
he 95% confidence interval.

Let us have a look at EvoSpex as an example of how to identify
he maximum impact of a tool. EvoSpex generates postconditions. A
ategory from the taxonomy that encompasses all possibly generated
pecifications is the category of postconditions, which has a 95%
onfidence interval of 18%–27%. This interval indicates that, of all
pecifications required to verify a Java program, 18 to 27% are ex-
ected to be postconditions. However, we can be even more specific
y looking at a smaller category namely behavioral postconditions,
eaning specifications that describe the behavior of a program and
hich are postconditions. The 95% confidence interval of this category

s 14%–23%. As such, EvoSpex is expected to be able to generate at
ost 14 to 23% of the specifications required for the verification of a
ava program.

The results of the impact analysis can be found in Table 3. For the
ools that generate assertions, we take into account that these could
otentially be used as pre- and postconditions with some manual work
rom the user. A visualization of the estimated maximum impact per
ool can be found in Fig. 1. This visualizes the estimated maximum
mpact per tool, the actual impact may be lower than the visualized
ange.
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Fig. 1. A visualization of the estimated maximum impact range per tool. The dots
indicate the observed coverage of the benchmark for the tools that were tested.

By comparing the type of specifications that the tools infer to
the categories in the taxonomy for deductive verification specifica-
tions (Lathouwers and Huisman, 2022) we notice a few things. First,
most tools target behavioral specifications, which are expected to make
up between 47%–62% of all required specifications. Other categories
such as proof assistance (9%–22%), permissions (9%–17%) and func-
tions (5%–15%) are expected to make up significant portions as well
but as of yet there is little support for the inference of such specifica-
tions. A handful of the tools mentioned in this survey support permis-
sion specifications, but only in the form of accessible and assignable
clauses whereas verifiers such as VerCors and Verifast use different
forms that are not supported yet.

Secondly, several tools focus on specific types of programs such
a SLING, which focuses on heap-manipulating programs, and Tabar
et al. (2022), who focus on loop invariants capturing data dependen-
cies. These tools are only useful if applied in a situation where such
specifications are expected to be used. However, users are unlikely to
install a tool if it only supports a very specific type of specification.
For these tools, it would be beneficial if they are distributed with other
tools that support more generic specification inference.

Comparing the results from Tables 2 and 3, we see that, depending
on the tool, there can be quite a big difference between the baseline
covered in our examples and the maximum tool impact. For example,
Daikon has an estimated maximum impact of 41%–77%, but only
covered 19% of the baseline of our examples. Whereas, for Strongarm
the estimated maximum impact and the impact on the baseline are very
close, with a baseline coverage of 15% and an estimated maximum
impact of 16%–31%. The examples chosen in our baseline are not a
representative set of all possible verified programs and the results may
therefore not be an accurate representation of each tool’s capabili-
ties. Nonetheless, none of tools cover more of the baseline than the
estimated maximum impact.

Finally, we point out that, for some tools, the chosen category
is quite large as a smaller category is not available in the current
taxonomy as presented in Lathouwers and Huisman (2022). For ex-
ample, Tabar et al. (2022) generate data dependence loop invariants.
However, the data set does not contain information on data dependen-
cies hence we have chosen the ‘‘Loop invariant’’ category. It is possible
to get more accurate upper bounds, either by extending the taxonomy,
data set and statistical analysis from Lathouwers and Huisman (2022)

to include additional data, e.g. whether a specification is about data
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Table 3
Overview of tools discussed in Section 3 with their expected maximum impact on the overall specification writing process.

Tool name Type of specifications inferred Corresponding taxonomy category/categories Estimated
maximum
impact

Sum of impacts

Daikon (Ernst
et al., 2007)

Preconditions, (normal) postconditions,
loop invariants, invariants, modifies
clauses, assertions

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral loop invariants
Behavioral (class) invariants
Permissions on a method-level
Behavioral assertions

11%–17%
14%–23%
12%–24%
1%–3%
3%–8%
0%–2%

41%–77%

eChicory
(Alsaeed and
Young, 2018)

Preconditions, (normal) postconditions,
loop invariants, invariants, modifies
clauses, assertions

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral loop invariants
Behavioral (class) invariants
Permissions on a method-level
Behavioral assertions

11%–17%
14%–23%
12%–24%
1%–3%
3%–8%
0%–2%

41%–77%

DynaMate
(Galeotti et al.,
2014)

Loop invariants Behavioral loop invariants 12%–24% 12%–24%

Agitator
(Boshernitsan
et al., 2006)

Assertions Behavioral assertions
Behavioral preconditions
Behavioral (normal) postconditions

0%–2%
11%–17%
14%–23%

25%–42%

EvoSpex (Molina
et al., 2021)

Postconditions Behavioral (normal) postconditions 14%–23% 14%–23%

DIG (Nguyen
et al., 2017,
2014b)

Preconditions, normal postconditions,
loop invariants and assertions

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral loop invariants
Behavioral assertions

