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We present a discontinuous Galerkin method for moist atmospheric dynamics, with and without 
warm rain. By considering a combined density for water vapour and cloud water, we avoid the 
need to model and compute a source term for condensation. We recover the vapour and cloud 
densities by solving a pointwise non-linear problem each time step. Consequently, we enforce the 
requirement for the water vapour not to be supersaturated implicitly. Together with an explicit 
time-stepping scheme, the method is highly parallelisable and can utilise high-performance 
computing hardware. Furthermore, the discretisation works on structured and unstructured 
meshes in two and three spatial dimensions. We illustrate the performance of our approach using 
several test cases in two and three spatial dimensions. In the case of a smooth, exact solution, we 
illustrate the optimal higher-order convergence rates of the method.

1. Introduction

Precipitation still causes one of the largest uncertainties in weather forecasts and climate models. This is evident, as the modelling 
has to build a bridge across many scales to arrive from the processes in and around precipitation particles at the evolutionary 
dynamics of clouds and cloud systems on the mesoscales. Thus, cloud models exist with very different ranges of complexity. To 
model the moisture balances, we implement a bulk microphysical warm cloud model corresponding to the Kessler scheme, which 
is widely used in meteorology. Then, compared to the dry dynamics, the thermodynamic equation gets much more complex, as it 
provides a strong coupling to the moisture balances. This additional complexity is also due to the different heat capacities for vapour 
and liquid water and the dependence of latent heat on the temperature, which are often neglected. In this work, we retain all these 
thermodynamic details, as they have been demonstrated to be essential, e.g. in the case of deep convective clouds via asymptotic 
analysis in [1].

While the equations of dry air are generally accepted, the equations governing cloudy air are still actively debated. Therefore, 
it is necessary to develop numerical methods to simulate these complex equations accurately and efficiently. Typically, numerical 
schemes are established for individual model reductions obtained by scale analysis. For an overview of numerical methods for 
numerical weather prediction, see, for example, [2] and the references therein.
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On the other hand, increasing, massively-parallel computing power allows for ever more fine-scale computations for weather and 
climate models. However, numerical methods have for the most part been based on structured grids and discretisations exploiting 
the structure of the computational grids. While the orthogonality of the grid can lead to a number of desirable properties, see, for 
example, [3], there are drawbacks in the setting of massively parallel high-performance computing hardware. In particular, load 
balancing can be an issue when the discretisation is limited to column-based subdivisions of the mesh. Furthermore, for global 
discretisations, structured grids on the globe lead to strong clustering of grid points at the poles, creating an additional bottleneck. 
To avoid these issues, it is desirable to consider discretisation methods that work on unstructured meshes. This brings the additional 
benefit that steep topographical changes can be modelled by unstructured meshes easily and accurately, which would cause severe 
distortion of structured meshes. In the context of dry atmospheric flows, methods based on unstructured meshes were fist considerer 
in [4,5].

While the equations modelling moist air are usually given in a non-conservative form, they can be written in the form of a 
non-linear hyperbolic conservation law system with source terms. This form of the equation lends itself to a discontinuous Galerkin 
(DG) discretisation, which we consider in this work. Additionaly, DG methods work both on structured and unstructured meshes. 
The system of equations is essentially the compressible Euler equations with multiple densities and some additional constraints and 
source terms modelling the phase changes of water. The different densities model the different water phases. While discontinuous 
Galerkin methods for the compressible Euler equations have been studied very well [6–8], only a few approaches consider the 
system with moisture and even fewer include rain dynamics. Among the (discontinuous) element-based approaches for atmospheric 
motion, we mention [9] in the context of the Nonhydrostatic Unified Model of the Atmosphere (NUMA), where both continuous 
and discontinuous elements are used on unstructured grids and rain dynamics are included, and [10] in the context of the COSMO 
(Consortium for Small-scale Modelling) model. In the latter work, rain dynamics were not included. Furthermore, we mention [11], 
where a compatible finite element discretisation (partially discontinuous) was considered, based on the ENDGame model by the 
UK Met Office. While this work included rain dynamics, the discretisation relied on vertically structured grids. Finally, we mention 
ClimateMachine [12], where discontinuous elements using vertical columns on Cartesian grids were considered and implemented 
both on CPUs and GPUs.

A particular challenge for discretisations is the realisation of the source term, which models the phase change between water 
vapour and cloud water, i.e., condensation. The main cause of problems is that the source term is only non-zero when the atmosphere 
is fully saturated by water vapour. However, once the saturation threshold is reached, the condensation source term is not given as 
an explicit function of the other variables, but rather as the right-hand side term balancing another transport equation. To avoid this, 
we take an approach used, for example, in [12–14], and consider a single density for cloud water and water vapour, such that the 
phase change between these two does not have to be modelled. We then reconstruct the individual densities after every time-step by 
solving an algebraic non-linear problem.

While individual aspects of our approach have been used in the literature, our combination and realisation of these techniques 
is novel and goes beyond what is considered in most cases in related works. For example, while [12] essentially consider the same 
set of equations and use a similar approach to deal with condensation, their work is based on structured grids, does not consider 
rain and only presents a convergence study for fourth-order polynomials and in a dry test-case over a very short time. While [9] also 
considered a DG approach, including unstructured meshes and rain, the equations used are different and simplified. In particular, 
the momentum and potential temperature only take dry mass into account. Furthermore, a constant artificial viscosity term is added, 
which modifies the problem being solved, condensation is implemented through a source term and correction scheme, and no 
convergence results for the scheme is presented in [9]. In [15], the same set of equations with an artificial viscosity is used together 
with spectral elements. While higher-order polynomials up to order ten are used, this is only applied on structured quadrilateral 
meshes, and a diagonal mass matrix is only achieved through inexact integration. While the temporal convergence of the utilised 
IMEX scheme is studied, the spatial convergence of the scheme is not presented. A similar set of equations to those in [9] is also 
used in [10]. A convergence study for linear and quadratic elements is shown in [10]. However, rain was not included in that work. 
Finally, we mention [11], where again, a different set of equations, compared to our work, is used. Convergence for the moist case is 
also shown here for the piecewise constant and linear cases, and rain is included in further examples. We also note that [11] require 
structured meshes and only use discontinuous elements for parts of the discretisation. However, this then leads to a compatible finite 
element method.

The remainder of this work is structured as follows. In Section 2, we present the equations under consideration in this paper. This 
includes the microphysics parametrisation used and the derivation of the implicit condensation equations. Our discontinuous Galerkin 
approach is presented in Section 3, and we present a number of numerical examples taken from the literature and realised with this 
approach in Section 4. This includes a high-order convergence study for multiple polynomial orders in the moist case without rain. 
The results in Section 4 are based on the open-source finite element library NGSolve and are fully reproducible through openly 
accessible python scripts implementing the presented examples. Details of the thermodynamic constants are stated in Appendix A, 
and additional details on the numerical set-ups are given in Appendix B.

2. Governing equations

The equations of motion for cloudy air with warm rain are given in a conservative form as

𝜕𝑡𝜌𝑑 +∇ ⋅ (𝜌𝑑𝒖) = 0, (1a)
2

𝜕𝑡𝜌𝑣 +∇ ⋅ (𝜌𝑣𝒖) = (𝑆𝑒𝑣 −𝑆𝑐𝑑 ), (1b)



Journal of Computational Physics 499 (2024) 112713S. Doppler, P.L. Lederer, J. Schöberl et al.

𝜕𝑡𝜌𝑐 +∇ ⋅ (𝜌𝑐𝒖) = (𝑆𝑐𝑑 −𝑆𝑎𝑢 −𝑆𝑎𝑐), (1c)

𝜕𝑡𝜌𝑟 +∇ ⋅ (𝜌𝑟𝒖− 𝜌𝑟𝑣𝑟𝒆𝑧) = (𝑆𝑎𝑢 +𝑆𝑎𝑐 −𝑆𝑒𝑣), (1d)

𝜕𝑡(𝜌𝒖) + 2𝛀 × 𝜌𝒖+∇ ⋅ (𝜌𝒖⊗ 𝒖− 𝜌𝑟𝑣𝑟𝒖⊗ 𝒆𝑧 + Id𝑝) = −𝜌𝑔𝒆𝑧, (1e)

𝜕𝑡𝐸 +∇ ⋅ ((𝐸 + 𝑝)𝒖− (𝑐𝑙(𝑇 − 𝑇ref) + 𝒖
2∕2)𝜌𝑟𝑣𝑟𝒆𝑧) = −𝜌𝑔𝒆𝑧 ⋅ 𝒖, (1f)

see, e.g. [16,13,17]. The variables 𝜌𝑑, 𝜌𝑣, 𝜌𝑐 , and 𝜌𝑟 are the densities of dry air, water vapour, cloud water and rain, respectively. 
While 𝒖 is related to the velocity of air, 𝑣𝑟 is the terminal rain speed, 𝑇 is the temperature, 𝑇ref is the reference temperature and 𝐸
is the sum of the internal and kinetic energy densities. The total density 𝜌 is given as the sum of the component densities

𝜌 = 𝜌𝑑 + 𝜌𝑣 + 𝜌𝑐 + 𝜌𝑟. (2)

The vector 𝛀 is the Coriolis vector due to the Earth’s rotation. As our simulations are on a time-scale where the effects from this are 
negligible, we will not consider this term further below. To close the system we have the pressure given by the equation of state

𝑝 = (𝜌𝑑𝑅𝑑 + 𝜌𝑣𝑅𝑣)𝑇 , (3)

with the gas constants 𝑅𝑑, 𝑅𝑣 for dry air and water vapour, respectively. The temperature can be recovered from the equation for 
the sum of the internal and kinetic energy densities

𝐸 = (𝑐𝑣𝑑𝜌𝑑 + 𝑐𝑣𝑣𝜌𝑣 + 𝑐𝑙(𝜌𝑐 + 𝜌𝑟))(𝑇 − 𝑇ref) + 𝜌𝑣(𝐿ref −𝑅𝑣𝑇ref) + 𝜌
1
2
𝒖 ⋅ 𝒖, (4)

where 𝑐𝑣𝑑 , 𝑐𝑣𝑣 are the specific heats of dry air and water vapour, both at constant volume, respectively, while 𝑐𝑙 is the specific heat 
of liquid water at the reference temperature. The constant 𝐿ref is the latent heat of vaporization at the reference temperature. The 
values used for these quantities are summarized in the appendix in Table A.1. Finally, we note that while this form of the equations 
is rarely used for atmospheric modelling, it is the form that best lends itself to a discontinuous Galerkin discretisation. We refer to 
[18] for an overview of other common forms of the equations used in mesoscale atmospheric modelling.

