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Understanding the ultrasound pressure-driven dynamics of microbubbles confined in vis-
coelastic materials is relevant for multiple biomedical applications, ranging from contrast-
enhanced ultrasound imaging to ultrasound-assisted drug delivery. The volumetric oscilla-
tions of spherical bubbles is analyzed using the Rayleigh-Plesset equation, which describes the
conservation of mass and momentum in the surrounding medium. Several studies have con-
sidered an extension of the Rayleigh-Plesset equation for bubbles embedded into viscoelastic
media, but these are restricted to a particular choice of constitutive model and/or to small
deformations. Here, we derive a unifying equation applicable to bubbles in viscoelastic media
with arbitrary complex moduli and that can account for large bubble deformations. To derive
this equation, we borrow concepts from finite-strain theory. We validate our approach by
comparing the result of our model to previously published results and extend it to show how
microbubbles behave in arbitrary viscoelastic materials. In particular, we use our viscoelastic
Rayleigh-Plesset model to compute the bubble dynamics in benchmarked viscoelastic liquids
and solids.
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I. INTRODUCTION

The growth and collapse of bubbles in viscoelastic
materials is a physical process that features in a vari-
ety of environmental, food processing and industrial set-
tings. From the bubbles formed during volcanic erup-
tions (Ichihara, 2008) to those used in the production
of polymer foams (Andrieux et al., 2018; Everitt et al.,
2003), understanding the influence of viscoelasticity on
the bubble dynamics is a vital step for technological in-
novation. In particular, the crucial importance of vis-
coelasticity has been a topic of focus for biomedical ap-
plications (Dollet et al., 2019; Gaudron et al., 2015; Yang
and Church, 2005). Indeed, micrometer-size bubbles
are frequently used in ultrasound as contrast agents to
visualize organ perfusion and blood flow down to the
smallest capillary vessels (Frinking et al., 2020). They
are also heavily investigated as therapeutic agents for
cancer treatment, blood-brain-barrier opening (Alonso,
2015; Beccaria et al., 2013; Choi et al., 2011; Sheikov
et al., 2008; Sulheim et al., 2019), sonoporation (De-
prez et al., 2021; Lentacker et al., 2014; Sirsi and Bor-
den, 2012), lithotripsy, histotripsy (Xu et al., 2021), or
even sonothrombolysis (Bader et al., 2016; de Saint Vic-
tor et al., 2014; Miller et al., 2018). These therapeutic
applications often require inducing controlled microbub-
ble oscillations within tissue to impart treatment while
preventing collateral damage to the surrounding healthy
tissue. However, this embedding in a polymeric liquid

aj.h.snoeijer@utwente.nl

or a soft solid has a dramatic effect on bubble dynam-
ics (Dollet et al., 2019). More specifically these materi-
als have viscoelastic properties and provide solid-like or
liquid-like resistance to bubble motion, depending on the
deformation time scale. Therefore, the ability to control
and utilize bubbles in biomedical settings crucially relies
on our understanding of the micro and macro-rheology
of the surrounding medium and its impact on bubble os-
cillations.

Various biological materials exhibit viscoelastic prop-
erties that come with intricate behavior of stress and
strain. A simple method to understand such responses
consists of modelling the viscoelastic material as a combi-
nation of Hookean springs and Newtonian dashpots (Bird
et al., 1987; Bland, 2016; Kelly, 2013). The spring intro-
duces elastic characteristics to the material’s response,
while the dashpot adds a viscous contribution. Models
built from a combination of springs and dashpots typ-
ically lead to exponential relaxation of stress or strain.
Even though the spring-dashpot approach accurately de-
scribes various viscoelastic liquids and solids, it fails to
capture the rheology of multi-scale materials such as gels
or elastomeric networks (Karpitschka et al., 2015; Long
et al., 1996; Winter and Chambon, 1986), which often
come along with power-law stress relaxation rather than
exponentials. An alternative and more general approach
consists of characterizing the material via its complex
modulus µ(ω) = G′(ω) + iG′′(ω), which combines an
elastic storage modulus G′(ω) and viscous loss modulus
G′′(ω). These moduli can be experimentally obtained by
measuring the deformation of the material in response
to a periodic excitation, and are functions of the im-
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posed angular frequency ω. As an example, the com-
plex modulus of gels typically exhibits a non-integer scal-
ing behavior with respect to frequency, which cannot be
represented by (a finite number of) springs and dash-
pots. An equivalent formulation of the rheology in the
temporal domain can be achieved via the stress relax-
ation function ψ(t). This function describes how the
stress relaxes after a material is subjected to a step-
strain, and can be related to the complex modulus as
µ(ω) = iω

∫∞
0

dt ψ(t)e−iωt (Carcione et al., 2019); hence,
µ(ω) and ψ(t) contain the exact same rheological infor-
mation. Within this framework, ψ → 0 at large times for
viscoelastic liquids, reflecting how the stress fully relaxes
after stopping the flow. Viscoelastic solids, by contrast,
exhibit a finite ψ at large times, and thus a residual elas-
tic stress, expressing a long-term memory of the reference
configuration at rest.

The dynamical behavior of spherical bubbles is typ-
ically described using the Rayleigh-Plesset equation, ini-
tially developed for a spherical bubbles oscillating in free-
field. Possible ways of adding the effects of the viscoelas-
tic surrounding on the bubble dynamics in the context
of the Rayleigh-Plesset equation have been the focus of
many studies, starting with the pioneering work of Fogler
and Goddard (Fogler and Goddard, 1970, 1971). As-
suming a linear Maxwell model, the authors investigated
the effects of elasticity in the cavitation of a spherical
void. Subsequent studies extended this approach by con-
sidering different constitutive models of the surrounding
material (Allen and Roy, 2000a; Cunha and Albernaz,
2013; Hamaguchi and Ando, 2015; Shima et al., 1986;
Tanasawa and Yang, 1970; Yang and Church, 2005), in-
cluding those applicable to large-amplitude bubble de-
formations (Allen and Roy, 2000b; Gaudron et al., 2015;
Jiménez-Fernández and Crespo, 2005; Kim, 1994; Naude
and Mendez, 2008; Papanastasiou et al., 1984; Ting,
1975; Warnez and Johnsen, 2015). Yet, a unifying equa-
tion valid for large deformations and applicable to mate-
rials with arbitrary complex rheology (equivalently, arbi-
trary ψ(t)), is still lacking.

