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Measures of spatial association are important to reveal the spatial structures and patterns in geographical

phenomena. They have utility for spatial interpolation, stochastic simulation, and causal inference, among

others. Such measures are abundantly available for continuous spatial variables, whereas for categorical

spatial variables they are less well developed. In this research, we developed a measure of spatial association

for categorical spatial variables coined the entropogram, quantifying its spatial association using mutual

information. Mutual information concerns information shared by pairs of random variables at different

locations as revealed by their observed joint frequency distribution and marginal frequency distributions. The

developed new measure is modeled as a function of lag in analogy to the variogram. Whereas existing

measures focus mainly on interstate relationships, the entropogram models the spatial correlation in

categorical spatial variables holistically. In this way, the entropogram imparts multiple advantages, for

example, simplifying the representation of spatial structure for categorical variables and facilitating

communication. The entropogram also reflects variation in the spatial correlation between different states.

We first explored the properties of the entropogram in a simulation study. Then, we applied the

entropogram to analyze the spatial association of land cover types in Qinxian, Shanxi, China. We conclude

that the entropogram provides a suitable addition to existing measures of spatial association for applications

in a wide range of disciplines where the categorical spatial variable is of interest. Key Words: categorical data,
entropogram, multicategorical random function, mutual information, spatial association.

S
patial association is an essential property of

Earth science data (Fotheringham 2009;

Goodchild 2011). It describes the variation in

a property or between elements as a function of the

distance and direction vector between observations

at different locations (Cliff and Ord 1981). Spatial

association is determined by the underlying spatial

and dynamic processes operating on geographic land-

scapes, whether they arise from natural or human

activities. For example, land-cover change processes

might affect the spatial pattern of the landscape,

which itself could affect the space–time pattern of

the local microclimate (Pielke 2005). Often, spatial

association can be used to infer the parameters of

models of the corresponding underlying dynamic

processes that led to the observed patterns, and sup-

port subsequent decision-making (Wang, Zhang, and

Fu 2016; Benedetti et al. 2020). It is, therefore,

important to measure and characterize the spatial

association in geographical properties and elements

over the Earth’s surface.
At the broadest level of classification, Earth sci-

ence data as a realization of random functions (RFs)

can be either continuous or categorical (Ge et al.

2019). An RF is a stochastic process that can gener-

ate the same realizations as a dynamic process (i.e.,

an RF is a surrogate for our incomplete knowledge of

the dynamic process). The main difference between
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continuous and categorical data is that categorical

data consist of states (e.g., land-cover types),

whereas continuous data take values on an interval

or ratio scale (e.g., temperature). This distinction

has led to the emergence of different methods to

characterize various types of spatial association for

RFs, including spatial autocorrelation and spatial

heterogeneity (Anselin 2010; Wang et al. 2010).

Since the 1950s, various statistical measures and

functions have been proposed to describe the spatial

association in continuous data. Widely used statisti-

cal measures for a spatial continuous field are

Moran’s I (Moran 1950), Geary’s c (Geary 1954),

the covariance function, and the variogram

(Matheron 1963). Moran’s I and Geary’s c were

developed to test for spatial correlation in a continu-

ous variable measured at discrete units. The covari-

ance function is rooted in time-series modeling, and

was adapted to model spatial dependence, and the

variogram, as its generalization, was introduced spe-

cifically for handling spatial data (Matheron 1963;

Goovaerts 1997; Garrigues et al. 2006). Both the

covariance function and the variogram describe how

spatial variation in a continuous variable varies as a

function of separation distance and direction. These

functions were developed for continuous variables.

They cannot be applied directly to categorical data

as the states in categorical data are qualitatively dif-

ferent, not numerically different.
The indicator variogram was proposed as an

extension of the variogram to model categorical data

with states (Journel 1986). The multiple states are

reduced to a set of binary spatial variables by com-

paring each state against all others each time, and

the resulting binary data are de facto discrete RFs

taking only two possible values (0, 1), for example,

referring to the presence (1) or absence (0) of the

target state. Following this transformation from

states to binary values, a more general solution is to

capture the corresponding frequency information of

the variable states with a probability mass distribu-

tion of states. For example, the join count statistic is

a widely used frequency-derived index to characterize

the global spatial autocorrelation of categorical vari-

ables (Cliff and Ord 1970). In place of the variance

of binary data, it represents the degree of dispersion

by relating the number of connections (correspond-

ing to the occurrence of value pairs at neighboring

locations) to the theoretical number of connections

if the points were distributed randomly. More

recently, it was popularized, and the number of con-

nections was extended to the transition probability

of the states at neighboring locations (Bai et al.

2016). To address spatial heterogeneity, the condi-

tional version of a local join count statistic was pro-

posed (Anselin and Li 2019), and the transiogram

(W. Li 2006) was developed to model the transition

probability between different variable states as a

function of spatial lag. These spatial association

measures focused mainly on state-level spatial associ-

ation, especially interstate relationships, and did not

result in a comprehensive representation of the full

variable state space.
Entropy characterizes the spatial association of a

categorical spatial variable where the transformation

from states to values is no longer needed. Measures

of spatial association based on entropy include sym-

bolic entropy (Ruiz, L�opez, and P�aez 2010), spatial

entropy (Leibovici et al. 2011), spatial mutual infor-

mation (Altieri, Cocchi, and Roli 2018), and the

entropy-based local indicator of spatial association

(Naimi et al. 2019). These global and local entropy-

based indexes of spatial association for categorical

data fail to capture any heterogeneity in the underly-

ing stochastic process from which the realization

(spatial data) is supposed to have been drawn

(Atkinson and Tate 2000). Most existing entropy-

derived measures assume implicitly that all spatial

random variables (RVs) share the same probability

mass distribution at each location. Spatial data are

then considered as mutually independent samples

from that distribution. This assumption of indepen-

dently and identically distributed (i.i.d.) samples

taken from a spatially distributed phenomenon, how-

ever, is geographically unrealistic. In this circum-

stance, spatial association as a function of the

distance (and direction) between locations cannot

be generalized for categorical data.
In this research, we introduce the concept of