2.1. Microphysics parametrisation

The source terms modelling the phase-changes of water are 𝑆𝑒𝑣, 𝑆𝑐𝑑 , 𝑆𝑎𝑢, 𝑆𝑎𝑐 which describe evaporation, condensation, auto-

conversion of cloud water into rain droplets and the collection of cloud droplets by raindrops (accretion), respectively. The closure 
of the moist dynamics is based on the microphysics closure due to Kessler [19].

We take the specific form of the microphysics parametrisation from the COSMO model, as described in [20, Section 5.4]. The 
evaporation, auto-conversion and collecting-rain source terms are defined as

𝑆𝑒𝑣 ∶= (3.86 × 10−3 − 9.41 × 10−5(𝑇 − 𝑇ref))
(
1 + 9.1𝜌3∕16𝑟

)
(𝜌𝑣𝑠 − 𝜌𝑣)𝜌

1∕2
𝑟 , (5a)

𝑆𝑎𝑢 ∶= 0.001max{𝜌𝑐 − 𝑞𝑎𝑢𝜌,0}, (5b)

𝑆𝑎𝑐 ∶= 1.72𝜌𝑐𝜌
7∕8
𝑟 , (5c)

with the auto-conversion threshold 𝑞𝑎𝑢, which is chosen as 𝑞𝑎𝑢 = 0.

This leaves the condensation source term open. Let us now denote by 𝑞𝑖 = 𝜌𝑖∕𝜌𝑑 , the mixing ratios of the different water-phase 
densities with respect to the dry air density. The condensation source term is defined implicitly by (1b) via two assumptions:

(a) Water vapour is saturated in the presence of cloud water, i.e.,

if 𝑞𝑐 > 0, then 𝑞𝑣 = 𝑞𝑣𝑠 and 𝑆𝑒𝑣 = 0.

(b) Cloud water evaporates instantaneously in undersaturated regions, i.e.,

if 𝑞𝑣 < 𝑞𝑣𝑠, then 𝑞𝑐 = 0 and 𝑆𝑐𝑑 = 0.

In oversaturated regions, the source term due to condensation 𝑆𝑐𝑑 is then defined through the relationship

𝜕𝑡𝑞𝑣𝑠 + 𝑢 ⋅∇𝑞𝑣𝑠 = −𝑆𝑐𝑑,

where the saturation vapour mixing ratio is approximated in a saturated atmosphere in terms of the saturation vapour pressure 𝑒𝑠 by

𝑞𝑣𝑠 =
𝜖𝑒𝑠(𝑇 )
𝑝− 𝑒𝑠(𝑇 )

. (6)

The saturation vapour pressure is recovered from the Clausius–Clapeyron relation [16], and by using a linear approximation of the 
3

latent heat of condensation under the assumption of constant specific heats. This leads to the saturation vapour pressure
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𝑒𝑠(𝑇 ) = 𝑒ref

(
𝑇

𝑇ref

) 𝑐𝑝𝑣−𝑐𝑙
𝑅𝑣

exp
[
𝐿ref − (𝑐𝑝𝑣 − 𝑐𝑙)𝑇ref

𝑅𝑣

(
1
𝑇ref

− 1
𝑇

)]
, (7)

where 𝑒ref ∶= 𝑒𝑠(𝑇ref) and 𝑐𝑝𝑣 is the specific heat of water vapour at constant pressure, see also [21]. The specific values used for 
these constants are again shown in Table A.1.

Finally, again following the warm rain scheme of the COSMO model, the mean terminal velocity of rain is defined as

𝑣𝑟 = (𝜋𝜌𝑤𝑁𝑟
0)

−1∕8
𝑣𝑟0Γ(4.5)

6
𝜌
1∕8
𝑟 ,

with the distribution parameter set as 𝑁𝑟
0 = 8 × 106 m−4, 𝑣𝑟0 = 130 m1∕2 s−1 and the water density 𝜌𝑤 = 𝜌𝑣 + 𝜌𝑐 + 𝜌𝑟, [20].

2.2. Implicit condensation

For the numerical method, we want all the source terms to be given explicitly. To avoid the modelling of the condensation source 
term, we follow [13] and remove the condensation source term by adding equations (1b) and (1c). This defines a new moist density 
𝜌𝑚 = 𝜌𝑣 + 𝜌𝑐 of water which is only transported by the velocity of dry air. This leads to the equation

𝜕𝑡𝜌𝑚 +∇ ⋅ (𝜌𝑚𝒖) = 𝑆𝑒𝑣 − 𝑆𝑎𝑢 −𝑆𝑎𝑐. (8)

To recover 𝜌𝑐, 𝜌𝑣, we then need to compute the vapour density at saturation. This can be obtained from the saturation pressure 
(7) and the equation of state for the vapour pressure 𝑝𝑣 = 𝜌𝑣𝑅𝑣𝑇 . Since this depends on the temperature, we need to recover the 
temperature from the internal energy contribution in the energy equation (4), which in turn depends on all densities separately. 
We assume that all cloud water evaporates instantaneously in undersaturated regions. Using the moist density, the internal energy 
density 𝜌𝑒 = 𝐸 − 𝜌𝒖 ⋅ 𝒖∕2, where 𝑒 denotes the internal energy, and the saturation requirement, we then arrive at the non-linear 
system

𝜌𝑒 = (𝑐𝑣𝑑𝜌𝑑 + 𝑐𝑣𝑣𝜌𝑣 + 𝑐𝑙(𝜌𝑐 + 𝜌𝑟))(𝑇 − 𝑇ref) + 𝜌𝑣(𝐿ref −𝑅𝑣𝑇ref), (9a)

𝜌𝑣 =min
(
𝑒𝑠(𝑇 )
𝑅𝑣𝑇

, 𝜌𝑚

)
, (9b)

𝜌𝑐 = 𝜌𝑚 − 𝜌𝑣, (9c)

which we can use to solve for the temperature, vapour density and cloud density. The saturation vapour pressure 𝑒𝑠(𝑇 ) is defined in 
(7). We note that while [13] also considered a single moist density, rain dynamics were not included. For a detailed discussion of 
our solution strategy of system 9, see Section 3.4 below.

2.3. Perturbation formulation

To facilitate the numerical approximation of the system (1a), (8), (1d), (1e) and (1f), we split the densities, pressure and energy 
density into the hydrostatic part (time-independent and only dependent on the spatial 𝑧-direction) plus a perturbation from the 
hydrostatic state:

𝜌𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝜌𝑖(𝑧) + 𝜌′𝑖(𝑥, 𝑦, 𝑧, 𝑡), 𝑖 ∈ {𝑑, 𝑣, 𝑐,𝑚, 𝑟}, (10a)

𝐸(𝑥, 𝑦, 𝑧, 𝑡) =𝐸(𝑧) +𝐸′(𝑥, 𝑦, 𝑧, 𝑡), (10b)

𝑝(𝑥, 𝑦, 𝑧, 𝑡) = 𝑝(𝑧) + 𝑝′(𝑥, 𝑦, 𝑧, 𝑡), (10c)

for which we have the relation

∇𝑝 = −𝜌𝑔𝒆𝑧. (11)

This then leads to the set of equations we use in our numerical method

𝜕𝑡𝜌
′
𝑑
+∇ ⋅ ((𝜌𝑑 + 𝜌′𝑑 )𝒖) = 0, (12a)

𝜕𝑡𝜌
′
𝑚 +∇ ⋅ ((𝜌𝑚 + 𝜌′𝑚)𝒖) = 𝑆𝑒𝑣 −𝑆𝑎𝑢 −𝑆𝑎𝑐, (12b)

𝜕𝑡𝜌
′
𝑟 +∇ ⋅ ((𝜌𝑟 + 𝜌′𝑟)(𝒖− 𝑣𝑟𝒆𝑧)) = 𝑆𝑎𝑢 +𝑆𝑎𝑐 −𝑆𝑒𝑣, (12c)

𝜕𝑡(𝜌𝒖) + ∇ ⋅ (𝜌𝒖⊗ 𝒖− (𝜌𝑟 + 𝜌′𝑟)𝑣𝑟𝒖⊗ 𝒆𝑧 + Id𝑝′) = −𝜌′𝑔𝒆𝑧, (12d)

𝜕𝑡𝐸
′ + ∇ ⋅ ((𝐸 +𝐸′ + 𝑝+ 𝑝′)𝒖− (𝑐𝑙(𝑇 − 𝑇ref) + 𝒖

2∕2)(𝜌𝑟 + 𝜌′𝑟)𝑣𝑟𝒆𝑧) = −(𝜌+ 𝜌′)𝑔𝒆𝑧 ⋅ 𝒖, (12e)
4

where the vapour, cloud densities and temperature (perturbations) are again recovered via system (9).
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3. Discretisation

Our system of equations is a hyperbolic balance law, i.e., we may write it in short as

𝜕𝑡𝑈 +∇ ⋅ 𝐹 (𝑈 ) =𝐺(𝑈 ), (13)

with 𝑈 = (𝜌′
𝑑
, 𝜌′𝑚, 𝜌

′
𝑟, 𝒎, 𝐸

′) ∈ [𝐿2(Ω)]4+𝑑 , 𝑑 ∈ {2, 3} the spatial dimension, and 𝒎 = 𝜌𝒖, which we aim to solve using a discontinuous 
Galerkin scheme.