11%–17%
14%–23%
12%–24%
0%–2%

37%–66%

ALearner (Pham
et al., 2017)

Assertions Behavioral assertions
Behavioral preconditions
Behavioral (normal) postconditions

0%–2%
11%–17%
14%–23%

25-42%

SLING (Le et al.,
2019)

Preconditions, postconditions and loop
invariants

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral loop invariants

11%–17%
14%–23%
12%–24%

37%–64%

Houdini
(Flanagan and
Leino, 2001)

Preconditions, postconditions and loop
invariants

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral loop invariants

11%–17%
14%–23%
12%–24%

37-64%

Strongarm
(Singleton et al.,
2018)

Behavior clauses and strongest
postconditions

Usability keywords
Behavioral (normal) postconditions

2%–8%
14%–23%

16-31%

KeY (Wasser,
2017)

Loop invariants Behavioral loop invariants 12%–24% 12-24%

KeY (Weiß,
2009)

Loop invariants and contracts for
recursive method calls

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral loop invariants

11%–17%
14%–23%
12%–24%

37-64%

KeY (Tabar
et al., 2022)

Data dependence loop invariants Loop invariants 14%–28% 14-28%

Nguyen et al.
Nguyen et al.
(2014a)

Preconditions of APIs Behavioral preconditions 11%–17% 11-17%

Toradocu (Blasi
et al., 2018)

Preconditions, (normal) postconditions
and exceptional postconditions

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral exceptional postconditions

11%–17%
14%–23%
0%–2%

25-42%

C2S (Zhai et al.,
2020)

Preconditions, normal postconditions
and exceptional postconditions

Behavioral preconditions
Behavioral (normal) postconditions
Behavioral exceptional postconditions

11%–17%
14%–23%
0%–2%

25-42%

ChatGPT Anything requested All 0%–100% 0%–100%

(OpenAI, 2022)
dependencies, or doing a more in-depth evaluation of specification
inference tools on a larger data set. In the case of loop invariants
expressing data dependencies, an extension of the data set is required as
none of the programs that are included in the data set use dependence
predicates. Nonetheless, we believe the impacts are useful to gain a
better understanding of the current state of the art and their impact
on the overall specification writing process. For example, DynaMate
generates loop invariants, and is therefore expected to generate at most
12%–24% of all specifications. In DynaMate’s own evaluation (Galeotti
et al., 2014), ‘‘it automatically built correctness proofs for 23 out of
26 subjects" (≈ 88%). The estimated maximum impact of 12%–24%
13

ives us a much better idea of DynaMate’s impact on the complete
specification writing process as opposed to its own evaluation that
is focused on loop invariants. All without requiring any additional
in-depth evaluation of the tool itself.

5. The ideal specification inference tool

Based on the tools we have discussed, our experience with inference
tools, and the specifications required for deductive verification, we can
discuss what an ideal annotation generator would look like. An ideal
specification inference tool:
• Can generate output in multiple specification languages
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• Can generate many types of specifications both in terms of what
it describes (behavior, permissions, proof assistance) as well as
the location (preconditions, postconditions, class invariants, loop
invariants, etc.)

• Can automatically add the contracts to the code
• Does not require any changes to the original code to be used
• Does not require any manual intervention to rewrite or modify

the generated annotations
• Does not require any hints about where to generate annotations
• Captures the intent of the code rather than the actual behavior
• Supports multiple inference techniques thereby enabling the use

of different techniques depending on the program that is analyzed
• If supporting multiple inference techniques, it would help users to

automatically detect what inference technique will likely provide
the best results. Algorithm selection has been applied before in
similar fields e.g. verification (Richter and Wehrheim, 2019) and
SMT solving (Scott et al., 2021)

• While users can deal with some unnecessary or wrong annota-
tions (Nimmer and Ernst, 2002), ideally most generated annota-
tions are correct and useful for verification

• Generates human-readable annotations, i.e. it generates specifica-
tions in a similar format as the user would write it. This includes
for example the use of behavior clauses and making specifica-
tions concise. Such human-readable annotations are essential to
ensure that the user can understand the inferred specifications
and possibly detect errors in them.

• Provide a supportive specification writing environment, similar
to an IDE. Such an environment may include auto-completion,
suggestions, as well as specification inference and specification
checking, i.e. verification. Currently many specification inference
tools are provided as separate tools from the verifiers. We believe
this limits how often inference tools are used as users need to
actively search for them. For users, it would be ideal if they can
easily apply specification generation in the same environment
as they use for verification without needing to install additional
tooling.

• Allows for verifier-specific adjustments, e.g. by using specification
features specific to the tool for better automation.

. Related work

In this paper we have focused on tools that are available for Java
rograms and whose annotations are easily usable for deductive veri-
iers. In this section we discuss related work, as well as some other tools
nd techniques that have been proposed for specification inference but
hat did not meet the selection criteria for this survey.

.1. Evaluations with Daikon

There are two notable evaluations for inference techniques, both of
hich focus on a comparison to Daikon.

