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A B S T R A C T   

This paper presents a new multi-task neural network, called BsiNet, to delineate agricultural fields from high- 
resolution satellite images. BsiNet is modified from a Psi-Net by structuring three parallel decoders into a sin-
gle encoder to improve computational efficiency. BsiNet learns three tasks: a core task for agricultural field 
identification and two auxiliary tasks for field boundary prediction and distance estimation, corresponding to 
mask, boundary, and distance tasks, respectively. A spatial group-wise enhancement module is incorporated to 
improve the identification of small fields. We conducted experiments on a GaoFen1 and three GaoFen2 satellite 
images collected in Xinjiang, Fujian, Shandong, and Sichuan provinces in China, and compared BsiNet with 13 
different neural networks. Our results show that the agricultural fields extracted by BsiNet have the lowest global 
over-classification (GOC) of 0.062, global under-classification (GUC) of 0.042, and global total errors (GTC) of 
0.062 for the Xinjiang dataset. For the Fujian dataset with irregular and complex fields, BsiNet outperformed the 
second-best method from the Xinjiang dataset analysis, yielding the lowest GTC of 0.291. It also produced 
satisfactory results on the Shandong and Sichuan datasets. Moreover, BsiNet has fewer parameters and faster 
computation than existing multi-task models (i.e., Psi-Net and ResUNet-a D7). We conclude that BsiNet can be 
used successfully in extracting agricultural fields from high-resolution satellite images and can be applied to 
different field settings.   

1. Introduction 

Detailed spatial information on agricultural fields is essential to 
many applications in agriculture, such as crop mapping, crop yield 
estimation, and sustainable agriculture planning (McCarty et al., 2017; 
Belgiu and Csillik, 2018). Traditional methods of delineating the 
boundaries of agricultural fields are usually done by field surveys or the 
visual interpretation of remote sensing images. Such practices are 
labour-intensive and time-consuming. Recently, considerable efforts 
have been devoted to automatically delineating field boundaries using 
satellite images (Graesser and Ramankutty, 2017; Waldner et al., 2021), 
especially those with high spatial resolutions, providing opportunities to 
identify fields with small sizes and irregular shapes (Persello et al., 
2019). 

A widespread practice for field delineation is using image segmen-
tation techniques based upon edge detection, region segmentation, and 
machine learning (Hossain and Chen, 2019). Commonly used edge 
detection methods only consider the changes between neighbouring 

pixels, limiting the use of high-level image features. A major problem in 
edge detection is to obtain closed boundaries. To address this problem, 
increasing attention has been given to region-based methods, e.g., using 
multi-resolution segmentation algorithms (Wassie et al., 2018). Region- 
based methods provide solutions to form closed boundaries when 
delineating agricultural fields. These methods, however, depend on 
well-segmented image objects, for which poor segmentation results may 
lead to low-quality field delineation (Hossain and Chen, 2019). 

Recently, more focus has been given to deep learning techniques in 
extracting agricultural fields from satellite images (Volpi and Tuia, 
2018; Masoud et al., 2020; Wagner and Oppelt, 2020; Zhang et al., 
2021). Convolutional neural networks (CNNs) are popular for image 
semantic segmentation, providing an alternative solution for extracting 
agricultural fields. For example, Persello et al. (2019) used an encoder- 
decoder fully convolutional network, i.e., SegNet, and Garcia-Pedrero 
et al. (2019) used a UNet to extract field boundaries automatically. 
Although these methods can obtain acceptable results, they ignore the 
role of related tasks that share an optimal hypothesis class (Ruder, 
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2017), which can help to reduce network overfitting and improve 
generalisation. 

An interesting method is based upon multi-task learning that learns 
various tasks through a jointed representation to improve model effec-
tiveness (Ruder, 2017). A recent multi-task learning model of interest is 
Psi-Net, which consists of three learning modules corresponding to 
boundary, mask, and distance tasks (Murugesan et al., 2019). The 
addition of relevant tasks is conducive to improving the shape and 
boundary of the primary task (i.e., mask), resulting in better general-
isation than conventional CNNs. Waldner and Diakogiannis (2020) used 
a multi-task neural network ResUNet-a to identify field boundaries, 
extent, and distance from Sentinel-2 images, followed by a watershed 
segmentation to obtain closed boundaries for individual fields. Their 
methods obtained satisfactory results for medium-resolution satellite 
images, but the potential for field extraction on high spatial resolution 
images remains to be investigated. 