In this paper we derive a Rayleigh-Plesset-type equa-
tion for arbitrary viscoelastic materials, i.e. materials
described by an arbitrary stress relaxation function ψ(t),
that is also valid for large bubble deformations. For this,
we resort to a modelling framework that combines lin-
ear relaxation and finite strain. In the context of vis-
coelastic solids this class of models is referred to as fi-
nite linear viscoelasticity (Wineman, 2009), while for vis-
coelastic liquids this corresponds to the K-BKZ model
(Kaye-Bernstein, Kearsley, Zapas) (Mitsoulis, 2013; Tan-
ner, 1988). Special cases of this modelling framework
include the neo-Hookean solid and the Oldroyd-B fluid.
An overview of commonly used constitutive models is
provided in Tab. I. As is known in viscoelasticity, there is
an ambiguity in the choice of upper-convected or lower-
convected tensor quantities, representing how tensors are
transported by the flow. We primarily focus on the more
common upper-convected models, for which, as we will

demonstrate, the viscoelastic Rayleigh-Plesset equation
for a bubble with radius R(t) takes the form:

ρ

(
RR̈+

3

2
Ṙ2

)
= ∆p− 2γ

R

− 2

∫ t

−∞
dt′ ψ(t− t′)

Ṙ(t′)

R(t)

{[
R(t′)

R(t)

]3
+ 1

}
.

(1)

Here, the dot denotes a differentiation with time, ρ is
the density of the medium, γ the interfacial tension, and
∆p = pg − p∞ the difference between the gas pressure
pg and the far field pressure p∞. Below, we will pro-
vide the detailed derivation of Eq. (1), as well as some
benchmarks with existing literature. Finally, as an ex-
ample of specific relevance, we will explore the resonance
behavior of microbubbles (with and without coating of
phospholipid molecules) oscillating in viscoelastic media.

II. DERIVATION OF THE VISCOELASTIC RAYLEIGH-

PLESSET EQUATION

A. Constitutive equation

We start by considering a spherical bubble, whose
radius R(t) varies only in time. We employ a spherical
coordinate system (êr, êθ, êϕ) at the center of the bubble,
with r, θ, and ϕ denoting the radial, azimuthal, and polar
directions, respectively. Assuming a purely radial incom-
pressible flow, the flow velocity writes v = (ṘR2/r2) êr.
The momentum equation combined with the appropriate
boundary conditions can be used to obtain the Rayleigh-
Plesset equation (Prosperetti, 1982)

ρ

(
RR̈+

3

2
Ṙ2

)
= ∆p− 2γ

R
+

+

∫ ∞

R

dr
1

r
(2τrr − τθθ − τϕϕ),

(2)

where τrr, τθθ, and τϕϕ represent the radial, azimuthal
and polar components of the deviatoric stress tensor
τ . In the context of small bubble deformations, the
stress tensor is usually assumed to be traceless, such that
2τrr − τθθ − τϕϕ = 3τrr. This assumption, often used
to simplify the analysis, allows for an exact integration
for specific constitutive laws (e.g. Kelvin-Voigt model
(Hamaguchi and Ando, 2015; Yang and Church, 2005)).
This strategy, however, is not suited to establish a gener-
alized Rayleigh-Plesset equation that encompasses arbi-
trary viscoelastic models for large deformations, which is
the present goal of this paper. Instead, we must maintain
the integral as in Eq. (2) and proceed with the so-called
finite linear viscoelastic formulation (Wineman, 2009).
The essence of finite linear viscoelasticity is to combine
a linear relaxation in time, while admitting geometric
nonlinearities associated to large deformations. The cor-
responding constitutive relation involves an integral over
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Model Schematic Relaxation Function Complex Modulus Constitutive

ψ(t) µ(ω) = G′(ω) + iG′′(ω) Differential Equation

Viscous Fluid ηδ(t) iηω τ = ηϵ̇

Maxwell Fluid Ge−t/λ iηω
1+iλω

τ + λ
▽
τ = ηϵ̇

Oldroyd-B Fluid ηδ(t) +Ge−t/λ −ηλω2+iω(η+ηp)

1+iλω
τ + λ

▽
τ = (η + ηp)ϵ̇+ ηλ

▽
ϵ̇

Critical Gel - G(λ/t)1/2 G (iπλω)1/2 Not available

Neo-Hookean Solid G G τ = G (B− I)

Kelvin-Voigt Solid G+ ηδ(t) G+ iηω τ = G (B− I) + ηϵ̇

Chasset-Thirion - G[1 + Γ(1− n)−1
(
λ
t

)n
] G [1 + (iλω)n] Not available

TABLE I. Examples of viscoelastic fluid and solid models, defined by the stress relaxation function ψ(t) and complex modulus

µ(ω), that are captured by Eq. (1). In some (but not all) cases the integral form of the constitutive law (see Eq. 4 below) can

be written as a differential equation (constitutive DE), involving upper convected derivatives, the rate-of-strain tensor ϵ̇, and

for solids involves the Finger tensor B. Note that the relaxation function of the Chasset-Thirion model contains the gamma

function Γ(t) =
∫∞
0
xt−1e−xdx.

the history of deformation, and is of the form:

τ = −
∫ t

−∞
dt′ [ψ1(t− t′)

∂B(t, t′)

∂t′

− ψ2(t− t′)
∂B−1(t, t′)

∂t′
].

(3)

Here, we have introduced the Finger tensor B(t, t′),
which expresses the deformation between the states at
time t′ in the past and the current time t. A precise
definition of B(t, t′) is given below. Equation (3) resem-
bles the K-BKZ model for viscoelastic liquids (Mitsoulis,
2013; Tanner, 1988), which can be recovered via an in-
tegration by parts. The appearance of two relaxations
functions, respectively associated to B and to its inverse
B−1, reflects the freedom of choosing upper-convected
or lower-convected derivatives of tensors in viscoelas-
tic models (see Appendix C). We will focus on upper-
convected materials, which are based onB rather than its
inverse (Snoeijer et al., 2020). Therefore, setting ψ1 = ψ
and ψ2 = 0, we obtain:

τ = −
∫ t

−∞
dt′ ψ(t− t′)

∂B(t, t′)

∂t′
, (4)

which is the constitutive relation used in the remainder of
this paper. For completeness, the result obtained from
using the lower convective derivative is worked out in
Appendix A.