The first evaluation, by Nimmer and Ernst (Nimmer and Ernst,
002), compares Houdini and Daikon. As we were unable to install
oudini, this covers a gap that our research was unable to address.
verall users seemed to prefer Daikon over Houdini. The study also
resents some practical recommendations such as

• Hiding annotations confused users, therefore they recommend
being able to hide/show annotations

• Users feel hindered when the inference takes too long
• While Daikon generated several incorrect invariants, this did not

seem to have a significant impact on the users

The second study (Polikarpova et al., 2009) compared contracts
ritten by developers to contracts inferred by Daikon. They have shown
14

hat 90% of the inferred specifications were correct, and 64% were
relevant. They have also shown that inference tools can generate many
more specifications that are both correct and interesting. Moreover,
they show that the tools infer around 59% of the contracts written by
developers. This study specifically used Daikon to infer contracts for
Eiffel code. In our examples the correct and relevant ratio of generated
specifications is significantly lower with 19%. However, the study also
notes that the percentage of relevant assertions vary widely between
programs. Our evaluation of the tools is limited as it has only been
applied to three examples. As future work, it would be interesting to do
a more in-depth evaluation with a large representative set of programs.

While both of these studies provide a comparison to Daikon, they
do not provide an overview of the specification inference field as we
have done in our work. Nonetheless, their conclusions provide valuable
insight into specification inference and its application in practice.

6.2. Loop invariants

Over the years, the inference of loop invariants has garnered much
attention. Not only for deductive verification but also for other ver-
ification communities such as model checking. As such, many tools
have been proposed that use a range of techniques. While we have
included the tools for Java programs in our survey, there is more to
explore. We refer the interested reader to the survey by Furia et al.
(2014) which dives into the fundamental patterns that can be found
in loop invariants. In this section we briefly discuss recently proposed
tools for loop invariant generation that do not support Java programs.
This includes Code2Inv, DySy, PIE/LoopInvGen, Vampire, PILAT and
Aligator.jl.

Si et al. (2018) propose a reinforcement learning-based approach.
This was implemented in Code2Inv and evaluated on SyGuS compe-
tition problems. They use a graph neural network model to represent
the external memory of a program. Next, it queries this model with an
attention mechanism thereby incrementally constructing a loop invari-
ant. As a result, it is more suited to loop invariants in the conjunctive
normal form as opposed to disjunctive properties.

Csallner et al. (2008) proposed the DySy tool as an improvement
on the dynamic inference of Daikon. This approach is also mentioned
in the survey by Furia et al. (2014). They combine concrete execution
of test cases with symbolic execution of the same tests. They observe
that DySy can infer a large part of the interesting invariants that are
inferred by Daikon, while generating less of the irrelevant invariants.

Padhi et al. (2016) focus on generating loop invariants that are
provably correct for a program with respect to a given specification.
It does not depend on predefined templates, and thereby can generate
more expressive invariants than some other approaches. Instead of
using predefined templates, it uses a program synthesizer to generate
atomic predicates. Given a set of good and bad program states, it learns
an invariant which is a combination of atomic predicates, such that
it satisfies good states and falsifies bad states. As such, we can see
clear commonalities with the approach of ALearner. When an invariant
has been found, it is checked whether it is sufficient to prove the
program correct. If not, the counterexample is used to further refine the
invariant. As it does not rely on predefined templates, it uses a program
synthesizer to generate the atomic predicates.

Ahrendt et al. (2015) shows how the first-order theorem prover
Vampire can be used to generate quantified invariants of loops with
arrays. They provide a general framework for how this can be used,
and thus can be applied to many different programming languages.
While they claim to have integrated it into KeY, which does support
Java, this integration does not seem to be available. Therefore, we
have chosen to include it in this section of the paper instead. Instead
of using this to generate loop invariants, it is also proposed to use
this as an improved way for reasoning about loops, one that does not
require user guidance. While it can generate loop invariants for the
user, the intended way seems to be to delegate part of the proof to

Vampire. They combine symbolic elimination and consequence finding,
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techniques from saturation theorem proving. One of the unique features
of this technique is that it supports the generation of invariants with
quantifier alternations.

de Oliveira et al. (2016) focus on generating polynomial invariants
for C programs with PILAT using linear algebra theory. Their approach
first reduces the analysis of solvable loops to the analysis of linear
loops. Then, it generates inductive invariants for the linear loops using
polynomial complexity linear algebra algorithms.

Humenberger et al. (2018) propose Aligator.jl, another approach
for generating polynomial invariants, for programs written in Julia.
They translate a program into a system of algebraic recurrences. This
system of recurrences is then solved using techniques from symbolic
computation.

As a final note on loop invariants, while most tools rely on loop
invariants, there is a different approach namely loop contracts (Ernst,
2022). A loop contract consists of a precondition and a relational
postcondition. As loop contracts have received little attention so far,
it seems like inference techniques for such contracts have not been
proposed yet. It would be interesting to investigate whether techniques
for inference of regular pre- and postconditions can be reused to infer
loop contracts.