mutual information into the variogram. We develop

and apply a new function to characterize the spatial

association of a categorical spatial variable based on

the mutual information between pairs of points,

under the assumption of second-order stationarity.

The developed new function is termed the entropo-

gram, which can model the spatial association in

multicategory (i.e., multistate) spatial data directly.

Specifically, it is conceived as a function of lag, in

analogy to the variogram, where the variance at

each lag is replaced by the corresponding mutual
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information about the RV at two locations. Mutual

information quantifies the total amount of informa-
tion shared by the RV at two locations. It reveals
the spatial dependence between any two spatial loca-
tions in terms of the full variable state space instead

of the individual variable states only. In this way,
the entropogram can help to better understand the
geographical processes underlying categorical proper-

ties from an information perspective.
In the remainder of this article, we first define the

entropogram and propose its estimation from sample

data. Then corresponding confidence intervals are
provided through an uncertainty analysis. Next, we
present both numerical and real-world experiments

that examine the performance of the proposed entro-
pogram together with a discussion of the most salient
issues. Finally, we provide some concluding remarks.

Capturing Spatial Association with

Mutual Information

Conceptual Framework

In this section, we give a brief introduction to the
development of the variogram and entropy-based meas-
ures of spatial association for a single qualitative spatial

variable to demonstrate clearly our contribution.

Variogram. Geostatistics is based on regionalized
variable (ReV) theory (Matheron 1963). ReV theory

defines, first, an RF model, being the spatial equiva-
lent of a random variable (RV) where each location
has its own RV. The RF is parameterized by the vario-

gram, which represents semivariance as a function of
lag (the distance and direction of separation). The
semivariance is the spatial equivalent of (specifically
half of) the variance of an RV for a pair of points.

Application of the variogram is, therefore, accompa-
nied by the decision to adopt an RF that is intrinsi-
cally stationary. This requires that the RF covering

the study domain has a constant mean, and that the
semivariance of the paired differences between RVs
depends only on the lag between their two locations.

In this way, the variogram characterizes spatial depen-
dence and, more specifically, it specifies how the
semivariance varies as a function of the lag between

pairs of locations. Mathematically, given an RF Z the
variogram c is defined for spatial lag h (i.e., the dis-
tance and direction between any two locations in the
study domain) as:

c hð Þ ¼ c Z sð Þ,Zðs� hÞ� � ¼ 1

2
E Z sð Þ � Z s� hð Þ� �2h i

,

(1)

where s is a location vector.

Entropy-Derived Measures. Most entropy-based

measures of spatial association are derived directly

from the classic Shannon entropy (Shannon and

Weaver 1949). Entropy characterizes the different

states of categorical variables simultaneously. Consider

a categorical RV X with m finite states x1, x2, … , xm,
each with an occurrence probability p x1ð Þ, p x2ð Þ, … ,

p xmð Þ, respectively. The Shannon entropy H Xð Þ of a
categorical RV X represents the amount of informa-

tion associated with each observation to identify its

true state (Shannon andWeaver 1949). It equals:

H Xð Þ ¼ �
Xm

i¼1
p xið Þln p xið Þð Þ (2)

where xi is the ith state of X. H(X) represents the

expectation of the amount of information that can be

obtained from each observation. For state xi, this

equals �ln p xið Þð Þ, indicating that states with lower

occurrence probability can provide more information

once observed. The Shannon entropy requires X to

behave equivalently across space (i.e., the spatial data

are considered as mutually independent samples drawn

from single RVs; see Figure 1). In consequence, spatial

associations between locations cannot be captured by

the model due to the independence assumption.

Spatial entropy was proposed to characterize the cooc-

currence of states at position pairs separated by a dis-

tance smaller than a fixed threshold h, instead of the

incidence of available states over space (Leibovici

et al. 2014). Spatial entropy is also appliable to multi-

variate joint distributions. As we focus on a single geo-

graphical variable across space, cooccurrences are

defined here as the simultaneous realization of two

RVs at pairs of locations for illustration. Specifically,

all state pairs observed at two locations less than dis-

tance h apart are assumed to be drawn from a bivariate

distribution < X1,X2 > , and the entropy of <
X1,X2 > is defined as:

H X1,X2ð Þ ¼ �Pi

P
jph x1, i, x2, jð Þln ph x1, i, x2, jð Þð Þ,

(3)

where x1, i and x2, j are the ith and jth states for X1 and

X2, respectively, and ph x1, i, x2, jð Þ is their joint proba-
bility mass for cooccurrence closer than distance h.
Then, the spatial entropy is built as a function of

1962 Zhang et al.



threshold h; that is, the set of state similarities at

neighboring location pairs, where neighbors are

defined by being closer than the threshold distance h.
Note that X1 and X2 share the same set of states

regardless of h, and samples of the bivariate <
X1,X2 > are nested, expanding with the threshold

distance h. This means that the bivariate < X1,X2 >
are theoretically distinct at each threshold h, as a

result of spatial heterogeneity. In summary, almost all

spatial association measures are univariate or bivariate

in their approach to describing spatial association,

although locations per se are not accounted for. This

is similar to ReV theory, where the variogram is a

two-point statistic (Mariethoz and Caers 2014).