This paper aims to extract agricultural fields from high spatial res-
olution satellite images using multi-task learning methods. We propose a 
single encoder-decoder multi-task network unifying boundary and 
shape perception, called BsiNet, to improve the geometric accuracy of 
extracted field boundaries. The novelty and contributions of the paper 

are as follows:  

• A new multi-task model, called BsiNet, is proposed to delineate 
agricultural fields from high-resolution satellite images (accessed at: 
https://github.com/long123524/BsiNet-torch);  

• The model has a flexible backbone structure that can be replaced by 
various state-of-the-art networks;  

• An extensive experimental analysis is conducted to evaluate the 
effectiveness and efficiency of BsiNet using high-resolution images 
collected in four different areas. Moreover, BsiNet is compared to 13 
different methods with varying distance features, network back-
bones, and attention mechanisms. 

The remainder of this paper is organised as follows: Section 2 illus-
trates the study areas and datasets, Section 3 describes the proposed 
method in detail. Section 4 presents the experimental results and related 
analysis, followed by a discussion in Section 5 and the conclusions of this 
research in Section 6. 

2. Study areas and datasets 

Experiments were conducted in four study areas located in Xinjiang, 
Fujian, Shandong, and Sichuan, in China, respectively (Fig. 1). Agri-
cultural fields in Xinjiang and Shandong areas have regular shapes, big 
sizes, and clear boundaries, while fields in Fujian and Sichuan areas are 
small, irregularly shaped, and have ragged boundaries. It is therefore 
challenging to delineate field boundaries in the Fujian and Sichuan 
areas. For the Xinjiang area, a GaoFen1 (GF1) satellite image was ac-
quired, while GaoFen2 (GF2) images were obtained for the other three 
areas. Detailed information regarding the study areas and images is 
given in Table 1. We used the Gram-Schmidt pan-sharpening method to 
fuse multi-spectral GF1 and GF2 images with the corresponding 
panchromatic bands (Laben and Brower, 2000). For experimental con-
venience, we further resampled the GF1 and GF2 pan-sharpened images 
to 2 m and 1 m, respectively. 

Ground-truth agricultural fields were obtained by manually delin-
eating the high-resolution images of the study areas at the local scale. 

Fig. 1. Overview of the Xinjiang, Fujian, Shandong and Sichuan study areas and satellite images. Red and yellow boxes refer to subsets of training and testing areas, 
A and B are enlarged views of agricultural fields, and 1–4 are the test areas of the four study areas. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 1 
Details of the study areas and images. XJ, FJ, SD, and SC refer to Xinjiang, Fujian, 
Sichuan, and Shandong, respectively. M and P refer to multi-spectral and 
panchromatic bands. SR, TR, and Dates refer to spatial resolution, temporal 
resolution, and acquisition dates.  

Areas Satellites SR TR Dates Size 
(pixels) 

Area 
(km2) 

XJ GF1 M = 8 m, 
P = 2 m 

4 days 20180901 10272×

6556 
270.76 

FJ GF2 M = 4 m, 
P = 1 m 

5 days 20190919 19149×

21018 
207.90 

SD GF2 M = 4 m, 
P = 1 m 

5 days 20211220 12965×

9905 
125.97 

SC GF2 M = 4 m, 
P = 1 m 

5 days 20210321 15094×

12013 
147.46  
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We selected three training and one testing areas for the Xinjiang dataset, 
two training and one testing areas for the Fujian dataset, one training 
area and one testing area for the Shandong dataset, and two training 
areas and one testing area for the Sichuan dataset, corresponding to the 
red and yellow boxes in Fig. 1. The field samples within each training 
area were further randomly partitioned into training and validation 
samples, while field samples within testing areas were used as testing 
samples. 

3. Methods 

We considered the field delineation task a multi-task semantic seg-
mentation problem, and used BsiNet to do the semantic segmentation. 
Fig. 2 shows the workflow of the proposed BsiNet method. BsiNet was 
constructed based upon a single encoder-decoder segmentation network 
Psi-Net, consisting of a mask, boundary, and distance components. More 
specifically, a boundary map was derived from a mask map, while a 
distance map was obtained by performing a quasi-Euclidean distance 
transformation on the boundary. The distance map alleviates the errors 
of isolated segmentation in the results. Moreover, we incorporated a 
spatial group-wise enhancement (SGE) module into the decoder to 
improve the identification of small fields. 

3.1. Multi-task network model Psi-Net 

For semantic segmentation, Psi-Net is a popular multi-task model 
with a UNet-like encoder-decoder architecture, consisting of one 
encoder and three decoders (Murugesan et al., 2019). The encoder 
comprises repeated downsampling operations after a 3 × 3 convolution 
with a stride of 1 (Fig. 3A). The last downsampling refers to a 4 × 4 max 
pooling and is used as the input of decoders. The three decoders are 
parallel and have similar structures, corresponding to a mask, boundary, 
and distance decoders. Each decoder concatenates image features from 
the corresponding encoder layer, forming multi-scale features. The 
features of the three tasks are then extracted by the last layer of the 
decoders through a 1 × 1 convolution. 