3.1. Preliminaries and notation

For the discretisation in space, let 𝒯ℎ be a quasi-uniform and shape-regular simplicial or hexahedral mesh of Ω. In the case of a 
simplicial mesh, we define our discrete space as

𝑊ℎ = [ℙ𝑘(𝒯ℎ)]4+𝑑 ∶= {𝑉ℎ ∈𝐿2(Ω) ∶ 𝑉ℎ
|||𝐾 ∈ ℙ𝑘(𝐾), for all 𝐾 ∈𝒯ℎ}4+𝑑 ,

and in the case of a hexahedral mesh, we set

𝑊ℎ = [ℚ𝑘(𝒯ℎ)]4+𝑑 ∶= {𝑉ℎ ∈𝐿2(Ω) ∶ 𝑉ℎ
|||𝐾 ∈ℚ𝑘(𝐾), for all 𝐾 ∈𝒯ℎ}4+𝑑 .

The dimension 4 + 𝑑 is due to the presence of four scalar variables in (12) plus the number of momentum variables given by 𝑑. The 
polynomial and tensor product spaces are

ℙ𝑘 = span

{
𝑑∏
𝑖=1
𝑥
𝛼𝑖
𝑖
∶ 𝛼𝑖 ∈ ℕ0,

𝑑∑
𝑖=1
𝛼𝑖 ≤ 𝑘

}
, and ℚ𝑘 = span

{
𝑑∏
𝑖=1
𝑥
𝛼𝑖
𝑖
∶ 𝛼𝑖 ∈ ℕ0,0 ≤ 𝛼𝑖 ≤ 𝑘

}
,

for a given order 𝑘 ≥ 1. We note that in NGSolve, we use a basis of Legendre polynomials [22] leading to a diagonal mass-matrix. 
Furthermore, let ℱℎ ∶= {𝐹 = 𝜕𝐾1 ∩ 𝜕𝐾2 | ∀𝐾1, 𝐾2 ∈𝒯ℎ} be the set of facets of the mesh. We divide this into the set of boundary 
facets ℱ𝑏

ℎ
∶= {𝐹 ∈ℱℎ | 𝐹 ⊂ 𝜕Ω} and interior facets ℱ𝑖

ℎ
∶=ℱℎ ⧵ℱ𝑏

ℎ
. On a facet 𝐹 ∈ℱℎ, we define a fixed unit normal vector as

𝒏 =
⎧⎪⎨⎪⎩
𝒏𝐾1

the unit normal vector to 𝐹 at 𝑥 pointing from 𝐾1 to 𝐾2 if 𝐹 ∈ℱ𝑖
ℎ

with 𝐹 = 𝜕𝐾1 ∩ 𝜕𝐾2; 
the orientation is arbitrary but fixed in what follows.

𝒏 the unit outward pointing normal to Ω at 𝑥 if 𝑥 ∈ℱ𝑏
ℎ

.

With the fixed unit normal vector and 𝐾1, 𝐾2 numbered accordingly, we define

𝑈− =
⎧⎪⎨⎪⎩
𝑈
|||𝐾1

if 𝐹 ∈ℱ𝑖
ℎ
,

𝑈
|||𝐾 if 𝐹 ∈ℱ𝑏

ℎ
,

𝑈+ =

{
𝑈
|||𝐾2

if 𝐹 ∈ℱ𝑖
ℎ
,

𝑔 if 𝐹 ∈ℱ𝑏
ℎ
,

for boundary data 𝑔 to be defined for a given example. We then define the jump and average operators on a facet 𝐹 as

�𝑈� =𝑈− −𝑈+, and {{𝑈}} = 1
2
(
𝑈− +𝑈+) .

3.2. Spatial semi-discretisation

The derivation of a DG formulation for (13) can be found in many textbooks, e.g., [23–26]. The idea is to multiply (13) with 
an arbitrary test function 𝑉ℎ ∈𝑊ℎ, integrate over Ω, divide the integral into element contributions, integrate by parts and choose 
a numerical flux on element boundaries (since 𝑈ℎ and 𝑉ℎ are discontinuous). This gives the spatially semi-discrete form on every 
element 𝐾 ∈𝒯ℎ(

𝜕𝑡𝑈ℎ,𝑉ℎ
)
𝐾
−
(
𝐹 (𝑈ℎ),∇𝑉ℎ

)
𝐾
+
(
𝐹𝑛(𝑈ℎ), 𝑉ℎ

)
𝜕𝐾

=
(
𝐺(𝑈ℎ), 𝑉ℎ

)
𝐾
, (14)

where 
(
⋅, ⋅
)
𝜔

denotes the 𝐿2-inner-product on 𝜔 ⊂Ω. For the numerical flux, we choose the Lax-Friedrich flux, which is given by

𝐹𝑛(𝑈ℎ) = {{𝐹 (𝑈ℎ)}}𝒏+ Λ
2

�𝑈ℎ�,

where 𝑛 is the outward-pointing unit normal vector on a given element boundary and Λ corresponds to the largest Eigenvalue of 
𝐹 ′(𝑈 ). We take

Λ =max{|𝑈+
ℎ
⋅ 𝒏|+ |𝑣𝑟𝒆𝑧 ⋅ 𝒏|+ 𝑐𝑚, |𝑈−

ℎ
⋅ 𝒏|+ |𝑣𝑟𝒆𝑧 ⋅ 𝒏|+ 𝑐𝑚}, (15)
5

where 𝑐𝑚 is the speed of sound in moist air
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𝑐𝑚 =
√
𝛾𝑚𝑝

𝜌
, with 𝛾𝑚 =

𝑞𝑑𝑐𝑣𝑑 + 𝑞𝑣𝑐𝑣𝑣 + (𝑞𝑐 + 𝑞𝑟)𝑐𝑙 + 𝑞𝑑𝑅𝑑 + 𝑞𝑣𝑅𝑣
𝑞𝑑𝑐𝑣𝑑 + 𝑞𝑣𝑐𝑣𝑣 + (𝑞𝑐 + 𝑞𝑟)𝑐𝑙

.

The ratio 𝛾𝑚 is the isentropic expansion factor for moist air [13], extended to include the specific heat and mass ratio for liquid water. 
In the case of 𝑞𝑣 = 𝑞𝑐 = 𝑞𝑟 = 0, this reduces to the isentropic expansion factor for dry air, and (15) reduces to the Lax-Friedrichs Flux 
for the dry Euler equations. Consequently, this can be viewed as the natural extension to the case with moisture and rain. Note that 
(15) might not give the exact eigenvalue, however it is an upper bound for the fastest wave and therefore sufficient, since Λ only 
needs to be large enough, [23]. On domain boundaries, we will either consider periodic or slip-wall (reflective) boundary conditions. 
Solid walls are characterised by 𝒖 ⋅𝒏 = 0. To implement this, we set 𝒎+

ℎ
= (𝒎− −2(𝒎−

ℎ
⋅𝒏)𝒏) on slip-wall boundaries and (𝑈+

ℎ
)𝑖 = (𝑈−

ℎ
)𝑖

for the remaining components.

We then arrive at the spatially semi-discrete form by summing over all elements(
𝜕𝑡𝑈ℎ,𝑉ℎ

)
Ω + 𝐹ℎ(𝑈ℎ)(𝑉ℎ) =𝐺ℎ(𝑈ℎ)(𝑉ℎ), (16)

with

𝐹ℎ(𝑈ℎ)(𝑉ℎ) ∶=
∑
𝐾∈𝒯ℎ

−
(
𝐹 (𝑈ℎ),∇𝑉ℎ

)
𝐾
+

∑
𝐹∈ℱℎ

(
𝐹𝑛(𝑈ℎ), �𝑉ℎ�

)
𝐹
,

𝐺ℎ(𝑈ℎ)(𝑉ℎ) ∶=
∑
𝐾∈𝒯ℎ

(
𝐺(𝑈ℎ), 𝑉ℎ

)
𝐾
,

where we define the jump �𝑉ℎ� = 𝑉ℎ on domain boundary facets 𝐹 ∈ℱ𝑏
ℎ

.

3.3. Time-integration

Let [0, 𝑇end] be the time-interval of interest and consider the constant time-step Δ𝑡 = 𝑇end∕𝑁 for some given 𝑁 ∈ ℕ. We will use 
an explicit time-stepping scheme to advance the equations in time, since we know this results in a very efficient scheme, in the sense 
that it is highly parallelizable, thus able to utilize HPC hardware. As usual with explicit schemes, the time-step needs to be chosen 
sufficiently small, dependant on ℎ and 𝑘, to obtain stability. We note that IMEX schemes [27,28] are able to improve on the constant 
in the time-step restriction, by treating the terms leading to the fastest waves implicitly.

To this end, let {𝜑𝑖}
𝑁𝑊
𝑖=1 be the basis of 𝑊ℎ and 𝐮 be the coefficient vector of 𝑈ℎ in this basis. Furthermore, let 𝐌, 𝐅, 𝐆 ∶ℝ𝑁𝑊 →

ℝ𝑁𝑊 denote the mass matrix flux and forcing operators, i.e.,

𝐌𝑖𝑗 =
(
𝜑𝑖,𝜑𝑗

)
Ω, 𝐅(𝐮)𝑖 = 𝐹ℎ(𝑈ℎ)(𝜑𝑖), and 𝐆(𝐮)𝑖 =𝐺ℎ(𝑈ℎ)(𝜑𝑖). (17)

Then the explicit Euler scheme for (16) reads as: For all 𝑛 = 1, … , 𝑁 , find 𝐮 such that

𝐌𝐮𝑛 =𝐌𝐮𝑛−1 − Δ𝑡𝐅(𝐮𝑛−1) + Δ𝑡𝐆(𝐮𝑛−1). (18)

Note that solving the above system can be implemented very efficiently since (beside assembling several source vectors) it only 
involves inverting the mass-matrix. As there is no coupling between different elements, the latter is block diagonal (or even diagonal 
with the correct choice of basis) and thus solving the system can be implemented in a parallel manner and/or even matrix-free to 
better utilise modern high-performance computing architectures. This is also illustrated in Section 4.1.2 below.