Mutual Information Described Spatial Association

We consider categorical spatial data as a realiza-

tion of a categorical random field X. Mutual infor-

mation can be naturally employed to describe the

spatial association between its two constituent RVs

Xðs1Þ and Xðs2Þ at a pair of locations s1 and s2 from

which the realized state at that pair of locations is

supposed to have been drawn. The mutual informa-

tion described spatial association (MSA)

MSA Xðs1Þ,Xðs2Þð Þ between Xðs1Þ and Xðs2Þ is

defined by the information difference between the

joint probability distribution of Xðs1Þ and Xðs2Þ and

the sum of their marginal distributions. That is,

MSA Xðs1Þ,Xðs2Þð Þ
¼ H Xðs1Þð Þ þH Xðs2Þð Þ �H Xðs1Þ,Xðs2Þð Þ, (4)

where H Xðs1Þð Þ and H Xðs2Þð Þ are the Shannon

entropy of categorical RVs Xðs1Þ and Xðs2Þ (see

Equation 2), and H Xðs1Þ,Xðs2Þð Þ is the Shannon

entropy of categorical RV Xðs1Þ,Xðs2Þ
� �

(see

Equation 3), respectively. Given a categorical spatial

data set, the observed states of interest at distinct

locations are assumed to be drawn from an RF X.

Figure 1. Conceptual framework based on Chiles and Delfiner (1999). Spatial data for a qualitative geographical variable are samples

from a realization of an underlying geographical process, which can be described by a random function. The bottom row shows the

modeling of such spatial data with concepts derived from Shannon entropy. Our proposed mutual information described spatial

association measure is a combination of mutual information entropy and the variogram (in red) that can better characterize the

properties of a geographical process.
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The second-order property of such an RF (i.e., the

covariance matrix) can then be described by our
proposed MSA across all location pairs.

Entropogram

Assumption of Second-Order Stationarity

For a pair of locations (s1, s2), reliable estimation

of the joint probability function of the corresponding
RVs Xðs1Þ and Xðs2Þ, as well as their marginal dis-
tributions, requires a number of sample observations.

There are generally insufficient data (generally only
one sample for each location), however, to estimate
the probability distribution at each location.
Therefore, analogous to the assumption of intrinsic

stationarity in geostatistics, we propose to define the
MSA by assuming that point pairs separated by the
same spatial lag also share equal spatial association.

Under this assumption, the MSA is defined as the
entropogram s, a function of lag h:

s hð Þ ¼MSA XðsÞ,Xðs�hÞð Þ

¼
X

i

X
j
p xi sð Þ,xj s�hð Þ� �

ln
p xi sð Þ,xj s�hð Þ� �
p xi sð Þð Þp xj s�hð Þ� �

 !
,

(5)

where xi sð Þ and xj s�hð Þ are the ith and jth states

for XðsÞ and Xðs�hÞ, respectively, and
p xi sð Þ,xj s�hð Þ� �

is their joint probability mass. The
derivation can be found in Appendix A. Equivalent
to the assumption of the shared constant mean, we

assume that X sð Þ and X s�hð Þ share the same proba-
bility mass function p xið Þ, for the RVs at each loca-
tion, where xi is the ith state of the study categorical

variable. In this way, p xi sð Þð Þ can be estimated by

p̂ xi sð Þð Þ ¼Ni=N, (6)

where Ni is the number of observations belonging to

the ith state and N is the total number of observa-
tions. xi sð Þ is conceived as the ith state at a ran-
domly chosen location s. Then, the joint probability

p xi sð Þ,xj s�hð Þ� �
is generated by

p xi sð Þ,xj s�hð Þ� �¼ p xi sð Þð Þp xj s�hð Þjxi sð Þ
� �

, (7)

where p xj s�hð Þjxi sð Þ
� �

is the conditional probability

that the virtual neighboring position s�h belongs
to the jth state given that location s belongs to the
ith state. By collecting the observations of point

pairs at spatial lag h apart, p xj s�hð Þjxi sð Þ
� �

is esti-
mated by

p̂ xj s�hð Þjxi sð Þ
� �¼ nij=ni, (8)

where ni is the number of point pairs at a spatial lag

h apart taking the ith state for at least one point

(XðsÞ ¼ xi or Xðs�hÞ ¼ xi), and nij is the number of

those point pairs having both the ith and jth state

(XðsÞ ¼ xi and Xðs�hÞ ¼ xj, or XðsÞ ¼ xj and

Xðs�hÞ ¼ xi). Thus, we haveX
j
nij ¼ ni, (9)

and, therefore,X
i

X
j
p xi sð Þ,xj s�hð Þ� �¼X

i

X
j
nij=ni
� �ðNi=NÞ¼1,

(10)

which means that the estimated probability mass

function p xi sð Þ,xj s�hð Þ� �
is valid. In summary, the

entropogram s hð Þ has several important properties,

including the following.