Two remarks are in order here. First, in the limit
of small deformations where t′ → t, the time deriva-

tive of the Finger tensor reduces to ∂B(t,t′)
∂t′ = −ϵ̇(t),

where ϵ̇(t) = ∇v + (∇v)T is the rate of strain tensor
(Appendix B, see also (Essink, 2022)). Inserting this ex-
pression into Eq. (4), we obtain the conventional mem-
ory integral for the stress at small deformations (Bird
et al., 1987), as is frequently used in the context of bub-
bles (Dollet et al., 2019; Fogler and Goddard, 1970). In

general, however, ∂B(t,t′)
∂t′ is not equal to ϵ̇, and this dis-

tinction is essential at large deformations. Second, (4) re-
flects the deformation history of a certain material point.
By consequence, the integral must be carried out at con-
stant material point and calls for a Lagrangian descrip-
tion of the problem.

B. Lagrangian formulation

To define the Finger tensor B(t, t′) we introduce a
Lagrangian description of the deformation, which fea-
tures prominently in finite-strain theory. Specifically,
this description involves relating the Eulerian position
x = ξ(X, t) in the current configuration at time t to a
Lagrangian material point X. In solids, one naturally
defines X as the coordinates in the reference configura-
tion, but, in general, one can define X from the configu-
ration at some arbitrary time t0. The mapping between
the two states ξ can be used to evaluate the deforma-
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FIG. 1. Schematic illustrating the mapping between the ref-

erence and current state for a bubble deforming with radius

R(t). The material coordinate r in the current state can be

related to the undeformed material coordinate R. To eval-

uate the stress in terms of the history of deformation, it is

instructive to introduce an intermediate past state at time t′.

A new mapping can then be derived in terms of the material

coordinate in the intermediate state r′. The mapping between

each state can be used to determine the deformation gradient

tensor F.

tion gradient tensor F(t, t0) =
∂x
∂X . This tensor describes

the material stretching through the transformation of a
line element dX (i.e. the distance between two mate-
rial particles) in the reference configuration at time t0
to the same material line element dx at time t. Using
the deformation gradient, the Finger tensor is defined as
B(t, t0) = F(t, t0) · FT(t, t0).

During the purely spherical motion of the bubble, we
only need to keep track of the radial position of the mate-
rials points. In Fig. 1 we therefore denote R as the refer-
ence radial position of any point in the medium. On the
interface of the bubble at rest, R = R0 = R(t0), which
is thus the bubble radius in the reference configuration.
Since the deformation is unidirectional, the tensor F is
diagonal: the radial component of the deformation gra-
dient tensor reads ∂r

∂R , while the azimuthal components
are given by the ratio r

R (Holzapfel, 2002). The latter
represents the stretching of a shell of constant material
point. We thus find

F(t, t0) =


∂r

∂R
0 0

0
r

R
0

0 0
r

R
.

 (5)

Incompressibility of the medium requires that det(F) = 1
(Holzapfel, 2002), which implies ∂r

∂R = (Rr )
2. Integrating

this relation, we identify the mapping between the two
states:

r3(t,R) = R3 +R(t)3 −R3
0, (6)

where the time-dependence is entirely encoded in the dif-
ference between the bubble radius R(t) compared to the

reference radius R0. This mapping has indeed been used
in many previous studies (Allen and Roy, 2000a,b; Fogler
and Goddard, 1970, 1971; Gaudron et al., 2015; Papanas-
tasiou et al., 1984; Ting, 1975). For this spherical geom-
etry, we simply recover the conservation of volume for
concentric spheres: r3 −R3 = R3 −R3

0. (Allen and Roy,
2000b)

To further evaluate the memory integral in Eq. (4)
we need to express the deformation in terms of the entire
history of the bubble motion, and not with respect to the
reference state. We thus introduce the position x′ as the
position of a material point at some past time t′ < t. The
deformation gradient between two arbitrary times t and
t′ then becomes F(t, t′) = ∂x

∂x′ = F(t, t0) · F−1(t′, t0). As
explained schematically in Fig. 1, the mapping between
t′ and t can thus be obtained in two steps: first moving
from the configuration at t′ to the reference configuration
at t0, and then going from t0 to t. Bearing in mind that
B(t, t′) = F(t, t′) · F(t, t′)T, we thus obtain the compo-
nents of the Finger tensor as

Bϕϕ(t, t
′) = Bθθ(t, t

′) =
( r
r′

)2

=

(
R3 +R(t)3 −R3

0

R3 +R(t′)3 −R3
0

)2/3

,

(7)

Brr(t, t
′) =

1

Bθθ(t, t′)2
=

(
r′

r

)4

=

(
R3 +R(t′)3 −R3

0

R3 +R(t)3 −R3
0

)4/3

.

(8)

In the final step, we have made use of the explicit radial
mapping of Eq. (6). This step is crucial, as it allows
expressing B(t, t′) at a constant material point R, as is
required for the evaluation of the integral in Eq. (4). The
components of the deviatoric stress tensor then follow as

τrr = −4

∫ t

−∞
dt′ {ψ(t− t′)R2(t′) Ṙ(t′)[

R3 +R3(t′)−R3
0

]1/3
[R3 +R3(t)−R3

0]
4/3

},
(9)

τθθ = τϕϕ = 2

∫ t

−∞
dt′ {ψ(t− t′)R2(t′) Ṙ(t′)[

R3 +R3(t)−R3
0

]2/3
[R3 +R3(t′)−R3

0]
5/3

}.
(10)

The resulting components of τ are now explicit functions
of time, encoded in R(t), and the Lagrangian position R.

The remaining step is to spatially integrate the
stresses in the Rayleigh-Plesset equation, as required in
Eq. (2). These spatial integrals can be carried out explic-
itly, so that we are only left with the temporal memory
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integrals∫ ∞

R

dr
1

r
(2τrr − τθθ − τϕϕ) =

− 2

∫ t

−∞
dt′ ψ(t− t′)

Ṙ(t′)

R(t)

{[
R(t′)

R(t)

]3
+ 1

}
.

(11)

This concludes the derivation of the viscoelastic
Rayleigh-Plesset equation for arbitrary complex modu-
lus as presented in Eq. (1).

III. APPLICATIONS

A. Special cases & benchmarking

We contextualize the derived Rayleigh-Plesset equa-
tion by considering a set of special cases for ψ(t), en-
abling a benchmark with existing literature. The relax-
ation functions of various models encountered in the lit-
erature are summarized in Table I. Some of these can be
represented schematically by a spring-dashpot, in which
case it is possible to articulate the constitutive relation
as a differential equation (see schematics in Table I).
Note that, gel-like materials that exhibit a power-law re-
laxation function cannot be represented by a differential
constitutive law, and thus must be treated with an inte-
gral formulation.

