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ABSTRACT

Information on cultivated crops is relevant for a large number
of food security studies. Different scientific efforts are ded-
icated to generate this information from remote sensing im-
ages by means of machine learning methods. Unfortunately,
these methods do not take account of the spatial-temporal re-
lationships inherent in remote sensing images. In our paper,
we explore the capability of a 3D Fully Convolutional Neu-
ral Network (FCN) to map crop types from multi-temporal
images. In addition, we propose the Intersection Over Union
(IOU) loss function for increasing the overlap between the
predicted classes and ground reference data. The proposed
method was applied to identify soybean and corn from a study
area situated in the US corn belt using multi-temporal Land-
sat images. The study shows that our method outperforms
related methods, obtaining a Kappa coefficient of 91.8%. We
conclude that using the IOU loss function provides a superior
choice to learn individual crop types.

Index Terms— Crop mapping , deep learning, fully con-
volutional neural networks , time series.

1. INTRODUCTION

Multi-temporal remote sensing images are being generated
at an unprecedented scale and rate from resources such as
Sentinel-2 (5 days frequency), Landsat (16 days frequency),
and PlanetScope (daily). In the light of this, there have been
many scientific efforts towards converting huge quantities of
multi-temporal remote sensing images into useful informa-
tion. One of these scientific efforts is automatic crop mapping
[1, 2, 3, 4], being an active research area in remote sensing.

A decisive factor towards the goal of crop classification
from multi-temporal images is developing methods that can
learn temporal relationships in image time series. Traditional
approaches for temporal feature representation such as Multi
layer Perceptron, Random Forest, Support Vector Machine,
and Decision Tree [5, 6, 7, 8, 9] have been developed for
single-date images and are not able to explicitly consider the
sequential relationship of multi-temporal data.

Recently with the success of deep neural networks in
learning high-level task-specific features, CNN and LSTM-
based methods have drawn increasing attention and achieved
promising results in the field of crop classification from
multi-temporal images [3, 2, 10, 11, 1, 12]. While most
deep learning-based methods for crop mapping use pixel-by-
pixel approach, in this paper, we will design a Fully Con-
volutional Neural Network (FCN) and use it for crop map-
ping. FCNs have been widely used in semantic segmentation,
salient object detection, as well as brain tumor segmentation
[13, 14, 15, 16]. They are capable of generating the segmenta-
tion map of the whole input image at once and thus are more
efficient computationally. In addition, the spatial relation-
ship between adjacent pixels is taken into account by using
FCNs in contrast to pixel-by-pixel approaches, which take
individual pixels as input. To fit the need of crop mapping,
i.e. learning the sequential relationship of multi-temporal
remote sensing data, we use 3D convolution operators as the
building blocks of this FCN. They allow both the spatial and
the temporal features to be extracted simultaneously. This
would be beneficial to crop mapping since both the spatial
and temporal relationships in multi-temporal remote sensing
data are important for accurate crop mapping.

To learn different crop types, most deep learning-based
crop mapping methods use the cross-entropy loss [3, 11, 12,
1, 10, 17]. They achieved promising results, but we hypoth-
esize that there is still room for improvement by using a loss
function better suited for cop mapping than the cross-entropy
loss. To guide the network to generate more accurate predic-
tion for crop types, we propose to learn the crop types by in-
creasing the overlap between the prediction map and ground
reference mask directly rather than using the cross-entropy
loss that only focuses on per-pixel prediction. To the best of
our knowledge, this is the first attempt to use this loss function
in crop mapping.

In summary, the main contribution of this paper is to learn
to identify different crop types by increasing the overlap be-
tween the prediction map and ground reference mask for each
crop type, which would result in a rethink of the loss func-
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tions used to train deep neural networks for crop mapping. In
conjunction with this loss function, we design a 3D FCN to
simultaneously take into account the spatial and the temporal
relationships in multi-temporal remote sensing data.

2. THE PROPOSED METHOD
In this section, we explain our designed 3D FCN and Inter-
section Over Union (IOU) loss function, which is used to
train the network. This network (Fig. 1) is composed of an
encoder-decoder network. It learns to generate the segmen-
tation map of crop lands from the input images. One impor-
tant component of our proposed FCN is the 3D convolutional
operator that is more beneficial than 2D convolutional opera-
tor for multi-temporal crop mapping since it also extracts the
temporal features in addition to the spatial features. In the
3D FCN architecture, the Encoder extracts features at four
different levels, each of which has different recognition infor-
mation from each other. At lower levels, the Encoder captures
spatial and local information due to the small receptive field,
whereas it captures semantic and global information at higher
levels because of the large receptive field. To take advantage
of the both high level global contexts and low level details,
features of different levels are merged in the Decoder through
concatenation as shown in Fig. 1. In conjunction with the 3D
FCN, we propose to use Intersection Over Union (IOU) loss
to guide the FCN to output accurate segmentation maps.

In contrast to most deep learning-based crop mapping
methods that use cross-entropy loss to learn the crop types,
we propose a better loss function to guide the network to
learn each crop type more accurately. We propose to use a
loss function that tries to increase the overlap between the
prediction map and ground reference mask directly. This
loss function is more suited to crop mapping than the cross-
entropy loss that only focuses on per-pixel prediction. There-
fore, to increase the overlap between the prediction map and
ground reference, we maximize the Intersection Over Union
(IOU) for each crop type by adopting the following loss
function:

LIOU =

C∑
k=1

(1− IOUk) (1)

where C denotes the number of classes, i.e. number of crop
types and IOUk is defined as:

IOUk =
1

M

M∑
m=1

∑N
i=1 p

k
i,m · gki,m∑N

i=1[p
k
i,m + gki,m − pki,m · gki,m]

(2)

where M, N, p, and g denote total number of examples, to-
tal number of pixels in each example, prediction map, and
ground reference mask respectively.