1. s hð Þ is nonnegative (i.e., s hð Þ � 0) and the necessary

and sufficient condition for s hð Þ ¼ 0 is that XðsÞ is

independent from Xðs� hÞ: Theoretically, two RVs

XðsÞ and Xðs� hÞ are independent of each other,

meaning that there is no association between them,

when s hð Þ ¼ 0:
2. Based on the definition of the entropogram, the spatial

association s hð Þ between XðsÞ and Xðs� hÞ is symmetric;

that is,MSA X sð Þ,Xðs� hÞ� � ¼ MSA X s� hð Þ,XðsÞ
� �

:
3. The spatial association between a variable and itself is

the Shannon entropy of that variable (i.e.,

s 0ð Þ ¼ H X sð Þð Þ). Indeed, H X sð Þð Þ is the expectation

of lnð1=p xðsÞð ÞÞ, where 1=p xðsÞð Þ can be understood

as the level of surprise at a specific state of X sð Þ being
observed. In this way, the spatial association between

a variable and itself takes the maximum value (i.e.,

s 0ð Þ ¼ H X sð Þð Þ � H X sð Þð Þ �H X sð ÞX s� hð Þ� � ¼
sðhÞÞ: This is intuitive as observations of one variable

provide the greatest information about that variable

relative to other variables.

Uncertainty Analysis

Based on a given sampling framework, the unknown

true probabilities in Equation 5 are estimated by the

frequencies of occurrence of different variable states

in the sample. At different spatial lags, the sample

size might be different, which will lead to variation

in the estimation accuracy across spatial lags. In this

section, the relationship between sample estimates

and the unknown true probabilities is explored.

1964 Zhang et al.



Let the unknown true probabilities pi, i ¼
1, 2, :::,m, come from the sequence of mutually inde-

pendent RVs, each of which takes on the state i with
probability pi: An estimate of the amount of Shannon

entropy Ĥ is obtained by the corresponding sample

estimates of the state incidence p̂i according to

Equation 2. Then, the estimated entropy can be

expanded in a Taylor series at the point ðp1, :::, pmÞ,
Ĥ ¼ H�

Xm

i¼1
1þ ln pið Þ p̂i � pi

� �
� 1

2

Xm

i¼1

p̂i � pi
� �2

pi

þ 1

6

Xm

i¼1

p̂i � pi
� �3

pi þ hðp̂i � piÞ
� �2 , (11)

where 0 < h < 1: A detailed derivation can be found

in Appendix B. As the sample size increases, the esti-

mate p̂i will tend to the true probabilities pi, thus,

E p̂i ¼
Ni

N

� �
⟶
N!1

pi (12)

where Ni is the occurrence number of a specific vari-

able state i and N is the sample size.
Given the sample size N, the number of occur-

rences of a specific variable state i can be considered

as a realization from the binomial distribution Ni �
BðN, piÞ: The variance of the corresponding sample

estimates of the state incidence p̂i is then obtained as

E p̂i � pi
� �2 ¼ Var

Ni

N

� �
¼ pi 1� pið Þ

N
: (13)

We then have that

E Ĥð Þ ¼ H� m� 1

2N
(14)

where m is the number of geographical variable

states. The variance of the sample estimates Ĥ can

be obtained and approximated by

Var Ĥð Þ ¼ E Ĥ �H� m�1
2N

� 	2
ffi E

Pm
i¼1 1þ ln pið Þ p̂i � pi

� �� �2
¼ 1

N

Xm

i¼1
piln

2pi �H2
� 	 , (15)

where terms of order of magnitude less than or equal

to N�2 are neglected, and the RV Ĥ is an asymptot-

ically normal estimate of the corresponding Shannon

entropy (Basharin 1959). According to Equations 4

and 5, the entropogram at a specific lag is the sum

of the Shannon entropy. Therefore, confidence

intervals for the entropogram can be obtained by

Monte Carlo methods. Specifically, it is possible to

draw samples repeatedly from the asymptotically nor-

mal random variables Ĥ XðsÞð Þ, Ĥ Xðs� hÞð Þ, and

Ĥ X sð Þ,Xðs� hÞ� �
simultaneously and calculate the

corresponding entropogram values. The mean and

variance of the three normal RVs are obtained using

Equations 14 and 15, respectively. Note that there is

no restriction on the distribution of the geographical

variables per se.

Results and Discussion

To evaluate the performance of the proposed

entropogram against existing common measures of

spatial association, we conducted a series of simula-

tion experiments and a real-world case study. The

simulation study explores the basic properties of the

proposed entropogram compared to existing meth-

ods. Next, we applied the entropogram to land cover

data to demonstrate its use in characterizing the sec-

ond-order properties of real geographical data.

Numerical Simulations

For the simplest case, three landscape maps with

two variable states were simulated with different spa-

tial patterns of black-and-white combinations

(Figure 2A–C). The simulated spatial pattern is sim-

ple, and the study area consists of only ten by ten

cells, providing great control over the experiments

and results. The proposed entropogram is compared

with the indicator variogram in Figure 2D–F. As

there are only two variable states, the indicator var-

iogram can be used to characterize the variance

information of the corresponding RF.

The proposed entropogram refers to the spatial

dependence between simultaneous realizations of

RVs at two locations, by indicating the variance

information as the dispersion of the state cooccur-

rence between those locations. This contrasts with

the covariance, which reflects the joint variability,

or dissimilarity, of the two RVs at those locations.