We first consider a Newtonian fluid of viscosity η,
for which the relaxation function takes the form ψ(t) =
η δ(t), where δ(t) is the Dirac delta function. Us-
ing the convolution of the delta function, the integral
in the Rayleigh-Plesset equation reduces to −4ηṘ/R,
which is the standard viscous contribution. Second, we
turn to the Neo-Hookean solid, which is a purely elas-
tic medium, obtained when the relaxation function is
constant ψ(t) = G. In this case, we can carry out ex-
plicitly the memory integral in Eq. (11). Applying the
initial condition R(t′ → −∞) = R0, with R0 the ra-
dius in the reference configuration, yields an elastic con-
tribution to the Rayleigh-Plesset equation of the form
(G/2)[5− 4(R0/R)− (R0/R)

4]. This term exactly corre-
sponds to the one previously obtained for a bubble inside
a Neo-Hookean solid (Gaudron et al., 2015; Warnez and
Johnsen, 2015). Third, we consider a bubble inside an
Oldroyd-B fluid, for which the relaxation function takes
the form ψ(t) = η δ(t)+ Gexp(−t/λ), where η is the sol-
vent viscosity, λ the relaxation time, and G = ηp/λ the
polymer’s elastic modulus (see also Appendix C). Here as
well, the resulting Rayleigh-Plesset equation is identical
to that reported by Ting, who considered the Oldroyd-B
model in the context of bubble cavitation (Ting, 1975).

To further validate our model and its numerical im-
plementation, we compare it to the results obtained by
Allen and Roy (Allen and Roy, 2000b). Specifically, Allen
and Roy considered large deformations of an acousti-
cally driven micron-sized bubble. The oscillatory pres-
sure field is p∞ = p0 + pa sin(2πft), where p0 is the
ambient pressure, pa is the pressure amplitude, and f
the driving frequency. The gas pressure takes the form

FIG. 2. Plot of the normalized radius R/R0 against the acous-

tic cycles ft for a micron sized bubble in an Upper Convected

Maxwell model. Our results using the memory integral (solid

lines) are overlayed on top of those by Allen and Roy (circles)

(see Fig. 12 in (Allen and Roy, 2000b)). Here we take the

pressure amplitude as pA = 0.4 MPa and a driving frequency

f = 3 MHz. The properties of the surrounding material are

ρ = 1000 kg/m3, γ = 0.072 N/m, and η = 0.03 MPa·s. The

relaxation times are varied such that the Deborah number

De = 2πfλ = 0, 1, 2 and the corresponding shear modulus is

computed as G = η/λ.

pg = (p0+2γ/R0)(R0/R)
3k, to account for thermal dissi-

pation through the polytropic constant k. The bubble is
surrounded by virtual Upper Convected Maxwell fluids
(UCM) with relaxation times λ = 0, 0.5, and 1 µs. The
ratio between the relaxation time and the characteristic
time scale of the flow is expressed by the Deborah num-
ber, which takes the values De = 2πfλ = 0, 1, and 2 for
the three relaxation times considered.

Our model is in excellent agreement with the results
reported by Allen and Roy, as shown in Fig. 2. Impor-
tantly, the numerical solution in (Allen and Roy, 2000b)
is not based on the integral form of the constitutive equa-
tion, but on the differential form. Consequently, the
stress field outside the bubble must be solved numeri-
cally, and the spatial integral of the stress needed in the
Rayleigh-Plesset equation must also be evaluated numer-
ically. Hence, the agreement in Fig. 2 offers a nontriv-
ial validation of the proposed modelling framework. We
also wish to highlight that Eq. (1) has the advantage of
providing an autonomous equation for the bubble radius
R(t), which no longer relies on a separate (numerical)
evaluation of the stress outside the bubble.

B. Resonance behavior of microbubbles

Having established the validity of our model and its
numerical implementation, we now further explore the
oscillatory motion of bubbles in viscoelastic materials.
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FIG. 3. Response of the bubble radius R when subjected to a pressure pulse p(t) with frequency f = 2 MHz. (a) The pressure

pulse p(t) normalized by its amplitude pa against time. (b) A bubble in a Newtonian liquid oscillates periodically following

the applied pressure pulse. The bubble radius R(t) achieves a maximum peak-to-peak amplitude ∆R ≈ 0.4R0. If the bubble

is surrounded by an Oldroyd-B liquid with relaxation time λ = 1 µs and shear modulus G = 500 kPa, the resistance of the

surrounding fluid leads to smaller oscillation amplitudes. (c) Performing a fast Fourier transform of the bubble oscillation

amplitude ∆R, we can observe how it varies in the frequency domain, including higher and lower harmonics.

We study the motion of a 2 µm sized bubble driven by
a Gaussian-tapered pressure pulse with 16 acoustic cy-
cles (Fig. 3a), pressure amplitude of 50 kPa and a fre-
quency in the range 0.5 ≤ f ≤ 8 MHz. For material
properties, we select a liquid density ρ = 1, 000 kg/m3,
and for most cases we fix the surface tension to a con-
stant value γ = 72 mN/m. For viscoelastic liquids we
consider the bubble to be surrounded by an Oldroyd-B
liquid or a Critical Gel, whose relaxation functions are
ψ(t) = G exp(−t/λ) and ψ(t) = G(λ/t)1/2 respectively
(see Table I). For the Oldroyd-B liquid we set the solvent
viscosity to η = 2 mPa · s and we test the viscoelastic
effects effects by varying the values of the shear modu-
lus G and relaxation time λ. Specifically, we consider
three shear moduli G = 10, 100, and 500 kPa and two
relaxation times of λ = 0.01 and 1.00 µs. The same pa-
rameters are used for the Critical Gel to enable a direct
comparison. As an additional perspective, we will also
consider an example where the bubble is coated by a layer
of lipids, modelled via additional mechanical properties
at the interface (see below). By comparing the resonance
behavior of coated and uncoated bubbles, one further ap-
preciates relative importance of the viscoelasticity of the
surrounding medium.

1. Oldroyd-B fluid

The results of our simulations for the evolution of
the bubble radius R(t) in a Newtonian and Oldroyd-B
fluid are shown in Fig. 3. Considering first a bubble
in a Newtonian liquid, the oscillation amplitude of the
bubble increases initially as it follows the applied pres-
sure pulse. The bubble radius reaches stable oscillations
with a peak-to-peak amplitude ∆R = 0.4R0, before de-
creasing to its initial radius, as the pressure pulse decays
(Fig. 3b). Switching to an Oldroyd-B fluid with relax-
ation time λ = 1 µs and shear modulus G = 500 kPa,
the amplitude decreases to approximately 20% of R0.
We thus observe that the resistance of the viscoelastic

stresses can significantly affect the bubble oscillation. To
further examine the effects of the surrounding medium, it
is more instructive to evaluate the resonance behavior of
the bubble. Indeed, bubbles are known to act as damped
harmonic oscillators when subjected to oscillatory pres-
sure driving (Minnaert, 1933; Prosperetti, 1977).