Here the mask is seen as the core task, while boundary and distance 
estimation are auxiliary tasks. The two auxiliary tasks are used to obtain 
the target’s shape and boundary information and refine the mask pre-
diction of agricultural fields. Moreover, the mask and boundary pre-
dictions are classification tasks, and the distance map estimation is a 
regression task. 

3.2. BsiNet 

3.2.1. SGE attention module 
Inspired by Psi-Net, we propose a new multi-task network based 

upon a single encoder-decoder Psi-Net and a SGE attention module, 
called BsiNet (Fig. 3B). Unlike Psi-Net, our network uses one single 
decoder to produce three types of information mask, boundary, and 
distance. We argue that such a decoder is sufficient to replace the three 
decoders provided by a Psi-Net and thus reduce computation time. 
Another advantage is that BsiNet learns information on distance and 
contours together. To improve the identification of small fields, we 
added the SGE attention module at the end of BsiNet (Fig. 3B). Gener-
ally, high-level image features generated through a CNN contain 
apparent noise and have ill-distributed feature responses (Li et al., 
2019). To deal with these problems, we incorporate a SGE attention 
module into BsiNet to extract enhanced features, utilising the global 
information of each channel of the image features and scaling the 
importance of different channels. 

Let X be the matrix of convolutional features with c channels 
(Fig. 3B). Each channel has a length h and a width w. The SGE module 
first divides the feature matrix X into k groups according to channel 
dimension, where X = {x1,⋯, xm},m = h× w, and xi ∈ Rc

k indicates the 
feature vector of a specific point in the h × w space (Li et al., 2019). To 
retain key feature responses while alleviating feature noise, SGE reas-
signs the importance of each point xi by calculating the similarity be-
tween its feature vector with a global feature vector g that is obtained by 
spatially averaging all possible points. Suppose f indicates a spatial 
averaging function, then the global feature vector g is defined as: 

g = f (x) =
1
m

∑m

i=1
xi. (1)  

We obtain an importance coefficient ci for each xi, as, 

ci = g⋅xi = ‖g‖⋅cos‖xi‖⋅cos(θi) (2)  

where θi indicates the angle between xi and g in feature space. 
To avoid the influence of the biased magnitude of coefficients be-

tween various samples, the importance coefficient ci is further normal-
ised as: 

ĉi =
ci − ud

δc + ∊
, ud =

1
m

∑m

j
cj, δ2

c =
1
m

∑m

j
(cj − uc)

2 (3)  

where ud and δ2
c are the mean and variance of the importance coefficient 

Fig. 2. Workflow of the proposed field delineation using BsiNet from high-resolution satellite images.  
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ci and ∊ is a constant ensuring the denominator is positive. Furthermore, 
we adjust the normalized ĉi using a linear function to ensure that the 
normalization can represent the identity transformation and that the 
normalized operation can be restored, i.e., 

pi = αĉi + β (4)  

where α and β are function parameters, and pi is the adjusted coefficient. 
Here we set α = β equal to k (i.e., 32), referring to Li et al. (2019). 

The enhanced feature vector x̂i is obtained by scaling the original 
feature vector xi with an importance coefficient that is derived by 
applying a sigmoid function δ over the adjusted coefficient pi, 

x̂i = xi⋅δ(pi). (5)  

3.2.2. Quasi-Euclidean distance 
In a multi-task network, the distance to the boundaries helps to 

alleviate the errors of isolated segmentation (Tan et al., 2018). Obtain-
ing distance features is thus essential to multi-task model performance. 
Unlike Psi-Net, which obtains distance features based upon the corre-
sponding mask channel, we use the quasi-Euclidean distance trans-
formation to obtain distances from the corresponding boundary map. 
The quasi-Euclidean distance considers the influence of horizontal, 
vertical, and diagonal pixels (Paglieroni, 1992). It provides better per-
formance in the distance metric compared to the Euclidean distance that 
only considers diagonal pixels (Singh et al., 2020). 

3.2.3. Loss function 
In multi-task learning, we often set different loss functions for other 

tasks. Here, we refer to Murugesan et al. (2019) for constructing loss 
functions. Mask and boundary predictions adopt a negative log- 
likelihood (NLL) loss, while the distance map estimation adopts a 
mean square error (MSE) loss. Let lcls be the pixel-wise classification loss 

Fig. 3. Architecture of multi-task Psi-Net (A) adjusted from Murugesan et al. (2019), and the proposed BsiNet (B).  
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(i.e., NLL), x be the pixel position in image space R. The loss function of 
mask and boundary prediction tasks with N input instances are defined 
as: 

lcls = −
1
N

∑N

i=1
logpmc(x; lmc(x)) (6)  

where pmc(x; lmc(x)) indicates the predicted probability, by softmax 
activation, of the true label lmc. To obtain the MSE loss (i.e., lreg) of the 
regression task, namely the distance map estimation, we calculate the 
bias from predicted distance D̂(x) and ground truth distance D(x). More 
specifically, lreg is obtained as: 

lreg =
1
N

∑N

i=1
(D̂(x) − D(x))2

. (7)  