6.3. Permission annotations

Several tools have been proposed that infer some kind of access
permission annotations. The two that we will discuss briefly are Sam-
ple (Dohrau et al., 2018) and Sip4J (Sadiq et al., 2019).

Sample infers access permission annotations for Viper (Müller et al.,
2016) programs. Viper is used as a back-end for several deductive veri-
fiers. Sample can infer access permissions for array programs, though it
does not yet support reasoning about dynamically created objects. As
the annotations are inferred in Viper’s own language, Sample cannot
be directly applied to the verifiers that use Viper as a back-end and
translating them to the front-end is not always straightforward.

Sip4J focuses on inference of access permission contracts. These
contracts can be used to identify which methods in a sequential pro-
gram could be executed in parallel. The access permissions that they
are interested in include unique, immutable, full, share and pure.
These are written in the form of Plural annotations which can be
used to ‘‘enforce typestate-based protocols using permissions’’ (Bierhoff
and Aldrich, 2008). However, these annotations are not immediately
usable by general deductive verifiers such as OpenJML (Cok, 2014) and
VerCors (Blom et al., 2017) as they use a different notion of permission
annotations.

Experience shows that separation logic verifiers often require more
annotations because users need to express access permissions. As such,
it is important to further investigate permission inference, especially
for front-end languages.

6.4. Separation logic annotations

In this section we briefly touch on approaches that specifically
target specifications for separation logic-based verifiers such as Ver-
Cors (Blom et al., 2017) and Verifast (Jacobs et al., 2011).

One of the techniques that we did not discuss so far is shape analy-
sis. Shape analysis is a type of pointer analysis that looks for properties
of data structures. Over the years several tools have been proposed that
used shape analysis to e.g. discover pre- and postconditions (Calcagno
et al., 2011; Le et al., 2014) as well as predicates (Boockmann and
Lüttgen, 2020). These specification can be used to prove memory-safety
with separation-logic based verifiers.

The work by Luo et al. (2010) proposes a top-down abductive
approach as an alternative to the bottom-down abductive approach
from Calcagno et al. (2011). They want to infer specifications for some
unknown procedure call in a program. To find a precondition, they
analyze the code before the call to the unknown procedure. And, to find
15
a postcondition, they analyze the code after the call to the unknown
procedure. The idea thus being to use the context to derive sufficient
specifications.

Another approach for inference of separation logic specifications,
was proposed by Vogels et al. (2011). Vogels et al. proposed techniques
to infer (1) automatically open and close predicates and (2) automati-
cally apply lemmas. Both of which, like the shape analysis, can be used
for the verification of memory-safety. It is currently unclear whether
Verifast supports annotation inference for Java programs. The shape
analysis is only available for C programs at the time of writing.

They also proposed Automated Verifast (Mohsen and Jacobs, 2016)
which generates predicates and automatically tries to fix verification
failures. The techniques used by Automated Verifast are not clearly de-
scribed and unfortunately the implementation was never incorporated
into Verifast.

6.5. Additional inference techniques

Next, we briefly discuss two unique approaches that we did not get
to discuss due to our selection criteria.

The first approach (Srivastava and Gulwani, 2009) aims to derive
specifications with quantifiers, specifically ∀/∀∃-quantified invariants.
They combine templates with predicate abstraction to find the in-
variants. As many tools still seem to generate a limited amount of
quantified statements, it would be interesting to take the templates
from this approach and integrate them into other tools.

The second approach (Alshnakat et al., 2020) investigates how
Horn clause solvers, typically used for model checking, can be used
to infer specifications for deductive verification. They have shown that
the prototype could infer required pre- and postconditions. While the
current approach is still limited, e.g. no loop invariants, arrays or heap-
allocated data structures, the technique seems promising and would be
interesting for future work.

6.6. Metatools

Aside tools implementing inference techniques, there are also tools
to improve or help to apply such tools. We refer to these tools as
metatools, meaning tools that are supposed to be used in combination
with another tool, e.g. to improve the efficiency of a technique. Two
such metatools are AIMS and DeltaSpec, both of which are used to-
gether with SpecFuzzer (Molina et al., 2022), a tool for the inference
of specifications based on grammar-based fuzzing, dynamic invariant
detection with Daikon and mutation analysis.

AIMS (Garg et al., 2023) is a tool to improve the efficiency of
inference techniques that use mutants from mutation testing. Given a
set of mutants, it selects a (sub)set that is well-suited for specification
inference. By selecting a smaller set for inference, less mutants need to
be executed, thereby reducing the number of computations. Combining
this approach with SpecFuzzer, they could infer assertions for examples
that previously timed out.

Another metatool is DeltaSpec (Degiovanni et al., 2023), which
generates specifications on a commit-level. Given the code before a
commit and after a commit, DeltaSpec tries to generate specifications
that capture the changes of the commit. Such a tool can help to
maintain specifications while a codebase evolves.

These approaches are complementary to the specification inference
techniques discussed in this paper. While they do not solve the infer-
ence problem, they can help to make the inference more efficient or
make it easier to maintain specifications.