To this end, we obtain the response amplitude of
the bubble through a fast Fourier transform and plot it
as a function of the driving frequency. The fast Fourier
transform of the oscillation amplitude is also indicative
of the presence of higher or lower harmonics (Fig. 3c).
The resulting normalized resonance curves of ∆R/R0 are
shown in Fig. 4. For a 2 µm radius bubble in a Newto-
nian liquid and a polytropic constant k = 1.4, the reso-
nance frequency is very close to the Minnaert frequency
f0 ≈ 1/(2πR0)(3kp0/ρ)

1/2 ≈ 1.6 MHz (Minnaert, 1933),
where the bubble displays a maximum relative amplitude
of oscillation of 0.42 (Fig. 4a). The viscoelastic effects
become immediately apparent for the Oldroyd B liquid;
with a relaxation time λ = 0.01 µs, the viscoelastic effects
almost exclusively translate into a reduction of the oscil-
lation amplitude. Note that G = 10 kPa does not give
rise to significant difference as compared to the Newto-
nian case. By contrast, shear moduli of 100 and 500 kPa
decrease the response amplitude by 20 and 50%, respec-
tively. In all three cases the resonance frequency remains
unaffected. The effects of viscoelasticity change qualita-
tively when increasing the relaxation time to λ = 1 µs
(Fig. 4b). Even though G = 10 kPa does not signifi-
cantly change the bubble behavior, setting G = 100 and
500 kPa results in a drastic increase in resonance fre-
quency (20 and 100 %, respectively). In addition, there
is a further decrease in amplitude as compared to the
case of λ = 0.01 µs.

These results can be explained by calculating the
Deborah number De = λf , which compares the relax-
ation time λ to the characteristic time scale of the flow.
For a relaxation time λ = 0.01 µs, the maximum Deborah
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FIG. 4. Effects of the shear modulus G and relaxation time λ on the bubble amplitude ∆R of a microbubble in an Oldroyd-B

liquid and a Critical Gel. (a) For a relatively low relaxation time (λ = 0.01 µs) in an Oldroyd-B fluid, increasing the shear

modulus leads to a decrease in the bubble amplitude. Yet, the resonance frequency remains unaffected. (b) Increasing the

relaxation time to λ = 1 µs now also changes the resonance frequency of the bubble with the shear modulus. The bubble

amplitude also decreases but slightly compared to the smaller relaxation time. Inset: The normalized storage G′/G and loss

G′′/G moduli of the Oldroyd-B fluid as a function of the normalized angular frequency ωλ, indicating a viscous behaviour at

low time scales and an elastic behavior at larger time scales. Note that the loss modulus has be computed for a viscosity ratio

η/ηp = 2 · 10−3. (c) For a bubble in an Critical Gel with λ = 0.01 µs, both and amplitude and resonance frequency vary

significantly from their Newtonian counterpart. (d) An increase in the relaxation time has much more dramatic effects in a

Critical gel, where the amplitude sharply decreases for larger shear moduli. Inset: Because the critical gel is a special case

corresponding to the gelation point, the storage and loss moduli are identical for all frequencies.

number is De = 0.1, allowing the elastic stresses sufficient
time to relax. As a result, the Oldroyd-B fluid at these
low extensional rates exhibits a viscous response rather
than an elastic contribution and G′′ dominates (Fig. 4b
inset). The effective polymer viscosity ηp = Gλ works
in conjunction with that of the solvent η to dampen the
oscillation amplitude. For shear moduli of 10, 100, and
500 kPa, the polymer viscosity takes a value of ηp = 0.1,
1, and 5 mPa·s, respectively. Only the latter two are high
enough as compared to the solvent viscosity η = 2 mPa·s

to affect the dynamics, which is confirmed by our results.
In contrast, for a relaxation time of λ = 1 µs the max-
imum Deborah number takes a value of De = 10. The
larger relaxation time does not provide sufficient time for
the elastic stresses to relax, and the surrounding medium
behaves more like an elastic solid than a viscous liquid.
Indeed, for sufficiently small bubble deformations, the
natural frequency of a bubble in an elastic solid can be
computed as (Dollet et al., 2019; Gaudron et al., 2015;
Warnez and Johnsen, 2015)
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ω0 =

{
1

ρR2
0

[
3kp0 + 2(3k − 1)

γ

R0
+ 4G

]}1/2

(12)

Thus, the elastic effects start affecting the resonance fre-
quency when the shear modulus reaches values close to
the atmospheric pressure p0 ≈ 100 kPa. Above this
value, elasticity starts to dominate the response of the
gas. Even though Eq. (12) is only valid for small ampli-
tudes, it qualitatively shows how elasticity increases the
resonance frequency. A fully quantitative confirmation
of this scenario is provided in Fig. 5. The figure shows
that the resonance curve for a bubble inside an Oldroyd-
B fluid with G = 500 kPa at finite λ switches from a
Newtonian liquid behavior (λ → 0, blue dashed line)
to that of a Kelvin-Voigt solid (λ → ∞, orange dashed
line). Intriguingly, the transition is non-monotonic upon
increasing λ, as is clearly demonstrated in Fig. 5a.

As an additional perspective, we consider the reso-
nance behavior of coated microbubbles. Microbubbles
can increase the contrast in ultrasound imaging or, once
embedded in tissue, used as controlled cavitation agents
for therapy. By contrast to the free gas bubble considered
until now, these bubbles must be coated with a shell to
prevent gas diffusion driven by the excess Laplace pres-
sure. The coating has two additional contributions to
the bubble dynamics (see Appendix D). First, the dy-
namic change in surface area induces molecular friction,
which leads to a significantly increased damping contri-
bution (Van der Meer et al., 2007). Second, the sur-
face tension becomes a function of the packing density of
the phospholipid molecules and, therefore, for a certain
initial packing fraction, of the bubble size (Marmottant
et al., 2005). When the bubble size decreases, the lipids
get compressed leading to shell buckling like a spheri-
cal elastic shell. Using the viscoelastic Rayleigh-Plesset
equation for coated microbubbles (see Appendix D), we
test the resonance curve of a coated microbubble inside
an Oldroyd-B fluid with λ = 1 µs and G = 500 kPa.
We take a surface elasticity χ = 1 N/m and a shell di-
latational viscosity of κs = 10−8 kg/s. The resulting
resonance behavior of the coated microbubble is shown
in Fig. 5b. Compared to the result for the uncoated bub-
bles (Fig. 5b), two features stand out. First, the reso-
nances shift to slightly higher frequencies, which can be
attributed to the additional stiffness induced by surface
elasticity of the coating. Second, the peaks are wider,
and of smaller amplitude, due to the additional damping
induced by the shell’s viscosity. Yet, the overall features
of the resonance curves, specifically the trends with λ,
remain unaffected by the coating, showing that these are
dictated by the viscoelastic properties of the surrounding
medium.