Specifically, the main differences between the entro-

pogram and the variogram are illustrated in Figure

2G–I. Given the state at one position, the entropo-

gram depicts to what extent the state at another

location is determined by the known state (i.e., it

shows their dependence from the perspective of

complexity). This is actually driven by the physical

Spatial Association from the Perspective of Mutual Information 1965



meaning of our used mutual information between

the two RVs. For example, the entropogram value at

spatial lag distance khk ¼ 3 increases toward a

greater value at distance khk ¼ 5 (see Figure 2D).

This increase is accompanied by the conditional

probability transferred from a chaotic situation to

the more deterministic circumstance as shown in

Figure 2G. Given the state of one location being

black (white), therefore, a location at a lag distance

khk ¼ 5 apart is more likely to be correctly pre-

dicted as being white (black). Hence, for this loca-

tion, the conditional probabilities of states are

distributed more unevenly, as compared to lag dis-

tance khk ¼ 3: Such state entanglement cannot be

revealed by the indicator variogram, however.

Despite the dissimilarity between the states of pairs

of RVs at different locations increasing with spatial

lag distance khk ¼ 1 to khk ¼ 4, the correlation

intensity between states is relatively stable (see

Figure 3). This means that the complexity of the

state cooccurrence is consistent at these two lags,

just only the dominant correlation transferred from

intrastate to interstate. Figure 2E shows that the

entropogram successfully characterized this kind of

correlation intensity between states, whereas the

indicator variogram can only describe the intensity

of the difference between the states of pairs of RVs

at different locations.
In addition, as the sample size for the calculation

of the entropogram naturally varies with spatial lag

distance, the 95 percent confidence intervals of the

entropogram are provided in Figure 2 also. Although

the samples are abundant for small lags, Table 1 fur-

ther gives specific values of the 95 percent confi-

dence intervals of the entropogram at spatial

distance lags khk ¼1, 4, 8, and 12, respectively, as

well as the corresponding sample sizes as examples.
We calculated Moran’s I, the join count statistic,

symbolic entropy, and the conditional probability-

based join count statistic (Bai et al. 2016), to measure

the global spatial association of the landscape maps in

Figure 2A–C (see Appendix C). Their values are

Figure 2. Simulated landscape maps produced with two states representing three spatial patterns: (A) negatively autocorrelated, (B)

positively autocorrelated, and (C) randomly distributed. (D–F) Comparisons between the entropogram (in blue) and indicator variogram

(in red) for landscape maps (A–C), respectively. (G–I) The conditional probabilities (p X s� hð ÞjX sð Þ
� �

; see Equation 8) of states black

(in blue) and white (in red) at different spatial lags. The left two bars are respective conditional probabilities of states for locations across

different spatial lags, given that the true state of one location is black. The right two bars are corresponding cases given that the true

state of one location is white.
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listed in Table 2. The symbolic entropy measures

whether the five-pixel surrounding pattern is signifi-

cantly different from that of a random distribution or

not. We applied the rook contiguity in cases where a

weight matrix was needed. According to Moran’s I,
the spatial patterns for Figure 2A-C are negatively

autocorrelated, positively autocorrelated, and ran-

domly distributed, respectively. These statistics, how-

ever, fail to characterize the detailed spatial structure

or variation of the spatial association.

Compared to the statistics of spatial association, the

variogram can de facto reflect information about the

covariability of a geographical process under the spa-

tial stationarity decision. The proposed entropogram

has the potential to reflect this information directly for

categorical data. Typical categorical variables such as

soil types and land-cover classes generally have multi-

ple states and exhibit complex interclass relationships,

as measured through the cross-correlation, neighbor-

ing situation, and directional asymmetry of class

Figure 3. Comparison between the information characterized by the entropogram and the indicator variogram. (A–B) Histograms of the

state cooccurrence for Figure 2B at lags of 1 and 5, respectively. BB¼ black–black; BW¼ black–white; WB¼white–black; WW¼white–

white. (C–D) The conditional probabilities of the states black and white.

Table 1. Confidence intervals of the entropogram at spatial lag distances khk ¼1, 4, 8, and 12 for Figure 2

Landscape maps

95% confidence interval

h ¼ 1

N ¼ 342

h ¼ 4

N ¼ 850

h ¼ 8

N ¼ 444

h ¼ 12

N ¼ 8

(a) [0.073, 0.075] [0.068, 0.068] [0.059, 0.060] [0.671, 0.716]

(b) [0.266, 0.270] [0.007, 0.007] [0.279, 0.282] [0.671, 0.694]

(c) [0.081, 0.083] [0.069, 0.070] [0.400, 0.400] [0.141, 0.197]

Note : N ¼ sample size used to estimate the corresponding confidence intervals.
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patterns. The proposed entropogram further transfers
information from the conditional probability into a

general measure of spatial association across spatial
lags. The degree of spatial dependence at each spatial
lag is positively related to the magnitude of the corre-
sponding entropogram measurement, and conse-

quently reflects the spatial variation of the underlying
RFs. Besides, spatial association measures can be nor-
malized by their deviation from that of the spatial data

reproduced by reassigning the variable states randomly
to each location, to compare the spatial patterns
between different spatial data sets with different num-

bers of variable states or spatial extents.

We compared the entropogram with the multi-

indicator variogram for categorical data with multiple
states, by generating a multistate landscape map with
a known geographical process. To do so, we produced
a continuous landscape map from a Gaussian RF with

a covariance function C hð Þ ¼ expð�0:5h=1:52Þ,
shown in Figure 4A. Then, we divided the range of
the simulated continuous values into five equal-length

intervals and transferred the continuous landscape
map into a five-state landscape map (Figure 4B). The
corresponding entropogram is shown in Figure 4C as

well as the multi-indicator variograms for each state.
The sample multi-indicator variograms were fitted
with exponential variogram models.