Remark 1. In practice, we will use the four stage, third order strong stability preserving Runge-Kutta scheme (SPPRK(4,3)), [29,30]. 
To ease the readability, we use the explicit Euler scheme in the presentation of the method.

3.4. Dependant variable reconstruction

To solve system (18), we need to evaluate the discrete flux and source terms 𝐹ℎ and 𝐺ℎ. Unfortunately, they depend on the 
variables 𝜌𝑣, 𝜌𝑐, 𝑇 which are not present in the (conservative) variables 𝑈ℎ, but derived from the non-linear relationships (9).

After every time-step, we construct 𝜌𝑛
𝑣,ℎ
, 𝜌𝑛
𝑐,ℎ
, 𝑇 𝑛
ℎ

from 𝑈𝑛
ℎ

, by solving system (9) in every quadrature point1 by Newtons method, 
taking the state at the last time-step as the initial guess. The resulting function is then only well defined in the quadrature points. The 
polynomial solution in ℙ𝑘(𝒯ℎ) is then obtained via an 𝐿2-projection. As a result, we implicitly enforce the saturation requirement 
which allows for both condensation of water vapour and (instantaneous) evaporation of cloud water in undersaturated regions. 
With these secondary, dependent variables reconstructed, we can then assemble 𝐹ℎ and 𝐺ℎ for the next time-step or stage of 
the Runge-Kutta scheme. Our approach is similar to that of the one-step-scheme presented in [13], where system (9) was solved 
globally by an iterative and decoupled Newton scheme. In contrast, we solve (9) pointwise and fully coupled using a standard 
Newton approach, and then reconstruct the piecewise polynomial solution to evaluate the numerical flux. This has the advantage of 
converging quadratically, and being easily computable in parallel.
6

1 NGSolve uses a product of Gauss-Legendre rules, which in the case of simplicial elements are mapped onto the simplex using a Duffy transformation.
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3.5. Stabilisation through artificial diffusion

Phase changes due to rain dynamics can lead to spurious oscillations which eventually could have an effect on the stability of our 
method. To dampen these oscillations and assure stability, we apply a proper scaled artificial diffusion term to our system. In the 
discontinuous Galerkin setting, this is done through the symmetric interior penalty bilinear form

𝐴ℎ(𝑈ℎ,𝑉ℎ) =
∑
𝐾∈𝒯ℎ

(
𝛼∇𝑈ℎ,∇𝑉ℎ

)
𝐾

+
∑
𝐹∈ℱℎ

[
−
(
𝛼{{∇𝑈ℎ}}𝑛, �𝑉ℎ�

)
𝐹
−
(
𝛼{{∇𝑉ℎ}}𝑛, �𝑈ℎ�

)
𝐹
+ 𝜎ℎ2∕𝑘

(
𝛼�𝑈ℎ�, �𝑉ℎ�

)
𝐹

]
,

(19)

with the penalty parameter 𝜎 > 0 chosen sufficiently large and a vector-valued diffusion coefficient 𝛼 > 0.

Convection dominated convection-diffusion problems can become unstable in the case of a mesh Péclet number (Pe) larger than 
one. The mesh Péclet number (for 𝒖-transported quantities) is given by

𝑃𝑒 =
‖𝒖‖∞,𝐾ℎ

2𝛼
.

For pure convection problems (i.e. 𝛼 = 0), this can be seen as infinitely large. Motivated by this, we choose 𝛼 in (19) element-wise 
and component-wise for the components of 𝑈ℎ as

𝛼𝐾 = 𝛾0.5ℎ1−𝑑∕2‖𝒖‖0,𝐾 and 𝛼𝐾 = 𝛾0.5ℎ1−𝑑∕2‖𝒖− 𝑣𝑟𝒆𝑧‖0,𝐾 ,
where the latter is only chosen for the rain density 𝜌𝑟, since this is the velocity-field by which it is transported. Note that we use 
the element wise 𝐿2-norm, omit the scaling by the mesh size and include a scaling parameter 𝛾 . This is because we cannot easily 
compute ‖𝒖‖∞,𝐾 and because ‖𝒖‖0,𝐾 ≃ 𝑐ℎ𝑑∕2‖𝒖‖∞,𝐾 , with a constant 𝑐 > 0 independent of ℎ. For our numerical experiments, we 
choose 𝛾 as small as possible, without getting an unstable method, and project the piecewise constant 𝛼𝐾 into a piecewise-linear, 
continuous function, such that 𝛼𝐾 is well defined on every facet. This is different to [9,15], where the added artificial viscosity is 
scaled with a single constant coefficient.

Finally, we note that for the case of the moist equations without rain, i.e., without any explicit phase changes, no artificial 
diffusion was found to be necessary for stability of the method. We therefore only add diffusion for the examples with rain.

Remark 2 (Loss of higher-order convergence). By adding the artificial diffusion term (19) to our system, we are solving the original 
problem including a perturbation of order 𝒪(ℎ). As a result, we cannot expect high order convergence of the DG method, even if 
higher-order elements are used. For a fixed artificial viscosity (independent of ℎ), we expect convergence to the exact solution of the 
perturbed system with the given fixed viscosity, but not towards the solution of the Euler equations (no viscosity) under consideration 
here.

3.6. Explicit sponge layer

In some problems, the top of the domain should represent an open domain. That is, waves should exit the domain and not reflect 
off the top boundary. Consequently, a slip-boundary condition, representing a solid wall, is unphysical. However, mathematical 
modelling of a non-reflective boundary is a non-trivial task. In order to prevent waves from reflecting off the top solid wall boundary, 
we implement a Rayleigh sponge layer to damp gravity waves, as is common in the atmospheric flow literature [9,10,15,31,32]. The 
idea is essentially to relax the solution towards a known far-field condition (usually the hydrostatic background state).

In our code, we relax the moist mass-fraction perturbations, the velocity and energy perturbation towards the known velocity 
and zero in the case of scalar perturbations. In all the cases below, the velocity is also zero, so the damping of the mass-fraction 
perturbations, velocity and energy perturbation is equivalent to damping the density perturbations, momentum and energy density 
perturbation. That is, at the end of each time step, we compute

𝑈𝑛
ℎ
= (1 − 𝛿𝑅(𝑧))𝑈

𝑛,pred

ℎ
+ 𝛿𝑅(𝑧)𝑈 far

ℎ
, (20)

where 𝑈𝑛,pred

ℎ
= (𝜌′

𝑚
, 𝜌′
𝑟
, 𝜌𝒖, 𝐸′) is the solution resulting from the time-stepping scheme, and 𝑈 far

ℎ
= (0, 0, 𝜌𝒖, 0) is the far-field state for 

these variables. This is in contrast to [10,31], where the damping is applied to the entire state vector (velocity and scalars). Since 
the mass-faction damping can lead to mass loss in the sponge layer, we add a correction step and locally add the moist mass lost 
through damping to the dry density. Consequently, the total mass is still preserved globally by our scheme. We note that mass fixing 
in numerical weather forecasting is done in the literature [33,34] with both local corrections and by spreading the mass correction 
in the entire domain.

In (20), we use the specific blending function

𝛿 (𝑧) =

{
𝛼

2

(
1 − cos

(
𝜋
𝑧−𝑧𝐷
𝑧𝑇 −𝑧𝐷

))
for 𝑧 ≥ 𝑧𝐷,
7

𝑅
0 for 𝑧 < 𝑧𝐷.
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Here 𝑧𝐷 is the height of the bottom of the sponge layer, 𝑧𝑇 is the height of the top boundary and 0 < 𝛼 ≤ 1 is a parameter to tune 
the intensity of the sponge layer.

We implement (20) through an 𝐿2-projection. The sponge layer can also be implemented by adding a corresponding 𝐿2-term to 
the right-hand side, however, the choice of 𝛼 is more difficult then.

4. Numerical examples

All numerical examples are implemented using the finite element library Netgen/NGSolve [35,36] and www .ngsolve .org. We run 
all examples either in a distributed memory (MPI) parallel or shared memory parallel fashion (similar to openMP). The python scripts 
implementing our specific examples and the results presented here are freely available on github and archived on zenodo [37].

We consider the following computation examples:

Example 1: Inertia gravity waves in a saturated atmosphere without rain dynamics to test our method with respect to optimal, 
high-order convergence, and parallel scalability.

Example 2: The widely used benchmark by Bryan and Fritsch 2002 of a rising thermal in a saturated atmosphere, again without rain 
dynamics. We investigate the method with respect to large gradients due to the rising thermal.

Example 3: We revisit the inertia gravity wave problem, but with an initial condition of a saturated vapour density but no clouds, in 
order to investigate cloud formation in our method.

Example 4: Conservation of a hydrostatic state in a domain with a large steep mountain. Unstructured meshes are of particular 
interest in this example due the steep terrain under consideration. This example also includes the possibility of rain forming, if 
the solution deviates from the hydrostatic state.

Example 5: A two-dimensional rising thermal leading to cloud formation and rain dynamics as formulated by Grabowski and

Clark 1991.

Example 6: The three-dimensional extension of Example 5 as described in [40].

Example 7: Two dimensional squall line storm simulation based on [15,9].

4.1. Example 1: inertia gravity waves in a saturated atmosphere

As our first example, we consider the case of a moist version of the non-hydrostatics gravity waves adapted from [41] and 
presented in [11]. This example results in a smooth solution, such that we can use it to test high-order convergence of our method.