2. Critical Gel

Polymer networks typically exhibit a broad spectrum
of relaxation times, and therefore cannot be described
by a simple exponential decay. For example, silicone

FIG. 5. Convergence of the Oldroyd-B fluid to a Kelvin-

Voigt solid. (a) As we gradually increase the relaxation time

of an Oldroyd-B fluid (G = 500 kPa) its behaviour starts

deviating from a Newtonian liquid and converges to that of

a Kelvin-Voigt solid. The amplitude at resonance follows a

non-monotonic trend with the relaxation time, highlighting

the different effects of viscosity and elasticity at different re-

laxation times. (b) Considering a coated microbubble, the

resonance curve qualitatively follows the same trends, as it

converges to a Kelvin-Voigt solid with an increase in the relax-

ation time. Quantitatively, the additional viscous and elastic

resistance of the coating further decrease the oscillation am-

plitude and slightly increase the resonance frequency.

gels are well-described by the so-called Chasset-Thirion
model (cf. Table. I), which exhibit an algebraic decay
in the range 0 < n < 1 (Karpitschka et al., 2015; Long
et al., 1996). Here we focus on the special case of a mate-
rial at the gelation point, for which the equilibrium shear
modulus vanishes. Following Winter & Chambon (Win-
ter and Chambon, 1986), the Critical Gel corresponds to
the case where G′ = G′′ at all frequencies (Fig. 4d in-
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FIG. 6. Resonance curve of the second harmonic response ∆R2H normalized by the fundamental amplitude ∆R. (a) For a

relaxation time of λ = 0.01 µs, the trends of the second harmonics follow those of the fundamental. (b) Similarly, increasing

the relaxation time to λ = 1 µs we observe a shift of the resonance peak for higher shear moduli. Yet, at approximately half

the resonance frequency a new peak appears. (c) The similar trends between fundamental and second harmonic response can

also be found for the Critical gel, where the amplitude of the second harmonic reduces by a factor of approximately 5.

set). This criterion is achieved only for the special case
of ψ = G(λ/t)1/2, which gives G′ = G′′ ∼ Gλ1/2ω1/2.
Such a material at the gelation point has the peculiar
property that, at low frequency, it has a vanishing shear
modulus (limω→0G

′ = 0) and an infinite steady viscosity
(limω→0G

′′/ω = ∞). Conversely, at large frequency, the
storage modulus diverges (limω→∞G′ = ∞) while the
effective viscosity vanishes (limω→∞G′′/ω = 0).

The resonance behavior of free gas microbubbles in-
side a Critical Gel is indeed very different from that in an
Oldroyd-B fluid. We find a stronger reduction in the am-
plitude of oscillation. In addition, the Critical Gel also
induces a much stronger resonance frequency shift. This
shift is not even visible for the lowest relaxation time of
λ = 0.01 µs (Fig. 4c), which did not induce a significant
shift for the Oldroyd-B fluid. This is a direct consequence
of the absence of a characteristic timescale in the Critical
Gel. In fact, even though we separately defined G and
λ, the gel is entirely characterized by the single combi-
nation Gλ1/2, which is also known as the strength of the
gel (Winter and Chambon, 1986). Therefore, the results
for a larger relaxation time of λ = 1 µs (Fig. 4d), shows
similar trends as those for λ = 0.01 µs. More quantita-
tively, we can see in Fig. 4c and d that the combination
of [G = 100 kPa, λ = 0.01 µs] (green curve in Fig. 4c)
and [G = 10 kPa, λ = 1 µs] (red curve in Fig. 4c) re-
sult in identical curves, since the product of Gλ1/2 is the
equal. Thus, for the gel, in contrast to the Oldroyd-B
fluid, increasing λ has a similar effect as increasing G.

The above results illustrate the importance of the
rheology for the resonance behavior of microbubbles; in
particular when comparing exponentially decaying relax-
ation functions to gel-like materials that exhibit a power-
law spectrum. The fact that the strength of a critical gel
involves the combination Gλ1/2 prevents the existence of
an “elastic limit” like for the Oldroyd-B fluid, since the
equivalent solid would naturally have an infinite stiffness.
The absence of an elastic limit at λ→ ∞ is not limited to

the Critical Gel, but also applies to the Chasset-Thirion
model that is used to describe silicone gels.

3. Second harmonic

Microbubbles driven at sufficiently high pressure am-
plitudes can undergo highly non-linear oscillations, gen-
erating higher order harmonic responses of the bubble
(Lauterborn, 1976; Prosperetti, 1974), as well as subhar-
monic behavior (Neppiras, 1969). In the context of vis-
coelastic fluids, Allen and Roy showed that the presence
of elasticity can enhance the second harmonic response
of an Upper Convected Maxwell fluid (Allen and Roy,
2000b). In this section we briefly comment on the second
harmonic by examining the fast Fourier transform of the
bubble response (Fig. 3c). We record the oscillation am-
plitude ∆R2H at twice the driving frequency and directly
compare the results with respect to the fundamental fre-
quency in the context of the Oldroyd-B and Critical Gel
of Fig. 4. The resonance curve of the second harmonic
is shown in Fig. 6. For the Oldroyd-B fluid with a re-
laxation time of λ = 0.01 µs we observe the appearance
of two peaks for each curve (Fig. 6a). The main peak
in the response occurs at approximately half the funda-
mental frequency, and a smaller one at the fundamental
frequency. The higher peak at half the fundamental fre-
quency reflects the preference of the bubble to oscillate
at its eigenfrequency. An increase of the shear modulus
dampens the curves and leads to smaller amplitudes. The
relaxation time is too short as compared to the oscilla-
tion period, and thus excites a viscous response from the
Oldroyd-B fluid. Upon increasing the relaxation time to
λ = 1 µs, the resonance frequency is shifted for the higher
shear moduli (Fig. 6b). The two peaks still appear at the
fundamental and half the fundamental frequency but are
shifted depending on the elasticity. We thus find that the
effects of the Oldroyd-B fluid on the second harmonic are
similar to those observed for the fundamental frequency.
The enhancement of the second harmonic response re-
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ported by Allen and Roy could therefore be attributed
to the non-monotonic behavior of the Oldroyd-B model
in the elastic limit. Finally, the second harmonic of the
Critical Gel also shares the same characteristics, as the
trends follow the behavior of the fundamental frequency
(Fig. 6c). Two peaks also appear for certain values of
Gλ1/2, with the amplitude decreasing as the shear mod-
ulus is increased.