Compared to the multi-indicator variograms, the
entropogram provides a comprehensive spatial associ-
ation measure for the whole landscape instead of the
interstate spatial associations, whereas the variogram

focuses on spatial cooccurrence data regarding each
state. The resulting degree of spatial association
between those data, however, has been identified as a

poor proxy for ecological interactions (Blanchet,
Cazelles, and Gravel 2020). Besides, if the number of
variable states increases, the number of indicator

Table 2. Spatial association identified by Moran’s I (I),
join count statistic (JCS), symbolic entropy (S), and

conditional probability-based join count statistic (NCP)

Landscape maps I JCS S NCP

(a) –1 –45 399 –1

(b) 0.89 40 422 0.89

(c) –0.14 –7 31 –0.14

Note: The rook contiguity was applied in calculations where a weight

matrix was needed.

Figure 4. (A) A realization of a Gaussian random function. (B) The corresponding five-state landscape map produced from (A). (C)

The entropogram and multi-indicator variograms of (B). (D) The transition probability matrix between states on XðsÞ and Xðs� hÞ with
khk ¼1, 5, 10, and 15.
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variograms will also increase, complicating the analy-

sis (Atkinson, Cutler, and Lewis 1997). In fact, it is

not appropriate to apply the variogram simultaneously

to multicategory data, as it aims to describe the disper-

sion of values as a function of the distance between

the observation locations. In this way, the second-

order property (i.e., equivalent to the covariance

function) of the categorical RF generating Figure 4B

can be revealed directly by the entropogram, in the

same way that the variogram describes the variance

information of a continuous RF. It is of interest that

continuous data can be discretized and then analyzed

through various methods regarding frequency.

Similarly, measures for categorical data can also be

applied to continuous data.
To explore further the information captured by the

entropogram, we show the detailed conditional proba-

bility distribution patterns, or transition probability

matrix of states, in Figure 4D. These transition proba-

bilities are de facto the content of the transiogram,

which can be used to effectively generate realistic

realizations of the real spatial distribution of multino-

mial classes and decreasing spatial uncertainty associ-

ated with the simulated results (W. Li 2006). For

locations at distance khk ¼ 1 apart, once the variable

state at location s has been observed, the variable

state at location s� h has a relatively high likelihood

of being predicted correctly. This is because some of

the variable states have only a small probability to

exist at location s� h, given a state at location s. In

contrast, with respect to spatial lag khk ¼ 5, the like-

lihood has little difference among the possible states

at location s� h given the variable state at location

s. In this circumstance, the observation of a geograph-

ical variable at one location is of little use in predict-

ing the variable state at another location (see Figure

4D). That is, for this environment setting, variable

states at locations at distance khk ¼ 1 apart can pro-

vide more information on the potential variable state

for each other compared to those at distance khk ¼ 5

apart. This is reflected in the entropogram by the

larger value at khk ¼ 1 than khk ¼ 5 (see Figure 4C).

Then, at spatial lags khk ¼ 10 and khk ¼ 15, the cor-

responding likelihood gradually becomes stable across

the variable states such that the values of the entropo-

gram are almost unchanged.
A key property of the entropogram is that it can

deal with different numbers of states from the perspec-

tive of complexity. To examine the impact of probabil-

ity mass distribution patterns and numbers of states on

the entropogram, we regrouped the continuous values

in Figure 4A into three, five, and seven categories

with three different probability mass distribution pat-

terns (i.e., uniform, Pareto, and Gaussian), respec-

tively. The histograms of the nine generated landscape

maps are shown in Figure 5A. With the expansion of

the virtual variable state space, the spatial association

increases at small spatial lags (see Figure 5B) under a

fixed probability mass distribution pattern. The

change in the numbers of categories here is similar to

the change of support as in the variogram; but the vari-

ation described by the variogram decreases with the

expansion of the support, and the dependence

described by entropogram increases with the expan-

sion of the variable state space. At large spatial lags,

the values of the entropogram are stable because there

is weak spatial dependence, and this is independent of

the richness of the variable state space. In addition to

the number of states, the proposed entropogram tends

to increase with the degree of randomness of the prob-

ability mass distribution patterns with a fixed variable

state space. A likely explanation is that the entropo-

gram measures the difference between the complexity

of the point pattern and the conditional probability

pattern. Variation in the probability mass distribution

pattern changes both the realizations of two RVs, but

keeps their conditional probability pattern relatively

stable. Therefore, the complexity of the point pattern

tends to increase with the randomness of the probabil-

ity mass distribution patterns, and results in an

increase in the values of the entropogram.

Real-World Application

We now turn toward a real-world application, recog-

nizing that categorical variables are important in a

range of crucial domains such as climate change

(Pielke 2005) and carbon emission studies (Lai et al.

2016). They are used, for example, to express a rapidly

growing demand for measurement and monitoring of

the corresponding landscape-level patterns and pro-

cesses. In this section, we applied the entropogram to

analyze the spatial association of land-cover types in

Qinxian, Shanxi, China. The land-cover data were col-

lected from the Global Land Cover 2000 Project

(Bartholome and Belward 2005) over a rectangular

area between (111�47’53.87”E, 37�6’26.28”N) and

(112�48’26.31”E, 36�12’22.66”N). Figure 6 shows the

landscape map of the study area with six land-cover

types: (1) broad-leaved, deciduous, and closed tree
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Figure 5. (A) Histograms of discretized landscape maps, dividing Figure 3A into three, five, and seven categories, and each with three

different probability mass distribution patterns. (B) The corresponding estimated entropograms.