6.7. Translating other formalisms to and from JML

In this survey we have focused on using various artifacts, e.g. doc-
umentation and tests, to infer new specifications. However, another
interesting approach is to translate other formalisms, such as automata,
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to obtain specifications. Over the years, many such translations have
been proposed, especially for translating to and from JML. Some ex-
amples include the translation from B machines to JML (Cataño et al.,
2012), OCL to/from JML (Hamie, 2004), JML to executable Java (Beck-
ert et al., 2020), Alloy expressions to JML (Grunwald et al., 2014),
JML from temporal properties (Giorgetti and Groslambert, 2006), JML
from VDM-SL (Tran-Jørgensen et al., 2018), JML from security au-
tomata (Huisman and Tamalet, 2009), desugaring JML (Raghavan and
Leavens, 2005), as well as translating between JML-like specification
languages (Armborst et al., 2024).

Unlike many approaches discussed in this survey, these techniques
focus on translating various formalisms, as opposed to generating new
specifications. While these are very useful, e.g. for reusing formal
artifacts, we believe they will have a limited impact on reducing
the specification bottleneck as they require another formal artifact.
So, while they are perhaps similar to Toradocu and C2S, discussed
in Section 3.3, which translate between natural language and JML,
we think those can be more effective at reducing the specification
bottleneck as they do not require another formalization.

6.8. Impact of programming language on specifications

Different programming languages provide different correctness guar-
antees through, e.g. the type system. A perfect example of this is the
Rust language whose type system ensures memory safety. Astrauskas
et al. (2019) have encoded Rust’s type system thereby simplifying the
verification of Rust programs. Specifically, they use permissions to
encode Rust’s type system. As these are encoded automatically, the user
does not need to write these specifications anymore.

A somewhat similar approach is presented by Fiala et al. (2023).
They present an approach for the synthesis of programs in safe Rust.
Like Astrauskas et al. they can use simpler specifications by leveraging
Rust’s type system.

We use these examples to point out the influence of the program-
ming language on the specifications as using a different language may
require the user to write less or additional specifications. For example,
for Java we typically have to provide permission specifications to
prove memory safety with VerCors. As this survey was focused on Java
programs, it is possible that we have not discussed tools that infer
specifications that are not required for Java.

7. Challenges

While Section 5 discussed practical recommendations for the de-
velopment of inference tools, this section touches on some research
challenges for specification inference.

Investigate inference of other specification types Nearly all tools
hat we discussed in this paper are focused on the generation of
ehavioral specifications, i.e. specifications that describe the functional
ehavior of the program. However, Lathouwers and Huisman (2022)
as shown that these are expected to only make up between 47%–
2% of all required specifications. For future work it would therefore
e interesting to focus on other types of specifications such as pred-
cates (Boockmann et al., 2018), permissions (Dohrau et al., 2018)
nd proof assistance specifications. Especially proof assistance spec-
fications seem difficult, though there has been some work on the
eneration of lemmas (Johansson, 2019; Singher and Itzhaky, 2021)
nd the automatic (un)folding of predicates (Vogels et al., 2011).
Investigate other truth sources Most of the proposed techniques

nly use the code and possibly a test suite to derive specifications. It
ould be interesting to further investigate other possible truth sources

uch as documentation, usage of code and similar types of programs.
ne can also consider including the user as a truth source by develop-

ng interactive inference techniques. For example, by asking the user
uestions about the intended behavior of the program and deriving
pecifications based on the user’s answers. While this does introduce
16
ome manual effort into the process, it can avoid the pitfall of deriving
pecifications that describe the actual instead of the intended behavior
f the program. We believe it can still be beneficial if it requires
ess effort compared to manually writing specifications and if the
pecifications it produces are useful and relevant.
Use inference techniques for other verifiers Many tools have

een proposed for specification inference that never present the spec-
fications to the user. For example, DIDUCE (Hangal and Lam, 2002)
enerates invariants and immediately checks the program using them.
n a similar manner, many tools have been proposed that generate
nvariants that are used by model checkers. It is unclear whether the
echniques applied in these tools can (1) generate specifications that
re useful for deductive verification, and (2) whether the generated
pecifications are easy to read and understand by users. Even if they
re not easy to read and understand, perhaps such techniques can be
ombined with rewriting tools that rewrite specifications into more
uman-readable formats.