4.1.1. Set-up

The domain is Ω = (0, 300 km) × (0, 10 km). Periodic boundary conditions are applied on the left and right boundaries, while we 
have solid walls (slip) boundary conditions on the bottom and top boundaries. The time interval under consideration is [0, 3600 s]. 
The hydrostatic base state is defined via the wet equivalent potential temperature

𝜃𝑒 =Θ0 exp(𝑁2𝑧∕𝑔), (21)

with Θ0 = 300 K and 𝑁2 = 10−1 s−2. The total water fraction is 𝑞𝑤 = 0.02 and the pressure boundary condition is 𝑝(0) = 𝑝ref. The 
perturbation applied to the hydrostatic base state is

𝜃′𝑒 =
ΔΘ

1 + 𝑎−2(𝑥−𝐿∕2)2
sin

(
𝜋𝑧

𝐻

)
,

where 𝐻 is the domain height, 𝐿 the domain length, 𝑎 = 5 × 103 m and ΔΘ = 0.01 K. The perturbation is applied under the re-

quirements that 𝑞𝑤 and the pressure remain unchanged, and the air is saturated everywhere. The initial velocity is prescribed as 
𝑢 = (20, 0)𝑇 m s−1. Additional details of the computation of the hydrostatic base state and initial perturbation are provided in Ap-

pendix B.1.

4.1.2. Results

We consider this problem on a structured quadrilateral mesh, starting with ℎ = 1000 m and a series of three mesh refinements. On 
each of these meshes, we consider the polynomial order 𝑘 = 1, 2, 3, 4. The time-step is chosen to be within the time-step restriction of 
the explicit time-stepping scheme, that is Δ𝑡 = 1 s for ℎ = 1000 m with 𝑘 = 1, and Δ𝑡 = 0.025 s for ℎ = 125 m with 𝑘 = 4. To compute 
convergence rates, we consider the results on the finest mesh (ℎ = 125 m) with order 𝑘 = 4 as the reference solution. We then use the 
𝓁2(𝐿2)-type (space-time) norm

‖𝑥ℎ − 𝑥ℎ,ref‖2 = 𝑚∑
𝑖=1

‖𝑥ℎ(𝑡𝑖) − 𝑥ℎ,ref(𝑡𝑖)‖2𝐿2(Ω)
,

with a total of 𝑚 = 30 equidistant points in time. The convergence results are shown in Fig. 1. We observe the expected optimal 
order of convergence of 𝑘 + 1. There is some less than optimal convergence between the finest two meshes considered with 𝑘 = 4. 
8

We attribute this to the numerical reference solution not being sufficiently accurate.

http://www.ngsolve.org
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Fig. 1. Example 1: Convergence results of the primary and secondary variables, and wet equivalent potential temperature on a series of structured quadrilateral 
meshes for different polynomial orders.

Fig. 2. Example 1: Inertia gravity waves in a saturated atmosphere. Perturbation of the wet equivalent potential temperature from the hydrostatic base state. Left: 
Profile along the line 𝑧 = 5 km at 𝑡 = 2520 s for different polynomial orders on a structured quadrilateral mesh with ℎ = 125 m, centred around 𝑥 = 200 km. Right: 
Solution at 𝑡 = 3600 s computed using ℚ3 elements with ℎ = 500 m, centred around 𝑥 = 222 km.

The perturbation of the wet equivalent potential temperature along the line 𝑧 = 5 km at 𝑡 = 2520 s can be seen on the left of Fig. 2. 
Here we see the expected symmetry around the 𝑥 ≈ 200 km, similar to [18], even though the latter only considered dry dynamics. Due 
to our initial perturbation being located at 𝑥 = 150 km as in [11] rather than at 𝑥 = 100 km in [18], the axis of symmetry is also shifted 
in our results. Furthermore, we chose the time 𝑡 = 2520 s, rather than 𝑡 = 2500 s as in [18] as not all our time-steps hit this point in 
time. We observe that the lowest order results with 𝑘 = 1 are visibly different from the higher order results, while for 𝑘 = 2, 3, 4, the 
results are indistinguishable. On the right of Fig. 2, we see the perturbation of the wet equivalent potential temperature at 𝑡 = 3600 s
in the bulk of the domain computed using ℚ3 elements on the mesh with ℎ = 500 m. This matches the results presented in [11] very 
well. However, we emphasize that this is not a variable in our system of equations, but a quantity obtained by post-processing.

Finally, we consider the parallel scalability of our method. As discussed in Section 3.3, every time step requires vector assemblies, 
and the only large systems that have to be solved are mass-matrix problems. Due to the choice of basis, the matrices are diagonal and 
solving the system is implemented matrix-free, which is known to be a scalable approach. Our scheme’s second major computationally 
expensive part is the dependant variable reconstruction, discussed in Section 3.4. However, since this is done completely locally, we 
9

expect this to also scale well in parallel. A strong scaling plot for one hundred time steps is shown in Fig. 3 using either NGSolve’s 
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Fig. 3. Example 1: Strong scaling results for the time-stepping loop using NGSolve’s shared memory (SM) and distributed memory (MPI) parallel implementations. 
The number of degrees of freedom (dofs) are counted for the finite element space for the eight primary variables.

own shared memory parallel loops or an MPI-distributed memory parallel version. As we can see, both versions scale well. We have 
nearly perfect scaling up to 16 parallel threads and good scaling even up to 2048 MPI ranks across 16 nodes.

4.2. Example 2: Bryan-Fritsch moist benchmark

Having established the optimal order error convergence of our method, we consider a benchmark problem proposed in [38] as 
our second example. This problem includes water vapour and clouds but still no rain.

4.2.1. Set-up

The domain is given by Ω = (0, 20 km) × (0, 10 km). Periodic boundary conditions are applied on the left and right boundaries and 
rigid wall (slip) boundary conditions are applied on the top and bottom boundaries, i.e., 𝒖 ⋅ 𝒏 = 0. The time interval under consider-

ation is [0, 1000 s]. The hydrostatic base state is defined by assuming a saturated atmosphere, 𝑞𝑤 = 0.02, a constant wet equivalent 
potential temperature of 𝜃𝑒 = 320 K and the boundary condition for the pressure of 𝑝 = 𝑝ref = 105 Pa. The initial perturbation is 
computed by perturbing the density potential temperature in a circular region, such that there is positive buoyancy in this region 
while the pressure remains unchanged. Based on this, we compute the temperature perturbation, from which we then reconstruct 
the vapour and cloud densities using the saturation vapour pressure. This leads to the initial condition 𝜌′

𝑑
= 0, 𝜌′

𝑚
= 0, 𝜌𝑢 = (0, 0), 𝐸′, 

𝜌′𝑣, 𝜌
′
𝑐 and 𝑇 ′. Details on the computation of the hydrostatic state and perturbation are given in Appendix B.2

4.2.2. Results

The quantity of interest in this benchmark is the perturbation of the density potential temperature 𝜃𝜌, the definition of which 
is given below in (B.2). The resulting perturbation 𝜃′𝜌 over a series of meshes and polynomial orders can be seen in Fig. 4. The 
time-step is chosen to be within the time-step restriction of the explicit time-stepping scheme. The exact values are given in Fig. 4. 
We emphasize that the density potential temperature quantity is not a variable we solve for in our system, but a quantity which has 
to be post-processed from the available data.

The final states are comparable to that presented in [38]. There are some oscillations inside the temperature bubble visible 
throughout, although we note that they become smaller under mesh refinement and increasing polynomial order. Unsurprisingly, the 
symmetry of the solution is maintained on the structured quadrilateral mesh, and there are some instabilities visible at the boundary 
of the temperature bubble for higher-order elements. However, these also appear to become smaller under mesh refinement and 
increasing polynomial order.

Finally, we note that for all polynomial orders considered, the temperature bubble is consistent. This contrasts with the results in 
[11], where additional plumes appeared for their higher-order case 𝑘 = 1. The authors of the latter paper attributed this to a physical 
instability which is damped in the lowest order case 𝑘 = 0, due to higher numerical diffusing.

4.3. Example 3: inertia gravity waves in a saturated atmosphere without initial clouds

In the previous examples, the vapour density is saturated throughout. To investigate cloud formation, we consider the inertia 
gravity waves set-up, but define the initial condition such that vapour density is fully saturated, but without any cloud water present.

4.3.1. Set-up

The spatial and temporal set-up is identical to that in Section 4.1.1. The hydrostatic base state is computed using the same 𝜃𝑒
given in (21), but now with 𝜌𝑣 = 𝜌𝑣𝑠 and 𝜌𝑐 = 0. The same perturbation is added to the wet equivalent temperature and the initial 
state is again given by assuming that the pressure is not changed by the perturbation and the presence of a saturated atmosphere 
10

without clouds. Additional details are provided in Appendix B.3.
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Fig. 4. Example 2: Density potential temperature perturbation at 𝑡 = 1000 s in the region (6 km, 14 km) × (3 km, 8.5 km) on a series of different triangular and quadri-

lateral meshes using different order finite elements.

Fig. 5. Example 3: Cloud density (kg/m2) and contours at 𝑡 = 3600 s resulting from inertia gravity waves in a saturated atmosphere without initial clouds. Computed 
using ℚ3 elements on a structured quadrilateral mesh. Left: Profiles along the lines 𝑧 = 5 km and 7.5 km. Right: Density in the whole domain, computed with 
ℎ = 500 m, Δ𝑡 = 0.15 s.

4.3.2. Results

We consider elements of order three on the two coarsest meshes used in the previous example, since the errors in Section 4.1 were 
already very small for this choice. The mesh sizes and time steps are (ℎ, Δ𝑡) = (1000 m, 0.3 s) and (ℎ, Δ𝑡) = (500 m, 0.15 s), resulting in 
2.4 × 105 and 9.6 × 105 degrees of freedom for the finite element space of the primal variables, respectively.2 Profiles of the cloud 
density along two horizontal lines, and the density in the entire volume are shown in Fig. 5 for 𝑡 = 3600 s. Looking at the results in 
Fig. 5, we see that the cloud formation is consistent between the two meshes, and in fact there is no visible difference between the 
resulting cloud profiles.