IV. SUMMARY AND OUTLOOK

In this article we have derived a unifying Rayleigh-
Plesset-type equation for bubbles in viscoelastic mate-
rials. Using concepts from finite linear viscoelasticity,
we express the viscoelastic stresses as a function of the
deformation history. This approach has the benefit of
extending the Rayleigh-Plesset equation to a broad class
of viscoelastic materials with arbitrary complex moduli
through their relaxation function ψ(t), while consistently
accounting for large deformations. Not only were we able
to capture the bubble dynamics in materials with well-
defined constitutive relations, such as the Upper Con-
vected Maxwell fluid, but also to gel-like materials that
can only be characterized by their storage and loss mod-
uli, and not via a constitutive differential equation. With
these ideas in mind, we tested the resonance behavior of
a microbubble in different types of viscoelastic materials
when driven by a tapered sinusoidal pressure pulse. The
broad spectrum of relaxation times of gel-like materials
completely alter the resonance behavior of a microbub-
ble for sufficiently stiff shear moduli. On the other hand,
the Oldroyd-B fluid was found to behave both as a vis-
cous liquid and elastic solid, depending on the relaxation
time. On the one hand, the Oldroyd-B fluid acts as a vis-
cous liquid when the relaxation time is much faster than
the typical oscillation period. Conversely, for relaxation
times much slower than the typical oscillation period, the
resonance curve of an Oldroyd-B fluid converges to that
of a Kelvin-Voigt solid.

Our model is applicable to various viscoelastic ma-
terials; yet, it still has its limitations. Even though the
bubble deformation is nonlinear in terms of the bubble ra-
dius R, our stress formulation of Eq. (3) can be classified
as finite linear viscoelastic, as the memory integral is still
based on a superposition principle, involving a linear op-
erator in B. A possible extension to nonlinear response,
while preserving the superposition principle, is by taking
the relaxation function ψ(t) to be dependent on the defor-
mation (Wineman, 2009). For the derivation of Eq.(1),
however, the assumption that ψ(t)is independent of de-
formation is crucial in our approach as it enabled us to
separate the spatial and temporal integrals of the stress
that lead to Eq. (11). More generally, there are many
constitute equations that are not described by Eq. (3).
Typical examples include models that exhibit finite ex-
tensibility, which limits the extent to which the material
can be stretched, such as the Gent model for solids (Gent,
1996) or the FENE-P model for fluids (Warner Jr, 1972).
Furthermore, viscoplastic materials also do not fall into

the class of Eq. 3 (De Corato et al., 2019). The key
advantage of Eq. (1) therefore lies in the applicability
to materials of arbitrary stress relaxation function, while
preserving the possibility of finite deformations.

Another limitation of our model is that we consider
strictly radial bubble motions, i.e. purely spherical vol-
umetric oscillations. This assumption can be consequen-
tial for sufficiently large oscillations, as the shape of a mi-
crobubble is susceptible to parametric instabilities when
driven at large acoustic pressures (Versluis et al., 2010).
The assumption of purely radial motions is also crucial
when extending our model to coated microbubbles, which
are known to exhibit non-spherical oscillations either as
a result of a symmetry breaking in the medium, or as
surface modes develop (Dollet et al., 2019, 2008). As a
future perspective, it would thus be worthwhile focus-
ing on the non-spherical motion of coated and uncoated
microbubbles in viscoelastic materials. Indeed, our theo-
retical approach lays a generalized framework for bubble
dynamics in viscoelastic media, which, as we have ex-
emplified, could also be extended to model viscoelastic
dissipation at the interface of coated microbubbles.
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APPENDIX A: LOWER CONVECTED DERIVATIVE

Our analysis focused on upper convected materials
by setting ψ2 = 0 in Eq. (3). If we instead had chosen
to work with the lower convected derivative, it would
require setting ψ1 = 0 and using the inverse of B(t, t′).
The analysis is still straightforward, owing to the purely
radial flow that leads to a diagonal Finger tensor. The
components of the deviatoric stress tensor then adopt the
form

τrr = 4

∫ t

−∞
dt′{ψ2(t− t′)R2(t′)Ṙ(t′)[

R3 +R3(t)−R3
0

]4/3
[R3 +R3(t′)−R3

0]
7/3

},
(A1)

τθθ = τϕϕ = −2

∫ t

−∞
dt′{ψ2(t− t′)R2(t′)Ṙ(t′)[

R3 +R3(t′)−R3
0

]−1/3

[R3 +R3(t)−R3
0]

2/3
}.

(A2)

The radial integration of the stresses in the Rayleigh-
Plesset equation again leaves only the temporal memory
integrals such that∫ ∞

R

dr
1

r
(2τrr − τθθ − τϕϕ) =

− 2

∫ t

−∞
dt′ψ(t− t′)

Ṙ(t′)

R(t)

[
R(t)

R(t′)

]2 {[
R(t′)

R(t)

]3
+ 1

}
.

(A3)
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Using the lower convected formulation leads to an addi-
tional factor [R(t)/R(t′)]2 in the memory integral.

APPENDIX B: KINEMATICS

Here we provide an overview of the kinematic re-
lations that can be used to better interpret the stress
Eq. (4) in certain limits. Recall that the deformation
gradient tensor is defined as F(t, t′) = ∂x

∂x′ . Taking the
time derivative d/dt at a constant material point and us-
ing the chain rule, one can show that (Essink, 2022; Mo-
rozov and Spagnolie, 2015; Snoeijer et al., 2020; Stone
et al., 2023)

dF

dt
= (∇v)T · F (B1a)

dF−1

dt
= −F−1 · (∇v)T (B1b)

where v(x) is the Eulerian velocity field.
Considering now the deformations with respect to

past time t′, passing via the reference state at t0, the
deformation tensor can be expressed as F(t, t′) = F(t) ·
F−1(t′), where for notational convenience we use a single
argument when the reference state is involved, i.e. F(t) =
F(t, t0). As a result, the Finger tensor becomes

B(t, t′) = F(t, t′) · FT(t, t′)

= F(t) · F−1(t′) · F−T(t′) · FT(t),
(B2)

and its inverse

B−1(t, t′) = F−T(t, t′) · F−1(t, t′)