. Conclusion

In this paper, we have presented an overview of specification in-
erence tools that are available for deductive verification of Java pro-
rams. As such, we explained the underlying techniques that are used
or specification inference. Moreover, we discuss our experience using
hese tools where possible. Based on the type of specifications that
ach tool infers, we have made an estimate of the tools’ impact on the
verall specification writing process. Using this data and experience,
e described what an ideal specification inference tool would look like.
his includes e.g. being able to generate output in multiple specification

anguages, generating many different types of specifications using one
ool, and generating human-readable annotations. Finally, we identified
nteresting areas for future research into specification inference, such
s investigating what other artifacts or sources can be used for speci-
ication inference. For future work, it would be interesting to extend
his survey to include specification inference tools that target other
rogramming languages for an even more complete overview.
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Appendix A. Examples used to test specification inference tools

This appendix provides the program code that was used as input for the various specification inference tools. This appendix shows the examples
that we have verified with OpenJML (v0.17.0-alpha-14). The program code (without the specifications) has been used as input to test various
specification inference tools (see Section 3). Three examples were used: a counter (see Listing 5), a binary search (see Listing 6) and an arraylist
(see Listing 7).

public class Counter {
public int value;

//@ ensures this.value == 0;
public Counter() {

value = 0;
}

//@ requires Integer.MIN_VALUE <= initialValue && initialValue <= Integer.MAX_VALUE;
//@ ensures this.value == initialValue;
public Counter(int initialValue) {

value = initialValue;
}

//@ requires Integer.MIN_VALUE <= this.value && this.value < Integer.MAX_VALUE;
//@ assignable value;
//@ ensures this.value == \old(this.value) + 1;
public void incr() {

value = value + 1;
}

//@ requires Integer.MIN_VALUE <= this.value && this.value <= Integer.MAX_VALUE - n;
//@ requires n >= 0;
//@ assignable this.value;
//@ ensures this.value == \old(this.value) + n;
public void incrByN(int n) {

int tmp = n;
//@ loop_invariant this.value == \old(this.value) + (n-tmp);
//@ decreases tmp;
while (tmp > 0) {

incr();
tmp = tmp - 1;

}
}

//@ requires Integer.MIN_VALUE + 1 <= this.value && this.value <= Integer.MAX_VALUE;
//@ assignable this.value;
//@ ensures this.value == \old(this.value) - 1;
public void decr() {

value = value - 1;
}

//@ requires Integer.MIN_VALUE + n <= this.value && this.value <= Integer.MAX_VALUE;
//@ requires n >= 0;
//@ assignable this.value;
//@ ensures this.value == \old(this.value) - n;
public void decrByN(int n) {

int tmp = 0;
//@ loop_invariant this.value == \old(this.value) - tmp;
//@ decreases n-tmp;
while (tmp < n) {

decr();
tmp = tmp + 1;

}
}

//@ ensures \result == this.value;
//@ pure
public int get() {

return value;
}

//@ requires Integer.MIN_VALUE <= n && n <= Integer.MAX_VALUE;
//@ assignable this.value;
//@ ensures this.value == n;
17
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public void set(int n) {
value = n;

}
}

Listing 5: Counter program that has been verified using OpenJML. Adapted from a VerCors example: https://github.com/utwente-fmt/vercors/blob/
82ffdf3688c63a1d52dffb93d154e16b746fe47a/examples/concepts/permissions/Counter.java.

public class BinarySearchGood {

//@ requires sortedArray != null;
//@ requires 0 < sortedArray.length < Integer.MAX_VALUE;
//@ requires \forall int i,j; 0 <= i < j < sortedArray.length; sortedArray[i] <=
↪ sortedArray[j];
//@ ensures 0 <= \result < sortedArray.length <==> (\exists int i; 0 <= i <
↪ sortedArray.length; sortedArray[i] == value);
//@ ensures \result != -1 ==> sortedArray[\result] == value;
//@ ensures \result == -1 <==> (\forall int i; 0 <= i < sortedArray.length; sortedArray[i] !=
↪ value);
//@ pure
public static int search(int[] sortedArray , int value) {

if (value < sortedArray[0]) return -1;
if (value > sortedArray[sortedArray.length -1]) return -1;
int lo = 0;
int hi = sortedArray.length -1;
//@ loop_invariant 0 <= lo < sortedArray.length;
//@ loop_invariant 0 <= hi < sortedArray.length;
//@ loop_invariant (\exists int i; 0 <= i < sortedArray.length; \old(sortedArray[i]) ==

↪ value) ==> sortedArray[lo] <= value <= sortedArray[hi];
//@ loop_invariant \forall int i; 0 <= i < lo; sortedArray[i] < value;
//@ loop_invariant \forall int i; hi < i < sortedArray.length; value < sortedArray[i];
//@ loop_decreases hi - lo;
while (lo <= hi) {

int mid = lo + (hi-lo)/2;
if (sortedArray[mid] == value) {

return mid;
} else if (sortedArray[mid] < value) {

lo = mid+1;
} else {

hi = mid-1;
}

}
return -1;

}
}

Listing 6: Binary search program that has been verified using OpenJML. Source: https://www.openjml.org/examples/bubble-sort.html

public class ArrayList {
//@ public invariant -1 <= size <= Integer.MAX_VALUE;
//@ public invariant list != null;
//@ public invariant size < list.length;
//@ public invariant (\forall int i; 0 <= i <= size; list[i] != null);
public int size;
//@ public invariant 0 <= list.length <= Integer.MAX_VALUE;
public Object[] list;

//@ ensures size == -1;
//@ ensures \fresh(list);
//@ pure
public ArrayList() {

size = -1;
list = new Object[10];