4.4. Example 4: atmosphere at rest with a steep mountain

Approaches based on coordinate following discretisations can struggle in cases of severe slopes, even with the atmosphere at 
rest [10,42]. As an example where unstructured meshes are particularly attractive, we consider a domain with a single Gaußian 
mountain, based on the dry example described in [42], but consider the full moist system (12).

2 The compute wall times on a single node with two AMD EPYC 7713 64-Core Processors with hyper-threading enabled using 256 shared memory parallel threads 
11

was 279 s (ℎ = 1000, Δ𝑡 = 0.3) and 1390 s (ℎ = 500, Δ𝑡 = 0.15), respectively.
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Fig. 6. Example 4: Results for the atmosphere-at-rest experiment with a steep mountain after 6 h on unstructured triangular meshes. Solid lines indicate temperature 
contour lines (1 K intervals) and the shading indicates spurious velocity. Left: ℎ = 1000 m, 𝑘 = 1, Δ𝑡 = 0.4 s, Right: ℎ = 1000 m, 𝑘 = 2, Δ𝑡 = 0.2 s.

4.4.1. Set-up

The domain has a height of 40 km and a width of 35 km. The terrain profile is given by

𝑧𝑚(𝑥) = ℎ0 exp
(
−

(𝑥− 𝑥𝑐)2

𝑎2

)
,

where 𝑥𝑐 is the centre of the domain and we consider the height ℎ = 7000 m and half-width 𝑎 = 2000 m, as in [42]. This results in 
a maximal slope of about 3. On the vertical boundaries, we consider periodic boundary conditions and solid wall boundaries at the 
top and bottom.

For this, we need to include the sponge layer discussed in Section 3.6. Specifically, we choose 𝑧𝐷 = 15 km and 𝛼 = 0.1.

We define the hydrostatic base state through the temperature profile

𝑇 (𝑧) = 𝑇str + (𝑇sl − 𝑇str) exp
(
− 𝑧

𝐻scal

)
, (22)

where 𝑇sl = 288.15 K, 𝑇str = 213.15 K and 𝐻scal = 10000 m. The water densities are then defined by requiring vapour saturation 
throughout and setting the cloud and rain densities to zero. Further details are provided in Appendix B.4 This setting is challenging, 
since deviations from the hydrostatic state lead to dynamics in all variables. In particular, deviations will cause cloud and rain 
formation, c.f., Section 2.1.

4.4.2. Results

We consider an unstructured triangular mesh, with linear elements and mesh size ℎ = 1000 m, of the domain together with 
elements of order 𝑘 = 1, 2. The time step is chosen according to the stability limit, resulting in Δ𝑡 = 0.4 s and 0.2 s, respectively. The 
resulting spurious velocity, temperature contours and the mesh can be seen in Fig. 6. Here we see that the solution has remained 
stable, with the largest spurious velocities visible at the coarsest elements and the bottom boundary. Furthermore, there are no 
oscillations visible in the temperature contours, even close to the mountain profile. In fact, it appears that for the case 𝑘 = 2, no 
spurious velocities are present. A closer inspection of the data shows that the velocity is non-zero up to approximately 10−12, which 
is not visible on the colour scale. Furthermore, we note that while the simulation allowed for the formation of rain, which occurs as 
soon as the cloud density is non-zero, see (5), the rain density remained stable with a perturbation of 7 × 10−13 and 3 × 10−15 for 
𝑘 = 1 and 𝑘 = 2, respectively. Finally, while our sponge layer allows for mass exchange between the moist and dry densities in the 
sponge layer, the dry density perturbation observed is of order 10−11 and 10−13 for 𝑘 = 1 and 𝑘 = 2, respectively, and with the largest 
perturbations visible in the area below the sponge layer.

4.5. Example 5: rising thermal with rain in two spatial dimensions

This test problem is based on the one described in [39] and again involves a rising thermal in two dimensions, but this time in 
an undersaturated atmosphere and allowing for the development of rain.

4.5.1. Set-up

The domain is Ω = (0, 3.6 km) × (0, 2.4 km), periodic boundary conditions are set on the left and right boundaries and solid wall 
(slip) boundary conditions at the top and bottom boundaries. Note that while consequently dry air, water vapour and cloud water 
cannot be transported out of the domain, rain water can leave the domain since 𝑣𝑟𝒏𝑧 is not necessarily zero at the bottom boundary. 
The time interval under consideration is [0, 600 s].

The hydrostatic base state is defined by specifying a relative humidity and the dry potential temperature with
12

H = 0.2, and 𝜃𝑑 =Θ𝑒𝑆𝑧,
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Fig. 7. Example 5: Dry air velocity (m s− 1) solution at 𝑡 = 600 s for a two-dimensional rising thermal leading to precipitation. Discretisation parameters from left to 
right: (ℎ, 𝑘, Δ𝑡) = (25 m, 1, 0.02 s), (25 m, 2, 0.01 s), (12.5 m, 2, 0.005 s). Computed on unstructured simplicial meshes.

Fig. 8. Example 5: Water vapour density (kg/m2) solution (background), cloud density (kg/m2) edge contour at 0.001 (red) and rain water density (kg/m2) contours 
at {10−6, 2 × 10−6, 3 × 10−6, 4 × 10−6, 5 × 10−6, 6 × 10−6, 7 × 10−6, 8 × 10−6, 9 × 10−6, 10−5} (greens), for a two-dimensional rising thermal leading to precipitation. Top 
row: 𝑡 = 300 s, bottom row: 𝑡 = 600 s. Discretisation parameters as in Fig. 7.

where Θ is the dry potential temperature corresponding to 𝑇surf = 283 K and 𝑝 = 8.5 × 104 Pa. This pressure is also used for the 
pressure boundary condition at 𝑧 = 0. The stratification is given by 𝑆 = 1.3 × 10−5 m−1. There are no clouds and no rain. Details on 
the computation of the hydrostatic base state are given in Appendix B.5.

The initial perturbation of the initial condition is then given by a circular bubble, where the air is saturated but no clouds are 
present, without changing the pressure and dry potential temperature. Further details on the initial condition are again provided in 
Appendix B.5.

4.5.2. Results

We consider an unstructured simplicial mesh of the domain with ℎ = 25 m and orders 𝑘 = 1, 2, as well as a second mesh with 
ℎ = 12.5 m and 𝑘 = 2. The time step is chosen as large as the time-step restriction allows, resulting in Δ𝑡 = 0.02 s, 0.01 s and 0.005 s, 
respectively. For stability, we include artificial diffusion here and choose the parameter to be 𝛾 = 0.06, which we found to be the 
lower limit to preserve stability in this case.

The resulting velocity field at 𝑡 = 600 s can be seen in Fig. 7, and the water vapour density, cloud boundary contour and rain 
density contours at 𝑡 = 300 s, 600 s in Fig. 8. We also show the total rain transported out of the bottom of the domain in Fig. 9.

Looking at the velocity solution, we see that the results are consistent, and higher order results in faster velocities and more 
details in the velocity field. Looking at the water vapour, cloud and rain density solutions at 𝑡 = 300 s in Fig. 8, we have similar 
results for all three discretisations. In particular, the results for 𝑘 = 2 are consistent with the literature [39]. At 𝑡 = 600 s, the densities 
have more pronounced differences; notably, in the case 𝑘 = 1, the cloud has split into three separate clouds, which is mirrored in the 
rain contours and in the more spread out total rainfall seen in Fig. 9. We note that the single rain column is consistent with results 
in the literature [43]. With regard to the water vapour, we see that the 𝑘 = 2 results show significantly more small-scale features 
than the 𝑘 = 1 solution. Finally, we note that we do not preserve the symmetry of the initial condition due to the use of unstructured 
13

meshes. This lack of symmetry can be observed consistently in Fig. 7, Fig. 8 and Fig. 9.
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Fig. 9. Example 5: Total rain fallout at the bottom of the domain for a two-dimensional rising thermal leading to precipitation after 𝑡 = 600 s.

Fig. 10. Example 6: Velocity and rain water density results for a three-dimensional rising thermal leading to precipitation on an unstructured tetrahedral mesh at 
𝑡 = 360 s. Left: ℎ = 100 m, 𝑘 = 1, Δ𝑡 = 0.04, Right: ℎ = 100 m, 𝑘 = 2, Δ𝑡 = 0.02.

4.6. Example 6: rising thermal with rain in three spatial dimensions

We take the extension of the previous example as presented in [40].

4.6.1. Set-up

The domain is Ω = (0, 3.6 km) × (0, 3.6 km) × (0, 2.4 km), periodic boundary conditions are set on the horizontal boundaries and 
solid wall (slip) boundary conditions at the top and bottom boundaries. The hydrostatic state and the initial conditions are defined 
analogously to those in Section 4.5, however, the bubble is now three-dimensional.

4.6.2. Results

We consider an unstructured tetrahedral mesh of the domain with ℎ = 100 m. We consider the polynomial orders 𝑘 = 1, 2, resulting 
in approximately 4 × 106 and 107 unknowns for the DG space for the primary variables. The time-step is chosen according to the 
time-step restriction, resulting in Δ𝑡 = 0.04 s and Δ𝑡 = 0.02 s, respectively. The artificial diffusion parameter is again chosen as small 
as possible, resulting in 𝛾 = 0.6.

The rain density for a quarter of the domain, together with velocity streamlines in the remaining domain, can be seen in Fig. 10, 
and a vertical slice through the centre of the domain (𝑦 = 1.8 km) with the water vapour density, cloud outline contour and rain 
contours can be seen in Fig. 11. Here, we again see faster and more dynamics in the velocity solution for the case 𝑘 = 2 and that the 
rain density is concentrated more towards the centre of the domain, consistent with our two-dimensional results. The higher velocity 
is also consistent with the observation that the rain falls from a higher height in the case 𝑘 = 2. Furthermore, we observe that the 
higher order simulation preserves the symmetry of significantly better than the case for 𝑘 = 1.

4.7. Example 7: squall line

As a final example, we consider an idealised test-case presented by [15]. The initial condition for this consists of a synthetic 
14

vertical profile, based on a typical environment typical for mid-latitude squall lines [15,44,45]. While we remain in the original 



Journal of Computational Physics 499 (2024) 112713S. Doppler, P.L. Lederer, J. Schöberl et al.