For multiple tasks, we aggregate the loss values of different subtasks to 
formulate the total loss: 

ltotal = w1⋅lcls1 +w2⋅lcls2 +w3⋅lreg (8)  

where lcls1, lcls2, and lreg refer to the loss values of the three subtasks, 
corresponding to mask, boundary, and distance prediction, and w1,w2, 
and w3 are the corresponding weight coefficients. For comparison, we 
use the above loss functions for all multi-task networks, and set equal 
weights, i.e., w1=w2=w3 for all separate sub-tasks, referring to Mur-
ugesan et al. (2019). 

3.3. Variations on BsiNet and comparison with existing models 

3.3.1. Variations on BsiNet 
(A) Varying distance features generation methods 
In a multi-task network, the subtask for distance map estimation 

regularises the boundaries and shape of the objects of interest segmented 
by the subtask for core task predication. Murugesan et al. (2019) found 
that for multi-task semantic segmentation, the distance map derived 
from the Euclidean distance transform of the boundary map is better 
than that of the mask map of the ground-truth fields. Here, we compare 
BsiNet with three variants (Fig. 4): BsiNetMED and BsiNetBED derive the 
distance maps using the conventional Euclidean distance transformation 
of the mask image and the boundary image, respectively, and BsiNetMQD 
derives the distance map using the quasi-Euclidean distance trans-
formation of the mask image. 

(B) Varying attention modules 

To investigate the effect of attention modules on BsiNet, we varied 
the models using different attention modules, i.e., squeeze and excita-
tion (SE) (Hu et al., 2018) and convolutional block attention module 
(CBAM) (Woo et al., 2018), leading to two multi-task models, i.e., 
BsiNetSE and BsiNetCBAM, respectively. Moreover, we removed the 
attention module from BsiNet, labeled as BsiNetNA. The choice of these 
two attention modules was motivated by the following: 

SE, improves the representation power of a network by adaptively 
recalibrating channel-wise feature responses based upon the in-
terdependencies of each channel (Hu et al., 2018). It is a general- 
purpose attention module for semantic segmentation and image classi-
fication (Fig. 4a). 

CBAM, derives a channel and a spatial attention map from a con-
volutional feature map by two sequential sub-modules, referring to 
channel and spatial modules (Woo et al., 2018). The global responses of 
convolutional features are combined from the channel and spatial per-
spectives (Fig. 4b). In contrast to the SE module, CBAM improves the 
characterization of small objects, and the corresponding agreement with 
their positions and geometric accuracy. 

(C) Varying backbones 
To vary the backbones of BsiNet, we replaced its encoder-decoder 

components with AttentionUNet (Oktay et al., 2018), UNet16 (Iglovi-
kov and Shvets, 2018), LinkNet34 (Chaurasia and Culurciello, 2017), 
and D-linkNet101 (Zhou et al., 2018), leading to BsiNetAUN, BsiNetUN,

BsiNetLN, BsiNetDN, respectively. The motivations for selecting these 
methods are as follows: 

AttentionUNet, is a variant of UNet, which adds an attention gate 
module at the end of each jump junction (Fig. 4c). The attention gate 
derives attention responses on the targets with various shapes and sizes 
and improves model sensitivity for dense label predictions. 

UNet16, uses a pre-trained VGG16 as its encoder for initialising 
model weights, rather than training the model from scratch with random 
initialisation weights like a classical UNet (Fig. 4d). Such fine-tuning 
practice improves model convergence and generalizability. 

LinkNet34, connects the encoder of a network with its decoder in a 
different way than those encoder-decoder networks of the UNet family 
(Chaurasia and Culurciello, 2017). Usually, some spatial information 
may be lost by performing multiple downsampling (e.g., pooling) op-
erations in the encoder, which is hard to recover using the decoder. The 
LinkNet34 retains the spatial information by removing the down-
sampling operation, commonly done in a conventional encoder-decoder 
network, from each encoder block (Fig. 4e). 

D-LinkNet101, uses a LinkNet with a pre-trained encoder as its 

Fig. 4. BsiNet variants. It consists of 10 multi-task networks via varying distance, attention modules and backbones. Backbones adjusted from AttentionUNet, 
UNet16, LinkNet34, and D-Linknet101 (Oktay et al., 2018; Iglovikov and Shvets, 2018; Chaurasia and Culurciello, 2017; Zhou et al., 2018). 
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backbone, and adds a set of dilated convolutions between the decoder 
and encoder (Zhou et al., 2018) (Fig. 4f). Adding these dilation convo-
lutions expands the feature’s receptive field while retaining feature 
maps’ resolution. D-LinkNet101 is thus capable of using global infor-
mation in a broad context for feature extraction. 