Figure 6. Landscape map of vegetation types in Qinxian, Shanxi, China.
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cover; (2) needle-leaved and evergreen tree cover; (3)

burnt tree cover; (4) closed-open herbaceous cover; (5)

cultivated and managed areas; and (6) water bodies.

Figure 7A shows the results of the entropogram for

the smallest spatial lags. We found that the spatial

association decreased with an increase in spatial lag

for neighboring positions (small lags). Given the

majority of existing spatial association measures focus

on interclass relationships (e.g., the cross-correlation

between any two variable states), the proposed entro-

pogram integrates such interclass relationships into a

comprehensive measure of the spatial association

between two locations. In fact, the conditional proba-

bility between different land-cover types (i.e., the

probability transition matrix of states) exhibits differ-

ent distribution patterns across spatial lags, which

determine the magnitude of the entropogram at each

spatial lag. When the spatial lag is 1 (i.e., for the adja-

cent land cover), given the land-cover information

about one location, the land-cover type at another

location is concentrated on one or two states only,

making it easier to predict the corresponding land-

cover information. If we use this transition matrix to

simulate a Markov process, the mixing time of all the

states is longer than that at the other lags. Figure 7B

shows the spectral gap of the probability transition

matrix of states, where thin spectral gaps indicate

slower mixing as there tends to be a singular transi-

tion between states, whereas large gaps indicate faster

mixing representing a regular transition between

states. Therefore, as the spatial lag distance increases,

the spectral gaps also increase (Figure 7B), making it

relatively difficult to acquire information on one loca-

tion given information on another location separated

by that spatial lag. In summary, the proposed entropo-

gram can provide a general quantitative understand-

ing of the state correlation across spatial lags.
The proposed entropogram can be applied for the

spatial prediction and simulation of multicategorical

RFs, akin to the utility of the variogram for continuous

RFs (Yao et al. 2021; Shakiba and Doulati Ardejani

2023). Figure 8 provides an example of how the entro-

pogram can be used potentially to predict the variable

state on unknown locations with sample data. For a

given location, on which the state was assumed as

unknown, its state was estimated first from the one-

pixel neighboring states, assumed to have been

observed. For each observed one-pixel neighboring

Figure 7. (A) The entropogram, and (B) the corresponding eigenvalue plot of transition probability matrix of states for spatial lags from 1 to 8.

The unit of spatial lag is the pixel. An eigenvalue plot shows eigenvalues of the transition matrix of states on the complex plane. The spectral

gap is the area between the radius with length equal to the second largest eigenvalue magnitude and the radius with a length of 1.
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state, the corresponding conditional probability mass

distribution of the given location was obtained by

Equation 8 where khk ¼ 1: The probability mass dis-

tribution of all land-cover types was calculated by the

mean conditional probability across all the observed

one-pixel neighboring states. The state of the

encircled pixel was then estimated by maximum likeli-

hood based on its probability mass distribution.

Similarly, we used the two-pixel neighboring states,

excluding the one-pixel neighboring states, to predict

the state of the given location. We found that the two-

pixel neighboring states behaved better than the one-

pixel neighboring states in the prediction of the states

at the selected locations (Figure 8D–E). This suggests

the necessity of a variogram-analogy model for cate-

gorical RFs, as the spatial association between RVs

across different spatial lags could provide different

information about the underlying categorical RFs. In

this way, the entropogram helps to address the key

issue of how to account for variation across lags. For

example, the probability mass distribution based on

both the one- and two-pixel neighboring states can be

calculated by the weighted average of the conditional

probability against each observed state, where the

weights are proportionally determined by their entro-

pogram values (i.e., the corresponding entropogram

Figure 8. The land-cover type of the randomly selected five pixels (marked by asterisk in yellow) were estimated by their adjacent pixels

(marked by the square in yellow) for (A) one-pixel contiguity, (B) two-pixel contiguity, and (C) both. (D–F) Each column depicts the

estimated probability mass distribution of land-cover types for each of the five selected pixels, where the true land-cover type is given at

the bottom. The land-cover type with the greatest probability mass is labeled with the corresponding land-cover type. CT¼ tree cover,

broad-leaved, deciduous, closed; ET¼ tree cover, needle-leaved, evergreen; BT¼ tree cover, burnt; HC¼herbaceous cover, closed-open;

CM¼ cultivated and managed areas; WB¼water bodies.
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value divided by the sum of all the entropogram values

for all the involved observations). Figure 8F demon-

strates that information from the one-pixel spatial lag

coupled with that from the two-pixel spatial lag can

provide efficient information on the pattern of the

data. Nonetheless, as described earlier, a spatially sta-

tionary stochastic process commonly needs to be

assumed due to the limited availability of repeatable

spatial data. In this situation, the spatial data could be

oversmoothed through modeling, and fractal charac-

teristics might be neglected, because the entropogram,

just like the variogram, is essentially a two-point statis-

tic. Different RFs could, thus, possess the same entro-

pogram, as for the variogram.
In this research, we focused on the empirical entro-

pogram at different lags and, specifically, the transi-

tion probability matrix of geospatial categorical data,

where the interpretation of the entropogram relies on

its estimated values rather than the parameters of any

model that might be fitted. Future research should

investigate the relationship between covariance func-

tions of RFs and the proposed entropogram to deter-

mine whether there exists a standard model, or set of

models, that might be usefully fitted to the entropo-

gram, akin to the fitting of a model to the sample var-

iogram. The proposed MSA between two RVs could

also be extended to more variables in future research

(J. Li, Ren, and Han 2022), to describe higher order

properties or more complex patterns, as in multiple-

point geostatistics (Mariethoz and Caers 2014).