Fig. 11. Example 6: Water vapour density (background), cloud density contour at 0.0001 (red) and rain density contours at {2.4 × 10−7, 4.8 × 10−7, 7.2 × 10−7, 9.6 ×
10−7, 1.2 ×10−6, 1.44 ×10−6, 1.68 ×10−6, 1.92 ×10−6, 2.16 ×10−6, 2.4 ×10−6} (greens) for a three-dimensional rising thermal leading to precipitation on an unstructured 
tetrahedral mesh in the plane 𝑦 = 1.8 km at 𝑡 = 360 s.

two-dimensional setting from [15], we take the precise values from [9]. In particular, the set-up in [9] considers a smaller domain 
in the horizontal direction, and a shear wind in the opposite direction.

4.7.1. Set-up

The domain is Ω = (0, 150 km) × (0, 24 km). Periodic boundary conditions are applied on the lateral boundaries and a free-slip on 
the top and bottom boundary conditions. To avoid the reflection of waves from the non-physical top boundary condition, we apply 
an explicit sponge layer in the top 6 km of the domain. The time interval under consideration is [0, 9000 s].

The hydrostatic background state is computed based on a given vertical profile for the potential temperature 𝜃 and the water 
vapour mass fraction 𝑞𝑣. The specific values for this are taken from [9, Table A1]. Further details are given in Appendix B.6.

The initial condition is then given by a temperature perturbation bubble, which we apply to the temperature under the assumption 
that the pressure is unchanged as above. Details are again given in Appendix B.6. The densities remain unchanged. However, the 
velocity is initialized with a horizontal shear flow with 𝒖𝑥 = 12 ms−1 at 𝑧 = 0 and decreases linearly to zero at 𝑧 = 2.5 km.

4.7.2. Results

We consider unstructured simplicial meshes of the domain with ℎ = 500, 250, and 125 m, respectively. On these meshes, we 
consider 𝑘 = 1 and time steps as large as the time-step restriction allows. We present the resulting perturbation of the potential 
temperature and velocity field, together with the cloud outline and rain contours at 𝑡 = 1500 s and 𝑡 = 3000 s in Fig. 12. We further 
show the storm’s evolution in the same quantities resulting from our finest mesh at 𝑡 = 1500, 3000, 6000, and 9000 s in Fig. 13. Finally, 
we plot the total rain fallout at the bottom of the domain in Fig. 14.

The main cloud forms at around 𝑡 = 300 s, and the precipitating water reaches the ground at around 𝑡 = 900 s (not shown). We 
note that both these times are significantly earlier than those reported in [46]. However, the latter uses a different equation for 
the temperature/energy, slightly different source terms governing phase changes and a different formula for the saturation vapour 
pressure. Nevertheless, this occurs in the convective tower as expected, and a pool of colder and denser air forms downwind of the 
tower, see Fig. 12, consistent with the literature [15,46,9]. The main cloud then spreads out into the expected anvil shape, and the 
profile of the potential temperature perturbation is consistent with the literature. We attribute the visual differences to the fact that 
our energy equation takes the effects due to moisture into account, and there are differences in the source terms governing phase 
changes.

The total accumulated rain is larger than that reported in the literature. However, it reduces with mesh refinement, consistent 
with faster storm development and less total accumulated rain reported in [15,9]. The accumulated rain on the lowest mesh is 
indeed consistent with the results in the literature. We also observe multiple peaks in the continuous Galerkin discretisation in [9]. 
However, in that work, the secondary peaks were observed in the downwind direction rather than the upwind direction. However, 
more accumulated rain in the upwind direction is consistent with the literature, e.g., [46], where the two-dimensional case was also 
considered. This contrasts [9], where a fully three-dimensional simulation was run with a single element with polynomials of order 
four in the 𝑦-direction.

5. Conclusions

We presented a discontinuous Galerkin method for the equations governing moist atmospheric flows in their conservative form. 
In particular, we retained thermodynamic details in these equations, such as the different specific heats and heat capacities, which 
are often neglected in the literature. The source terms governing phase changes were based on Kessler’s microphysics closure as 
taken from the COSMO model. To avoid the difficult modelling of a source term governing condensation, we considered a single 
moist density for both water vapour and cloud water in our hyperbolic balance-law equation set. To recover the individual vapour 
and cloud densities from the moist density, we had to solve an additional non-linear problem. This reconstruction was necessary 
in order to evaluate the (numerical) flux and in particular the source terms governing water phase changes. Since the problem 
of reconstructing the densities is algebraic, we presented a novel approach by solving this non-linear problem in each quadrature 
point, which is highly parallelisable. For time-stepping, we used an explicit scheme such that only mass-matrix problems had to 
15

be solved to advance the solution in time. As the Legendre polynomial basis is orthogonal, the mass matrix is diagonal and the 
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Fig. 12. Example 7: Potential temperature perturbation (background), cloud density contour at 10−5 (red), rain density contours (gray), and velocity field (blue to 
red arrows) for a two dimensional squall-line test below 𝑧 = 18 km. Left: 𝑡 = 1500 s, Right: 𝑡 = 1500 s. Computed on unstructured simplicial meshes with 𝑘 = 1. Top: 
ℎ = 500 m, Δ𝑡 = 0.2 s, centre: ℎ = 250 m, Δ𝑡 = 0.1 s, bottom: ℎ = 125 m, Δ𝑡 = 0.05 s.

Fig. 13. Example 7: Potential temperature perturbation (background), cloud density contour at 10−5 (red), rain density contours (gray), and velocity field (blue to 
red arrows) for a two dimensional squall-line test below 𝑧 = 18 km. Computed on unstructured simplicial meshes with ℎ = 125 m, 𝑘 = 1, and Δ𝑡 = 0.05 s. From left to 
16

right and top to bottom: 𝑡 = 1500, 3000, 6000, 9000 s.
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Fig. 14. Example 7: Total rain fallout at the bottom of the domain for a two dimensional squall-line test after 𝑡 = 9000 s.

mass-matrix problems could be solved matrix-free. The combination of the local density and temperature reconstruction with the 
explicit time-stepping scheme led to a highly parallelisable scheme. To stabilise the method, we added an artificial viscosity term 
with local, dynamic, and asymptotically vanishing viscosity parameter. This is in contrast with the artificial viscosity widely used in 
the literature on DG for atmospheric flows which uses a constant and non-vanishing scaling, which in turn changes the problem at 
hand.

We validated our scheme on a number of numerical examples taken from the literature. We illustrated the optimal high-order 
convergence of the method for polynomial orders from one to four in the case of moist dynamics without rain. We also illustrated 
that the method works on both structured tensor-product meshes and unstructured simplicial meshes. This flexibility with respect to 
the mesh and the higher-order convergence are particular advantages of discontinuous Galerkin approaches. The mesh flexibility also 
allows for good parallel load balancing in every direction. We also noted that even on unstructured meshes, higher-order schemes 
performed well in retaining structures (symmetry) of the initial data and geometry. Overall, we obtained results in good agreement 
with the literature.

Our examples, which included rain, were also stable, again with a higher-order choice for the polynomial order, resulting in finer 
details. Our results for the storm resulting from a squall-line set-up were consistent with the available literature. However, it remains 
an open and interesting question to study the exact effects of retaining the thermodynamic details in the energy equation, which are 
usually neglected.
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Appendix A. Thermodynamic parameters
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The values of the thermodynamic variables used are given in Table A.1.
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Table A.1

Thermodynamic equation of state parameters for moist air at reference temperature. Source: Cotton

et al. 2011.

Parameter Value Units Description

𝑐𝑙 4.218 × 103 J kg− 1 K− 1 Specific heat of liquid water (at 𝑇ref).

𝑐𝑝𝑑 1.005 × 103 J kg− 1 K− 1 Specific heat of dry air at constant pressure.

𝑐𝑝𝑣 1.850 × 103 J kg− 1 K− 1 Specific heat of water vapour at constant pressure.

𝑐𝑣𝑑 7.18 × 102 J kg− 1 K− 1 Specific heat of dry air at constant volume.

𝑐𝑣𝑣 1.390 × 103 J kg− 1 K− 1 Specific heat of water vapour at constant volume.

𝑒ref 6.107 × 102 Pa Saturation vapour pressure with respect to water (at 𝑇ref).

𝐿ref 2.835 × 106 J kg− 1 Latent heat of vaporization (at 𝑇ref).

𝑅𝑑 2.8705 × 102 J kg− 1 K− 1 Gas constant for dry air.

𝑅𝑣 4.6151 × 102 J kg− 1 K− 1 Gas constant for water vapour.

𝑇ref 2.7315 × 102 K Reference temperature.

𝑝ref 1.0 × 105 Pa Reference pressure.

𝜖 6.22 × 10−1 𝜖 ≡𝑅𝑑∕𝑅𝑣.