}

//@ ensures \result == size;
//@ pure
public int size() {

return size;
}
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//@ public normal_behavior
//@ requires 0 <= index && index <= size;
//@ assignable \nothing;
//@ ensures \result == list[index];
//@ also
//@ public exceptional_behavior
//@ requires index < 0 || index > size;
//@ assignable \nothing;
//@ signals (IndexOutOfBoundsException) true;
public Object get(int index) {

if (0 <= index && index <= size) {
return list[index];

} else {
throw new IndexOutOfBoundsException();

}
}

//@ requires o != null;
//@ ensures \result == false <==> size == -1 || (\forall int i; 0 <= i <= size; list[i] != o);
//@ ensures \result == true <==> (\exists int i; 0 <= i <= size; list[i] == o);
//@ pure
public boolean contains(Object o) {

//@ loop_invariant 0 <= i <= size+1;
//@ loop_invariant (\forall int j; 0 <= j < i; list[j] != o);
//@ decreases size - i;
for (int i = 0; i <= size; i++) {

if (list[i] == o) {
return true;

}
}
return false;

}

//@ public normal_behavior
//@ requires 0 <= index <= size;
//@ requires o != null;
//@ requires \type(Object) <: \elemtype(\typeof(list)); // needed to prevent

↪ PossiblyBadArrayAssignment warning
//@ assignable list[index];
//@ ensures list[index] == o;
//@ also
//@ public exceptional_behavior
//@ requires index < 0 || index > size;
//@ assignable \nothing;
//@ signals (IndexOutOfBoundsException) true;
public void set(int index, Object o) {

if (0 <= index && index <= size) {
list[index] = o;

} else {
throw new IndexOutOfBoundsException();

}
}

//@ private normal_behavior
//@ requires list.length < Integer.MAX_VALUE;
//@ requires \type(Object) <: \elemtype(\typeof(list));
//@ assignable list;
//@ ensures \fresh(list);
//@ ensures \type(Object) <: \elemtype(\typeof(list));
//@ ensures (\forall int i; 0 <= i <= size; list[i] == \old(list[i]));
//@ ensures list.length > \old(list.length);
private void enlarge() {

Object[] newList;
if (list.length >= Integer.MAX_VALUE -10 && list.length < Integer.MAX_VALUE) {

newList = new Object[Integer.MAX_VALUE];
} else {

newList = new Object[list.length + 10];
}
//@ loop_invariant 0 <= i <= size + 1;
//@ loop_invariant (\forall int j; 0 <= j < i; newList[j] == \pre(list[j]));
//@ decreases size - i;
19
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for (int i = 0; i <= size; i++) {
newList[i] = list[i];

}
list = newList;

}

//@ public normal_behavior
//@ requires size < Integer.MAX_VALUE - 1;
//@ requires o != null;
//@ requires \type(Object) <: \elemtype(\typeof(list));
//@ assignable size, list, list[*];
//@ ensures (\forall int i; 0 <= i <= \old(size); list[i] == \old(list[i]));
//@ ensures size == \old(size) + 1;
//@ ensures list[size] == o;
//@ also
//@ public exceptional_behavior
//@ requires size == Integer.MAX_VALUE - 1;
//@ assignable size;
//@ signals (IndexOutOfBoundsException) true;
public void add(Object o) {

if (size == Integer.MAX_VALUE - 1) {
throw new IndexOutOfBoundsException();

}
if (size == list.length - 1) {

enlarge();
}
size = size + 1;
list[size] = o;

}

//@ public normal_behavior
//@ requires o != null && size >= 0;
//@ requires (\exists int i; 0 <= i <= size; list[i] == o); // The element to remove is in the

↪ list
//@ assignable list[*], size;
//@ ensures size == \old(size) - 1;
//@ ensures (\exists int i; 0 <= i <= \old(size); \old(list[i]) == o && (\forall int j; 0 <= j

↪ < i; list[j] == \old(list[j])) && (\forall int k; i <= k <= size; list[k] ==
↪ \old(list[k+1])));

//@ also
//@ public normal_behavior
//@ requires o != null && size >= 0;
//@ requires (\forall int i; 0 <= i <= size; list[i] != o); // The element to remove is NOT in

↪ the list
//@ assignable list[*], size;
//@ ensures size == \old(size);
//@ ensures (\forall int i; 0 <= i <= size; list[i] == \old(list[i]));
//@ also
//@ public normal_behavior
//@ requires size == -1; // Empty list
//@ assignable \nothing;
public void remove(Object o) {