Conclusion

Measures of spatial association are important tools

with which to analyze Earth science and other spatial

data. Categorical spatial variables represent an impor-

tant class of Earth science data, but measures of spatial

association are less developed for categorical spatial

data than those for continuous spatial variables. In

this research, we introduce the entropogram as an

entropy-based measure of spatial association for cate-

gorical variables, building on concepts underlying the

variogram. Specifically, the entropogram quantifies

the amount of shared information as a function of the

separation lag vector, allowing prediction of the out-

come of a spatial stochastic process at one location

given its known variable state at another location.

Compared to existing measures and models of spatial

association for categorical variables, which focus

mainly on interstate relationships, the entropogram

simultaneously characterizes the whole state space. As

such, the entropogram is complementary to existing

two-point statistics applied to categorical data, and

can be extended to include other variables, for exam-

ple, the spatial association between different geo-

graphical properties.
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Appendix B

The Shannon entropy estimated from samples, Ĥ,

is built on the estimated probability of the available
states (p̂ ¼ ðp̂1, :::, p̂mÞ) of the variable of interest. That
is,

Ĥ p̂
� �

¼�
Xm

i¼1
p̂ilnðp̂iÞ:

Here p̂i is a variable, the value of which depends
on samples. Given the true probabilities of the vari-

able states p ¼ ðp1, :::, pmÞ, the second-order Taylor
polynomial of the above function Ĥðp̂Þ at the point
p is

Ĥ p̂
� �

¼ Ĥ pð Þ þ
Xm

i¼1

@Ĥ
@p̂i

pð Þ p̂i � pi
� �

þ 1

2!

Xm

i¼1

Xm

j¼1

@Ĥ
@p̂i@p̂j

pð Þ p̂i � pi
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p̂j � pj
� 	

þ 1
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Xm

j¼1

Xm
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� @Ĥ
@p̂i@p̂j@p̂k

nLð Þ p̂i � pi
� �

p̂j � pj
� 	

p̂k � pk
� �
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where nL is some real vector between p̂ and p.
Given

@Ĥ
@p̂i

¼ � 1þ ln p̂i
� �� �

,
@Ĥ

@p̂i@p̂j

¼ � 1

p̂i
j ¼ i

0 j 6¼ i
,

@Ĥ
@p̂i@p̂j@p̂k

¼
1

p̂2i
j ¼ k ¼ i

0 else

,

8><
>:

8><
>:

we have

Ĥ p̂
� �

¼ H�
Xm

i¼1
1þ ln pið Þ p̂i � pi

� �
� 1

2

Xm

i¼1

p̂i � pi
� �2

pi

þ 1

6

Xm

i¼1

p̂i � pi
� �3

pi þ hðp̂i � piÞ
� �2

where H is the true Shannon entropy of the variable
of interest, p represents the true probabilities of the

variable states, and 0 < h < 1:

Appendix C

The Moran’s I coefficient is defined as

I ¼ NPN
i¼1

PN
j¼1 wij

PN
i¼1

PN
j¼1 ziwijzjPN

i¼1 z
2
i

:

where the zi ¼ xi � x ¼ xi �
PN

i¼1 xi=N are the
centered observations based on the original observa-

tions xi, and wij is the element of a spatial weight matrix
representing the hidden subjective relations between

pairs of points.N is the total number of observations.
The join count statistic (JCS) is defined as

JCS Xð Þ¼1

2

XN

i¼1

XN

j¼1
wijf i,jð Þ�W 1� nrns

N N�1ð Þ
� �� �

where fði,jÞ equals 1 if points i and j are the same

category, W is the sum of values in the weight

matrix, and nr and ns are the number of observations

for the presence and absence of the state of interest,

respectively.
The conditional probability-based join count sta-

tistic (NCP) is defined as

NCP Xð Þ ¼
CP Xð Þ
1� PE

CP Xð Þ � 0

CP Xð Þ
PE

otherwise

,

8>>><
>>>:

CP Xð Þ ¼ P X sð Þ ¼¼ X sþ 1ð Þ
 �
,

PE ¼
Xm

i¼1
p2ðX sð Þ ¼ iÞ,

where X is the data set with states i ¼ 1, :::,m,
CP Xð Þ is the probability that pairs of locations with

one pixel lag have the same category, and PE is the

theorical value of CP Xð Þ under the assumption of no

spatial association.

The symbolic entropy (S) is defined using a symboli-

zation procedure. The surrounding five spatial neighbors

of S0 are defined byNS0 ¼ fS0, S1, S2, S3, S4g:

Then, the surrounding five spatial neighbors of S0
are transformed by the indicator function

IS1, S2 ¼
0 XðS1Þ 6¼ XðS2Þ
1 otherwise

,

�

into rS0 ¼ fIS0,S1 , IS0,S2 , IS0, S3 , IS0,S4g: Finally, the
symbolic entropy is

S 5ð Þ ¼ �
X

r2Cp rð Þln p rð Þð Þ,

where p rð Þ is the relative frequency of a symbol r
based on all the observations, and C is the set of all

possible symbols.
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