In the Experimental Results section we will show that us-
ing this loss function for learning the crop types results in a
boost in the performance compared to using the cross-entropy
loss.

3. EXPERIMENTS

3.1. Study Area, Preprocessing, and Evaluation Metrics

Our experiments were conducted in the U.S corn belt. We
selected a 1700x1700 pixel area located in the center of the
footprint of h18v07 in the Analysis Ready Data (ARD) grid
system. We used Landsat ARD as the input to our method,
which are publicly available on USGS’s EarthExplorer web
portal. At each observation date, this dataset contains six op-
tical bands, namely red, green, blue, shortwave infrared 1,
shortwave infrared 2, and near-infrared. We used CropScape
website portal to download the Cropland Data Layer (CDL)
as the labels for training, validation, and testing the network.
The selected region is mostly composed of corn and soybean.
In this project, corn, soybean, and “other” (i.e., merged class
of other land cover/land use types) are taken as three classes
of interest. Therefore, these three categories are assigned to
the corresponding pixels of the input image. We used the
Landsat multi-temporal data from April 22 to September 23
that covers growing season of corn and soybean [3].

To preprocess the Landsat multi-temporal data and pre-
pare them for training and testing the model, we followed
the same procedure as [3]. We removed the invalid pixels
from the dataset. An invalid pixel is a pixel with less than
seven valid observations after May 15 [3], and a valid ob-
servation is the pixel that is not filled, shadowed, cloudy, or
unclear. The invalid pixels were excluded from the dataset
and were not used in the training process because they do not
contain enough multi-temporal information. To fill in the re-
sulted gaps in the valid pixels, linear interpolation was used
that resulted in 23 time steps with seven days interval from 22
April to 23 September. Furthermore, we normalized the data
using the mean and standard deviation values.

As for performance evaluation of the proposed methods,
we employed Cohen’s kappa coefficient, macro-averaged pro-
ducer’s accuracy, and macro-averaged user’s accuracy [3].

3.2. Implementation details

We implemented our method in Keras [18] using the Mi-
crosoft Azure Machine Learning environment. The designed
3D FCN takes as input a 128x128x23x6 image and out-
puts a 128x128x3 segmentation map. In the input image
size, 128x128, 23, and 6 correspond to the spatial size,
number of time steps in time series, and number of opti-
cal bands respectively. In the output map size, 128x128
and 3 correspond to spatial size of the segmentation map
and number of classes respectively. We used the stochas-
tic gradient descent with a momentum coefficient 0.9 and a
learning rate of 0.005. We split the training data into five
sections, and used each of them as validation and the rest
for training with batch size 2, which resulted in 5 mod-
els whose softmax outputs are averaged during testing.
The code is publicly available at: https://github.com/Sina-
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Fig. 1: The architecture of the designed 3D FCN, composed of an Encoder and a Decoder, and trained using the IOU loss
function.

Fig. 2: The predicted map of the 3D FCN trained with the IOU loss, ground reference, and difference map. In the figure, green,
yellow, and black represent soybean, corn, and other classes respectively.

Mohammadi/3DFCNwithIOUlossforCropMapping

3.3. Experimental Results

We used the data from the selected study area collected in
2015,2016,2017 as our training set, and we tested the trained
3D FCNs on the data collected in 2018. Then, we com-
pared our method with the baseline classification models,
namely Random Forest (RF), Multilayer Perceptron (MLP),
and Transformer [19] with the exact same settings introduced
in [3]. Moreover, we compared our method with the deep
learning-based method introduced in [3]. The results are
shown in Table 1. As seen from the table, our method outper-
forms other methods in terms of different evaluation metrics.

Table 1: The experimental results. Kappa, MA-PA, MA-
UA, and CE loss stand for Cohen’s kappa coefficient, macro-
averaged producer’s accuracy, macro-averaged user’s accu-
racy, and cross-entropy loss.

Method Kappa MA-PA MA-UA
Transformer 88.6 90.4 92.1

Random Forest 88.7 91.4 91.4
Multilayer Perceptron 88.8 91.4 91.5

DeepCropMapping (DCM) [3] 89.3 91.7 91.9
Ours(3DFCN+CE loss) 91.3 93.7 93.6
Ours(3DFCN+IOU loss) 91.8 94.1 94.2
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Moreover, it can be seen that the adopted IOU loss function
performs better than the cross-entropy loss. In addition, to vi-
sually investigate the performance of the method, we showed
the predicted map of the 3D FCN trained with the IOU loss,
ground reference, and difference map in Fig. 2.

4. CONCLUSION
In this study, a 3D FCN with an IOU loss function has been
successfully applied to map soybean and corn crops in the US
corn belt. The experimental results show that the adopted IOU
loss function, which maximizes the overlap between the pre-
diction map and ground reference mask for each crop type,
is able to increase the performance compared to using the
widely used cross-entropy loss. Therefore, using the IOU loss
function is a better choice to learn individual crop type. For
future work, we plan to apply the method to the regions that
include more crop types to see to what extent our method can
improve the performance.
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