//@ loop_invariant 0 <= i <= \old(size) + 1;
//@ loop_invariant (\forall int k; 0 <= k <= size; list[k] == \old(list[k]));
//@ loop_invariant size == \old(size);
//@ loop_invariant (\forall int k; 0 <= k < i; list[k] != o);
//@ loop_modifies list[*], size;
//@ decreases size - i;
for (int i = 0; i <= size; i++) {

if (list[i] == o) {
//@ loop_invariant i <= j <= size;
//@ loop_invariant (\forall int k; 0 <= k < i; list[k] != o);
//@ loop_invariant (\forall int k; 0 <= k < i; list[k] == \old(list[k]));
//@ loop_invariant (\forall int k; i <= k < j; list[k] == \old(list[k+1]));
//@ loop_invariant (\forall int k; j < k <= size; list[k] == \old(list[k]));
//@ loop_modifies list[j..size];
//@ decreases size - j;
for (int j = i; j < size; j++) {

list[j] = list[j+1];
}

20



The Journal of Systems & Software 211 (2024) 111972S. Lathouwers and M. Huisman

161

162

163

164

165

166

167

168

169

170

171

172

173

174
size = size - 1;
return;

}
}

}

//@ ensures \result <==> size == -1;
//@ pure
public boolean isEmpty() {

return size == -1;
}

}

Listing 7: Arraylist program that has been verified using OpenJML.

Appendix B. Overview of specification inference tools

This appendix provides an overview of the tools that are discussed in Section 3. The overview can be found in Table 4. For each tool we show
what needs to be provided as input, briefly describe the methodology, mention what type of specifications the tool can infer and whether the tool
is openly available.

Table 4
Overview of tools for specification inference for deductive verification of Java programs. For each tool we mention the required input for the tool, briefly describe the methodology,
mention what type of specifications it generates and note whether the tool is openly available. ✓indicates that the tool is available and could be run on our own examples. ‘o’
indicates that the tool is available but we were unable to run it on our own examples, e.g. because we could not successfully compile the tool. ‘-’ indicates that the tool is not
available.

Tool Input Methodology Output Artifact
available?

Daikon (Ernst et al., 2007) Code and tests or data trace files Observes program runs and reports
properties that were true over the observed
executions.

Preconditions
Postconditions
Invariants

✓

eChicory (Alsaeed and
Young, 2018)

Code and tests or data trace files Extension of Daikon that can infer
invariants about objects in dynamic
relationships such as MVC.

Invariants o

DynaMate (Galeotti et al.,
2014)

Code annotated with pre- and
postconditions

Generates tests with EvoSuite and then uses
two dynamic invariant detectors (Daikon
and Gin-Dyn). The tests are used to discard
invalidated candidates.

Loop invariants o

Agitator (Boshernitsan
et al., 2006)

Code and partial test suite Combination of test-input generation and
dynamic invariant detection

Assertions –

EvoSpex (Molina et al.,
2021)

Code and user-defined ranges for
test set

It generates valid and invalid pre/post
pairs. Then, it uses a genetic algorithm that
satisfy the valid pairs and leaves out the
invalid pairs.

Postconditions ✓

SLING (Le et al., 2019) Code, program location, set of
predefined predicates defining
data structures and a set of
sample inputs

While the program is running, they capture
memory information of the variables at the
provided program location. This is used to
instantiate predicate parameters with
boundary values. Then they discard
statements that cannot be proven.

Preconditions
Postconditions
Loop invariants

o

ALearner (Pham et al.,
2017)

Instrumented code and optional
test cases

They divide the program states into two
groups. They then generate assertions based
on templates from Daikon, specifically
looking for a Boolean combination of
assertions that separates these two states
perfectly.

Assertions o

DIG (Nguyen et al.,
2014b)/SymInfer (Nguyen
et al., 2017)

Code Analyze program traces to infer polynomial
and array invariants

Invariants o

Houdini (Flanagan and
Leino, 2001)

Code Generates candidate annotations based on
heuristics and removes the ones that cannot
be proven.

Preconditions
Postconditions
Invariants

–

Strongarm (Singleton
et al., 2018)

Code and optional precondition(s) Uses symbolic execution with predicate
transformers to infer strongest
postconditions.

Postconditions ✓

(continued on next page)
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Table 4 (continued).
Tool Input Methodology Output Artifact

available?

KeY (Weiß, 2009; Wasser,
2017; Tabar et al., 2022)

1) Code and optionally predicates
2) Code
3) Code

1) Combines symbolic execution and
predicate abstraction
2) Combines symbolic execution and
abstract interpretation
3) Combines symbolic execution and
predicate abstraction

Loop invariants –

No toolname (Nguyen
et al., 2014a)

Client code and API Computes control dependence relation from
client call sites invoking APIs. These are
used to mine potential conditions used to
reach the call sites. These conditions are
used to infer preconditions for each API.

Preconditions –

Toradocu/Jdoctor (Blasi
et al., 2018)

Code with Javadoc comments Translates natural language Javadoc
comments into executable specifications.

Preconditions
Postconditions
Exceptional
postconditions

✓

C2S (Zhai et al., 2020) Code with natural language
comments and tests

Translate natural language into JML
specifications. They use existing test cases
to filter out incorrect specifications.

Preconditions
Postconditions
Exceptional
postconditions

–

ChatGPT (OpenAI, 2022) Code and query describing what
to infer

Large language model that infers the most
likely specifications

Any requested
form of
specifications

✓
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