3.3.2. Comparison with existing models and accuracy assessment 
We compared BsiNet with three existing methods, two multi-task 

models, i.e., ResUNet-a D7 and Psi-Net, and a single-task UNet. Here, 
Psi-Net serves as a baseline for field delineation by multi-task networks, 
while ResUNet-a D7 was recently proposed to delineate fields from 
Sentinel-2 images (Waldner and Diakogiannis, 2020). UNet is a popular 
single-task encoder-decoder network, and was investigated by Xia et al. 
(2018) for field delineation. 

3.4. Accuracy assessment and performance evaluation 

We used a set of object-based error indices to evaluate both the 
attribute and geometrical accuracy of extracted fields (Persello and 
Bruzzone, 2009; Li et al., 2015). Let Mi be a classified object, i = 1,⋯,m, 
and Oi be the reference object that has the highest overlapping area with 
Mi. Let area(Mi) and area(Oi) be the areas of Mi and Oi, respectively, and 
area(Mi ∩ Oi) be their overlapping area. The over-classification error 
OC(Mi) and under-classification error UC(Mi) are then defined as: 

OC(Mi) = 1 −
area(Mi ∩ Oi)

area(Oi)
, (9)  

UC(Mi) = 1 −
area(Mi ∩ Oi)

area(Mi)
. (10)  

We then use OC(Mi) and UC(Mi) to obtain the total error TC(Mi), 

TC(Mi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

OC(Mi)
2
+ UC(Mi)

2

2

√

. (11)  

Based upon the obtained OC(Mi), UC(Mi), and TC(Mi) indices, three 
global error indices are derived, referring to as GOC,GUC, and GTC: 

GOC =
∑m

i=1

⎛

⎜
⎜
⎝OC(Mi) ×

area(Mi)

∑m

i=1
area(Mi)

⎞

⎟
⎟
⎠, (12)  

GUC =
∑m

i=1

⎛

⎜
⎜
⎝UC(Mi) ×

area(Mi)

∑m

i=1
area(Mi)

⎞

⎟
⎟
⎠, (13)  

GTC =
∑m

i=1

⎛

⎜
⎜
⎝TC(Mi) ×

area(Mi)

∑m

i=1
area(Mi)

⎞

⎟
⎟
⎠. (14)  

Moreover, we used Giga floating-point operations per second (i.e., 
GFLOPs) and the number of parameters (Hu et al., 2018) to evaluate the 
efficiency of BsiNet. 

3.5. Implementation details 

To facilitate model training, we cropped high-resolution satellite 
images into smaller images with a size of 256 × 256 pixels. In this work, 
we conducted data augmentation to enlarge the training dataset. More 
specifically, a sample image was flipped horizontally and vertically, 
followed by a clockwise image rotation of 90 and 180 degrees. To reduce 
the influence of invalid samples, we removed images with field pixel 
values of less than 40%. In total, we generated (2528, 150, 336), (5000, 
150,160), (5676, 150, 180), and (4128, 150, 180) samples for the 
training, validation, and testing of the Xinjiang, Fujian, Shandong, and 
Sichuan datasets. To train the BsiNet, we used the Adam optimiser with 
a batch size of 4 and an initial learning rate of 0.0001, and trained 150 
epochs using an NVIDIA GeForce RTX 2080Ti GPU. The same parame-
ters were used to train BsiNet variants and the existing Psi-Net, ResUNet- 
a D7, and UNet models. 

Fig. 5. Attention features extracted by BsiNet and BsiNetNA.  
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Fig. 6. Extraction results obtained by BsiNet and BsiNetNA.  

Fig. 7. Examples of agricultural fields and field boundaries extracted by BsiNet on the Xinjiang dataset.  
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4. Results 

4.1. SGE attention 

We compared the feature maps of agricultural fields derived from 
BsiNet to those without an SGE attention module, i.e., BsiNetNA. For the 
SGE module in BsiNet, we set the number of groups to 32, as recom-
mended by Li et al. (2019). The feature map generated from an attention 
module highlights the areas of images to be identified as agricultural 
fields (Fig. 5). The figure shows that BsiNet more accurately emphasised 
every field (red box c in Fig. 5) compared to BsiNetNA. Moreover, 
BsiNetNA failed to accurately locate fields, leading to adjacent fields (red 
circles a, b, d, and e in Fig. 5), while BsiNet was able to identify these 
fields more accurately. The agricultural fields obtained from BsiNet and 
BsiNetNA for the four examples are shown in Fig. 6. In general, the fields 
obtained from BsiNet are closer to the ground truth fields than BsiNetNA 
in shape completeness and boundary separation. Notably, when the SGE 
attention module was added, the boundary delineation of small fields 

Fig. 8. Results of agricultural fields and field boundaries extracted by BsiNet on the whole Xinjiang dataset. Red and yellow boxes represent the training and testing 
areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Comparing geometric errors of the extraction results between 14 different 
methods on the Xinjiang dataset.  