= F−T(t) · FT(t′) · F(t′) · F−1(t).
(B3)

We now wish to take the time derivative of B(t, t′) with
respect to t′ as expressed in the stress in Eq. (4). Mak-
ing use of the kinematic relations Eq. (B1), we obtain
(Essink, 2022)

∂B(t, t′)

∂t′
=

F(t) ·
[
dF−1(t′)

dt′
· F−T(t′) + F−1(t′) · dF

−T(t′)

dt′

]
· FT(t)

= −F(t) · F−1(t′) ·
[
(∇v)T(t′) +∇v(t′)

]
· F−T(t′) · FT(t)

= −F(t, t′) · ϵ̇(t′) · FT(t),

(B4)

where we recognize the rate of strain tensor ϵ̇ = (∇v)T+
∇v. This proves that, in general, one cannot replace
∂B(t,t′)

∂t′ by ϵ̇ in the constitutive relation. Similarly for
the inverse of the Finger tensor we get (Essink, 2022)

∂B−1(t, t′)

∂t′
= F−T(t, t′) · ϵ̇(t′) · F−1(t, t′). (B5)

Only when taking the limit t′ → t, or when deformations
are small, we recover by definition that F(t, t′) ≃ I, and
we observe that the time derivatives of B(t, t′) and its
inverse reduce to ∓ϵ̇(t).

APPENDIX C: CONVECTED MAXWELL MODELS

We show how, for special choices of ψ(t), the integral
formulation for the stress can be expressed as a consti-
tutive differential equations (Tab. I). We first introduce
the upper convected derivative

▽
A=

dA

dt
− (∇v)T ·A−A · ∇v, (C1)

which ensures that the dynamics of a second rank tensor
A remain frame invariant. The first term is a time deriva-
tive evaluated at a constant material point, while the last
two terms ensure that A transforms appropriately as it
gets deformed by the flow. Applying the upper convected
derivative to Eq. (4), we get

▽
τ =

dτ

dt
− (∇v)T · τ − τ · ∇v

= − ψ(t− t′)
∂B(t, t′)

∂t′

∣∣∣∣
t′=t

− (∇v)T · τ − τ · ∇v

−
∫ t

−∞
dt′

[
dψ(t− t′)

dt

∂B(t, t′)

∂t′
+ ψ(t− t′)

∂2B(t, t′)

∂t∂t′

]
= ψ(0)ϵ̇(t)−

∫ t

−∞
dt′

dψ(t− t′)

dt

∂B(t, t′)

∂t′
.

(C2)

Note that we have utilized the relation ∂2B(t,t′)
∂t∂t′ =

(∇v)T(t) · ∂B(t,t′)
∂t′ + ∂B(t,t′)

∂t′ ·∇v(t), which exactly cancels
the last two terms from the upper convected derivative.

Upon taking the upper convected derivative, we thus
transformed the integral equation to a integro-differential
equation. So, not much progress is made, except for spe-
cial choices for the stress relaxation function. Specifi-
cally, we recover the Upper Convected Maxwell model
for ψ(t) = G exp(−t/λ). Using this relaxation function,
we obtain the differential equation

τ + λ
▽
τ= ηϵ̇, (C3)

where we have introduced the Maxwell viscosity η = Gλ.
Indeed, this equation is the conventional form of the
Upper Convected Maxwell model for large deformations
(Bird et al., 1987), which was also used by Allen and Roy
(Allen and Roy, 2000a) to study large amplitude bubble
oscillations in viscoelastic liquids.

For completeness, we also apply the same analysis for
the Lower Convected Maxwell Model. We first introduce
the lower convected derivative

△
A=

dA

dt
+ (∇v) ·A+A · (∇v)T, (C4)

which has the same property of preserving frame invari-
ance. We set ψ1(t) = 0 in Eq. (3) and retain the ψ2(t) re-
laxation function. Applying the lower convected deriva-
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tive to the stress we get

△
τ =

dτ

dt
+ (∇v) · τ + τ · (∇v)T

= ψ2(t− t′)
∂B−1(t, t′)

∂t′

∣∣∣∣
t′=t

+ (∇v) · τ + τ · (∇v)T

+

∫ t

−∞
dt′

[
dψ2(t− t′)

dt

∂B−1(t, t′)

∂t′
+ ψ2(t− t′)

∂2B−1(t, t′)

∂t∂t′

]
= ψ2(0)ϵ̇(t) +

∫ t

−∞
dt′

dψ2(t− t′)

dt

∂B−1(t, t′)

∂t′
.

(C5)

Similar to the upper convected case, the relation
∂2B−1(t,t′)

∂t∂t′ = −∇v(t) · ∂B−1(t,t′)
∂t′ − ∂B−1(t,t′)

∂t′ · (∇v)T(t)
yields exact cancellations with the last two terms of the
lower convected derivative. When we apply the relax-
ation function of the lower convected derivative ψ2(t) =
G exp (−t/λ), we get the standard form of the Lower
Convected Maxwell model

τ + λ
△
τ= ηϵ̇. (C6)

APPENDIX D: COATED MICROBUBBLES

We show how the Rayleigh-Plesset equation gets
modified when considering the dynamics of coated mi-
crobubbles. Introducing a coating around the bubble
introduces an additional dilatational viscosity κs and a
surface elasticity χ. The effect of the surface elasticity
is well-described by the Marmottant model, which con-
sists of a piece-wise function for the surface tension γ(R)
(Marmottant et al., 2005):

γ(R) =


0 ifR ≤ Rbuck

γ(R0) + χ
(

R2

R2
buck

− 1
)

ifRbuck ≤ R ≤ Rrup

γl ifR ≥ Rrup

Here, Rbuck denotes the radius at which the coating buck-
les and below which the surface tension is zero, Rrup the
radius at which the coating ruptures. Above this ra-
dius, the free gas interface is exposed to the surround-
ing medium and the surface tension is equal to that
of the medium γl. The parameter χ denotes the shell
elasticity of the coating, i.e. the rate of change in sur-
face tension with respect to the bubble surface area A:
χ = A dγ

dA . Molecular dissipation is introduced through
a dilatational viscosity κs, associated with the phospho-
lipid monolayer. As a result, the Rayleigh-Plesset equa-
tion now becomes

ρ

(
RR̈+

3

2
Ṙ2

)
=

(
p0 +

γ(R0)

R0

)(
R0

R

)3k

− 2γ(R)

R
− p∞

− 4κsṘ

R2
− 2

∫ t

−∞
dt′ψ(t− t′)

Ṙ(t′)

R(t)

{[
R(t′)

R(t)

]3
+ 1

}
.

(D1)
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