Groups Methods GOC GUC GTC 
Proposed BsiNet 0.062 0.042 0.062 

Distance BsiNetMED 0.123 0.052 0.111  
BsiNetBED 0.115 0.058 0.105  
BsiNetMQD 0.112 0.055 0.101 

Attention mechanism BsiNetNA 0.129 0.058 0.115  
BsiNetSE 0.120 0.062 0.110  
BsiNetCBAM 0.085 0.082 0.100 

Backbones BsiNetATN 0.272 0.057 0.216  
BsiNetUN 0.208 0.053 0.172  
BsiNetDN 0.229 0.046 0.183  
BsiNetLN 0.234 0.046 0.185 

Existing models Psi-Net 0.170 0.049 0.142  
ResUNet-a D7 0.205 0.122 0.204  
UNet 0.282 0.084 0.224  
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(red circles a and d in Figs. 6A and 6C) and adjacent fields (red circles b, 
c, and e in Figs. 6A, 6B, and 6D) was improved. 

4.2. Agricultural fields obtained by BsiNet on the Xinjiang GF1 image 

We applied BsiNet to delineate agricultural fields from the Xinjiang 
GF1 image. It was trained from scratch using the training dataset 
collected from three subsets of the Xinjiang area. The parameter setting 
for model training was detailed in Section 3.5. Fig. 7 displays extracted 

Fig. 9. Distribution of the GTC error of the agricultural fields extracted by BsiNet and other methods on the Xinjiang dataset.  

Table 3 
Comparing computation load and model parameters between different models. 
GFLOPs represent Giga floating-point operations per second and 1 M equals 106.  

Models Image size GFLOPs Parameters 

BsiNet 256× 256 13.30 7.84 M 
UNet 256× 256 46.13 31.04 M 
Psi-Net 256× 256 32.61 14.11 M 
ResUNet-a D7 256× 256 70.90 131.47 M  

Table 4 
Geometric errors of extracted fields by BsiNet, BsiNetCBAM, and ResUNet-a D7 on 
the Fujian dataset.  

Types GOC GUC GTC 

BsiNet 0.322 0.165 0.291 
BsiNetCBAM 0.359 0.238 0.353 
ResUNet-a D7 0.817 0.073 0.583  
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results by BsiNet for the different examples. BsiNet produced well- 
delineated boundaries for regions characterised by regular fields 
(Figs. 7a-c) and irregular fields (Fig. 7d), and was able to deal with the 
spectral heterogeneity between different fields (Figs. 7b and 7c). 
Moreover, the results of fields delineation for the entire GF1 image using 
BsiNet are shown in Fig. 8. This figure shows that BsiNet produced clear 
field boundaries for the Xinjiang dataset. 

4.3. Accuracy assessment on the Xinjiang dataset 

We compared field delineation using BsiNet with ten BsiNet variants, 
two existing multi-task Psi-Net and ResUNet-a D7, and an existing single 
task UNet. The ten BsiNet variants were formulated by varying distance 
features (i.e., BsiNetMED,BsiNetBED, and BsiNetMQD), attention modules (i. 
e., BsiNetNA, BsiNetSE, and BsiNetCBAM), and backbones (i.e., BsiNetUN,

BsiNetDN, BsiNetLN, and BsiNetATN). All methods were tested using the 
same testing dataset. Table 2 evaluates the geometric accuracy of 
extracted results using GUC, GOU, and GTC error indices. This table 
shows that BsiNet yielded the lowest GOC of 0.062, GUC of 0.042, and 
GTC of 0.062 on the Xinjiang dataset as compared to the other 13 
methods. BsiNetMQD produced the best results among the BsiNet variants 
within the distance group, leading to the smallest GOC and GTC errors. 
This implies that the use of quasi-Euclidean transformation improves 
delineation results. Among the BsiNet variants within the attention 
group, BsiNetCBAM generated better results compared with BsiNetNA and 
BsiNetSE, resulting in lower GOC and GTC errors. Results imply that 
incorporating spatial and channel attention can further improve the 
geometric accuracy of field extraction. Furthermore, using BsiNet pro-
duced lower GOC, GUC, and GTC values than BsiNetCBAM. This indicates 
that SGE attention shows a better performance than CBAM attention. 
Table 2 also shows that BsiNet outperforms BsiNetUN,BsiNetDN,BsiNetLN, 
and BsiNetATN. The multi-task networks produced lower GOC, GUC, and 
GTC errors than the single-task UNet model. 

Fig. 9 visualizes the GTC error of extracted fields by BsiNet and the 
other 13 methods. Among the BsiNet variants within the distance feature 
groups, BsiNetMED (Fig. 9a) and BsiNetBED (Fig. 9b) have higher seg-
mentation errors than BsiNetMQD (Fig. 9c). Among the BsiNet variants 
within the attention group, Figs. 9d and 9f exhibit a higher number of 
segmentation errors in BsiNetNA and BsiNetCBAM as compared with 

BsiNetSE (Fig. 9e). Among the BsiNet variants within the backbone 
groups, BsiNetUN, BsiNetATN, and BsiNetDN (Figs. 9g, 9h, and 9i) have 
higher segmentation errors as compared with BsiNetLN (Fig. 9j). This 
figure shows that BsiNet yields the lowest segmentation errors (Fig. 9n). 
Moreover, Psi-Net (Fig. 9k) produces lower segmentation errors than 
existing models UNet (Fig. 9l) and ResUNet-a D7 (Fig. 9m). 

We also compared the computation load of the model parameters of 
the BsiNet with existing models (Table 3). This table shows that when 
the input image size is the same, BsiNet has the smallest GFLOPs (13.30) 
and fewest model parameters (7.84 M), whereas ResUNet-a D7 has the 
most model parameters (131.47 M), leading to the highest computation 
load (70.90 GFLOPs). 

4.4. Agricultural fields obtained by BsiNet on the Fujian GF2 image 

We further evaluated BsiNet on the Fujian GF2 image. We trained 
BsiNet from scratch using the training dataset collected from two subsets 
of the Fujian area, and tested on one subset (Fig. 1). We compared the 
results of field delineation between BsiNet and BsiNetCBAM, which ach-
ieved the second-best accuracy on the Xinjian dataset (see Table 2). 
Furthermore, we compared BsiNet with ResUNet-a D7, which was 
recently used for field delineation from Sentinel-2 images. Table 4 lists 
the geometrical errors of extracted fields by the three methods. This 
table shows that BsiNet produced the lowest extraction errors than 
BsiNetCBAM and ResUNet-a D7 for GOC and GTC, while the highest GOC 
error was produced by ResUNet-a D7. It implies that the ResUNet-a D7 
developed based upon medium-resolution images may be not suitable 
for field delineation from high-resolution images. Fig. 10 visualises the 
GTC error of the fields extracted by BsiNet, BsiNetCBAM and ResUNet-a 
D7. Clearly, BsiNetCBAM and ResUNet-a D7 produced higher GTC errors 
than BsiNet. Fig. 11 shows the extracted agricultural fields for the whole 
Fujian dataset obtained with BsiNet. BsiNet generated smooth fields in 
the Fujian area, where agricultural fields are commonly found with 
irregular shapes. Moreover, the results also show that BsiNet achieved 
excellent extraction results in small field areas (Fig. 11e). 

Fig. 10. Distribution of the GTC error of the agricultural fields extracted by BsiNet, BsiNetCBAM, and ResUNet-a D7 on the Fujian dataset.  
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4.5. Agricultural fields obtained by BsiNet on the Shandong and Sichuan 
GF2 images 

Next, we applied BsiNet to delineate fields on the Shandong and 
Sichuan GF2 images. The (GOC, GUC, GTC) errors for the Shandong and 
Sichuan datasets are (0.024, 0.148, 0.115) and (0.029, 0.335, 0.241). 
Fig. 12 shows the results of field extraction on the two datasets. 
Although BsiNet produced satisfactory results for all four datasets, we 
can see that regular fields in Xinjiang and Shandong areas were 
extracted with lower errors than irregular fields in Fujian and Sichuan 
areas. 

5. Discussion 

This study investigated to use multi-task neural networks to delin-
eate agricultural fields from high-resolution satellite images. Inspired by 
Psi-Net network, we presented a new multi-task network, referred to as 
BsiNet, to learn high-level boundary and shape information of fields. We 
considered field delineation a multi-task semantic segmentation prob-
lem, and used BsiNet to extract field mask, boundaries and distance. Our 
first finding is that BsiNet evidently improves the extraction accuracy of 

agricultural fields, and can be used to extract fields over different areas. 
BsiNet is also more efficient than existing models, i.e., Psi-Net (Mur-
ugesan et al., 2019) and ResUNet-a D7 (Waldner and Diakogiannis, 
2020). The second finding is that the addition of auxiliary tasks retains 
the shape and boundary information of fields, yielding smooth fields. 
This further strengthens the applicability of the multi-task network 
developed in Murugesan et al. (2019). We observed that the shape and 
boundary information was also highlighted in a conventional image 
segmentation problem (Li et al., 2015). This shows a way that it is of 
high potential to design more advanced multi-task models of semantic 
segmentation by referencing the designing logic of conventional image 
segmentation methods. 

Recent studies have demonstrated the effectiveness of distance maps 
in reducing errors in isolated segmentation (Tan et al., 2018). In a multi- 
task network, we consider predicting distance map as an auxiliary task 
to generate smooth fields. The distance maps provide rich information 
(e.g., the shape and boundary of the agricultural fields) of the extracted 
fields. Therefore, training the multi-task network while predicting the 
distance maps corresponds to enforcing boundary and shape constraints 
for the delineation task. Moreover, studies have shown that adding 
boundary direction and intensity information can further constrain the 

Fig. 11. Results of field, boundary, and distance maps extracted by BsiNet on the Fujian dataset. The yellow box represents the testing area. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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object boundaries (Yuan et al., 2020), which still requires further 
research. 

To improve the identification of small fields, we added the SGE 
attention module to the multi-task network. Our results show that this 
emphasizes the learning of field-related features (e.g., field shape and 
boundaries) and ignores unrelated features, thus generating well- 
delineated fields. The boundaries of small fields are ambiguous, and 
extracting them is a challenging task. Recent studies have explored 
combining edge detection methods to extract small fields (Persello et al., 
2019). This paper capitalized on the advantages of SGE attention in 
small object identification, applying it to field extraction and the results 
show its potential for extracting small fields. 

We investigated the effect of the backbone network on BsiNet. The 
findings suggest that this did not improve the accuracy of the results. We 
also found that the models with a pre-trained network backbone (e.g., 
BsiNetLN and BsiNetDN) failed to improve field extraction accuracy, 
which may be related to weight initialization strategy and loss function 
settings. For this, we still need further research. 

The effectiveness of BsiNet was tested for agricultural fields delin-
eated on the Xinjiang GF1 and Fujian, Shandong, and Sichuan GF2 im-
ages. Most Xinjiang and Shandong fields have a regular shape and a clear 
boundary, leading to excellent extraction results. For the Fujian and 
Sichuan study areas, the fields are irregular and have ambiguous 
boundaries, and field extraction can be more challenging (Fig. 1). Based 
upon our analysis, our proposed method is applicable to both scenarios. 
In addition, we did transferability tests, namely transferring the BsiNet 
trained with the Sichuan GF2 image to extract fields on the Fujian GF2 
image, and transferring the BsiNet trained with the Xinjiang GF1 image 

to extract fields on the Shandong GF2 image (referring to Supplementary 
document). We observe that BsiNet has a high transferability, promoting 
the use of this method to wider applications. Moreover, we found that 
the existing ResUNet-a D7, which was developed based upon medium- 
resolution satellite images, failed to produce satisfactory results from 
high-resolution images. In addition, we also conducted extra experi-
ments to evaluate the applicability of BsiNet for medium-resolution 
Sentinel-2 images (referring to Supplementary document). Our results 
showed that the proposed BsiNet also has a high potential to be applied 
to medium-resolution satellite images like Sentinel-2 images. 

Conventional convolutional neural networks have difficulty in 
obtaining closed field boundaries. We used the multi-task BsiNet to 
identify agricultural fields, and obtained satisfactory extraction results 
on the Xinjiang and Shandong datasets. While our proposed method 
extracted fields with clear boundaries and shapes, it yielded non-closed 
field boundaries on the Fujian and Sichuan datasets which have irreg-
ular and complex fields. To deal with such an area, a possible solution is 
to extract field boundaries incorporating edge detection models or 
instance segmentation networks like Mask R-CNN (He et al., 2017). 
Studies have shown that they can produce closed boundaries in one 
segmentation, thereby avoiding complex post-processing work (Ruiz- 
Santaquiteria et al., 2020). 

6. Conclusions 

This study developed a multi-task neural network, called BsiNet, to 
extract agricultural fields using high-resolution satellite images. It 
combines the single encoder-decoder Psi-Net with a spatial group-wise 

Fig. 12. Results of agricultural fields and field boundaries extractions using BsiNet on the Shandong and Sichuan datasets.  
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enhancement (SGE) module to improve the accuracy and efficiency of 
field delineation. We conclude that:  

(1) The proposed BsiNet achieved the highest extraction accuracy 
compared with 10 BsiNet variants (with different distance mea-
sures, attention modules, and backbone structures) and three 
existing methods (i.e., Psi-Net, ResUnet-a D7, and UNet). More-
over, BsiNet is a lightweight nework with fewer model parame-
ters and faster implementation than the existing methods;  

(2) The use of auxiliary tasks (i.e., boundary and distance maps) 
improves the geometric accuracy of extracted fields compared 
with single task UNet, which only uses a mask task. The addi-
tional attention module SGE further improves the extraction of 
small fields. BsiNet is effective for delineating farm fields with 
irregular shapes and small sizes; 

(3) BsiNet can be used as a multi-task model for remote sensing in-
formation extraction, characterized by a flexible structure and is 
easy to expand. The results suggest that it offers a potential so-
lution for agricultural applications needing delineating agricul-
tural fields. 
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