Appendix B. Computation of initial conditions

B.1. Inertia gravity waves in a saturated atmosphere

The hydrostatic state is determined by solving the (1-dimensional) problem: Find 𝑝, 𝜌𝑑, 𝜌𝑣𝑠 and 𝑇 such that

𝜕𝑧𝑝 = −(1 + 𝑞𝑤)𝜌𝑑𝑔,

𝑝 = (𝜌𝑑𝑅𝑑 + 𝜌𝑣𝑠𝑅𝑣)𝑇 ,

𝜌𝑣𝑠𝑅𝑣𝑇 = 𝑒ref

(
𝑇

𝑇ref

) 𝑐𝑝𝑣−𝑐𝑙
𝑅𝑣

exp
(
𝐿ref − (𝑐𝑝𝑣 − 𝑐𝑙)𝑇ref

𝑅𝑣

(
1
𝑇ref

− 1
𝑇

))
,

𝜃𝑒 = 𝑇

(
𝜌𝑑𝑅𝑑𝑇

𝑝ref

)−𝑅𝑑∕(𝑐𝑝𝑑+𝑐𝑙𝑞𝑤)

exp

(
(𝐿ref + (𝑐𝑝𝑣 − 𝑐𝑙)(𝑇 − 𝑇ref))𝜌𝑣𝑠

𝜌𝑑 (𝑐𝑝𝑑 + 𝑐𝑙𝑞𝑤)𝑇

)
,

and the pressure boundary condition is 𝑝(0) = 𝑝ref. The definition of 𝜃𝑒 is taken from [47]. The initial perturbation is computed by 
solving the non-linear problem: Find (𝜌𝑑, 𝜌𝑣𝑠, 𝑇 ) such that

𝜃𝑒 + 𝜃′𝑒 = 𝑇
(
𝜌𝑑𝑅𝑑𝑇

𝑝ref

)−𝑅𝑑∕(𝑐𝑝𝑑+𝑐𝑙𝑞𝑤)
exp

( (𝐿ref + (𝑐𝑝𝑣 − 𝑐𝑙)(𝑇 − 𝑇ref))𝜌𝑣𝑠
𝜌𝑑 (𝑐𝑝𝑑 + 𝑐𝑙𝑞𝑤)𝑇

)
, (B.1a)

𝑝 = (𝜌𝑑𝑅𝑑 + 𝜌𝑣𝑠𝑅𝑣)𝑇 , (B.1b)

𝜌𝑣𝑠𝑅𝑣𝑇 = 𝑒ref

(
𝑇

𝑇ref

) 𝑐𝑝𝑣−𝑐𝑙
𝑅𝑣

exp
(
𝐿ref − (𝑐𝑝𝑣 − 𝑐𝑙)𝑇ref

𝑅𝑣

(
1
𝑇ref

− 1
𝑇

))
, (B.1c)

and set 𝜌′
𝑑
= 𝜌𝑑 − 𝜌𝑑 , 𝜌′𝑣 = 𝜌𝑣𝑠 − 𝜌𝑣𝑠, 𝜌

′
𝑚 = 𝜌′

𝑑
− 𝜌′𝑣𝑠 and 𝑇 ′ = 𝑇 − 𝑇 . The total initial energy (perturbation) can the be computed 

from (4).

B.2. Bryan-Fritsch moist benchmark

The hydrostatic base state is computed as in Appendix B.1. The initial perturbations are then defined by perturbing the density 
potential temperature

𝜃𝜌 = 𝑇
(
𝑝ref

𝑝

)𝑅𝑑∕𝑐𝑝𝑑
(1 + 𝑞𝑣∕𝜖) = 𝜃𝑑 (1 + 𝑞𝑣∕𝜖), (B.2)

where 𝜃𝑑 (𝑝, 𝑇 ) is the dry potential temperature. This perturbation is defined as

𝜃′ = 2cos2
(
𝜋𝐿

2

)
, with 𝐿 =min

{‖‖‖‖‖
(
𝑥− 𝑥𝑐
𝑥𝑟

,
𝑧− 𝑧𝑐
𝑧𝑟

)‖‖‖‖‖2 ,1
}
,

where 𝑥𝑐 = 10 km, 𝑧𝑐 = 2 km and 𝑥𝑟, 𝑧𝑟 = 2 km. The perturbation to the potential temperature is then introduced by assuming that 
the resulting buoyancy is the same as the buoyancy in a similar the dry test case with 𝜃𝑑 = 300 K. This leads to the equation[

𝑞𝑣𝑠(𝑝,𝑇 )
] (

𝜃′
𝑑

)
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𝜃𝑑 (𝑝,𝑇 ) 1 +
𝜖

= 𝜃𝜌0(1 + 𝑞𝑤) 300
+ 1 ,
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which we solve for 𝑇 in every point, using the hydrostatic pressure 𝑝 = 𝑝 and (6) for the saturation vapour mixing ratio. With this 
temperature, we can then reconstruct the vapour and cloud densities using the saturation vapour pressure.

B.3. Inertia gravity waves in a saturated atmosphere without initial clouds

The hydrostatic state is determined by solving the (1-dimensional) problem: Find 𝑝, 𝜌𝑑, 𝜌𝑣𝑠 and 𝑇 such that

𝜕𝑧𝑝 = −(𝜌𝑑 + 𝜌𝑣𝑠)𝑔,

𝑝 = (𝜌𝑑𝑅𝑑 +𝑅𝑣𝜌𝑣𝑠)𝑇 ,

𝜌𝑣𝑠𝑅𝑣𝑇 = 𝑒ref

(
𝑇

𝑇ref

) 𝑐𝑝𝑣−𝑐𝑙
𝑅𝑣

exp
(
𝐿ref − (𝑐𝑝𝑣 − 𝑐𝑙)𝑇ref

𝑅𝑣

(
1
𝑇ref

− 1
𝑇

))
,

𝜃𝑒 = 𝑇

(
𝜌𝑑𝑅𝑑𝑇

𝑝ref

)−𝑅𝑑∕(𝑐𝑝𝑑+𝑐𝑙(𝜌𝑣𝑠∕𝜌𝑑 ))

exp

(
(𝐿ref + (𝑐𝑝𝑣 − 𝑐𝑙)(𝑇 − 𝑇ref))𝜌𝑣𝑠

(𝑐𝑝𝑑𝜌𝑑 + 𝑐𝑙𝜌𝑣𝑠)𝑇

)
,

and the pressure boundary condition 𝑝(0) = 𝑝ref. The perturbation of the hydrostatic state can then be computed analogously to (B.1)

by replacing 𝑞𝑤 with 𝑞𝑣𝑠 = 𝜌𝑣𝑠∕𝜌𝑑 .

B.4. Atmosphere at rest with a steep mountain

With the temperature profile 𝑇 (𝑧) given in (22) water vapour is at saturation and there is no cloud water present. The hydrostatic 
state can then be computed by solving the following (one-dimensional) non-linear problem: Find 𝑝, 𝜌𝑑 , such that

𝜕𝑧𝑝 = −(𝜌𝑑 + 𝜌𝑣𝑠)𝑔, 𝑝 = (𝜌𝑑𝑅𝑑 + 𝜌𝑣𝑠𝑅𝑣)𝑇 , with 𝜌𝑣𝑠(𝑇 ) =
𝑒𝑠(𝑇 )

𝑅𝑣𝑇
,

the pressure boundary condition 𝑝(0) = 𝑝ref, and where the saturation-vapour pressure is computed from the Clausius–Clapeyron 
relation (7).

B.5. Rising thermal with rain

The relative humidity is related to our variables by

H =
𝑞𝑣

𝑞𝑣𝑠

(
1 + 𝑞𝑣𝑠∕𝜖
1 + 𝑞𝑣∕𝜖

)
.

The hydrostatic base state is computed by solving the (one-dimensional) problem: Find 𝑝, 𝜌𝑑, 𝜌𝑣, 𝑇 , such that

𝜕𝑧𝑝 = −(𝜌𝑑 + 𝜌𝑣)𝑔,

𝑝 = (𝜌𝑑𝑅𝑑 + 𝜌𝑣𝑅𝑣)𝑇 ,
𝑞𝑣

𝑞𝑣𝑠

(
1 + 𝑞𝑣𝑠∕𝜖
1 + 𝑞𝑣∕𝜖

)
= 0.2,

𝑇

(
𝑝ref

𝑝

)𝑅𝑑∕𝑐𝑝𝑑
= 𝑇surf

(
𝑝ref

8.5 × 104

)𝑅𝑑∕𝑐𝑝𝑑
exp(1.3 × 10−5𝑧),

the pressure boundary condition 𝑝(0) = 8.5 × 104, and with 𝑞𝑣 = 𝜌𝑣∕𝜌𝑑, 𝑞𝑣𝑠 = 𝜌𝑣𝑠∕𝜌𝑑 .

The initial relative humidity is given by

H̃ =
⎧⎪⎨⎪⎩
H 𝑟 > 𝑟1,

H + (1 −H) cos2
(
𝜋(𝑟−𝑟1)
2(𝑟1−𝑟2)

)
𝑟2 ≤ 𝑟 < 𝑟1,

1 𝑟 < 𝑟2,

with the radius 𝑟 =
√
(𝑥− 𝑐𝑥)2 + (𝑧− 𝑐𝑧)2, 𝑐𝑥 = 𝐿∕2, 𝑐𝑧 = 800 m, 𝑟1 = 300 m and 𝑟2 = 200 m. The initial perturbations are then 

obtained by solving the problem

𝑞𝑣

𝑞𝑣𝑠(𝑇 )

(
1 + 𝑞𝑣𝑠(𝑇 )∕𝜖
1 + 𝑞𝑣∕𝜖

)
= H̃, 𝑇

(
𝑝ref

𝑝

)𝑅𝑑∕𝑐𝑝𝑑
= 𝜃𝑑 , 𝜌𝑑𝑅𝑑𝑇 + 𝜌𝑣𝑅𝑣𝑇 = 𝑝,

for 𝜌𝑣, 𝜌𝑑 and 𝑇 . The initial cloud and rain densities are zero, and the initial velocity is at rest, i.e., 𝜌𝑣 = 𝜌𝑟 = 0, 𝑢 = (0, 0)𝑇 and the 
19

initial energy density can be computed from these variables.



Journal of Computational Physics 499 (2024) 112713S. Doppler, P.L. Lederer, J. Schöberl et al.

B.6. Squall line

The hydrostatic base state is computed by solving the one-dimensional problem: Given 𝜃, 𝑞𝑣, find (𝑝, 𝜌𝑑, 𝜌𝑣, 𝑇 ) such that

𝜕𝑧𝑝 = −(𝜌𝑑 + 𝜌𝑣)𝑔, 𝑝 = (𝜌𝑑𝑅𝑑 + 𝜌𝑣𝑅𝑣)𝑇 , 𝜌𝑣 = 𝜌𝑑𝑞𝑣, 𝜃 = 𝑇
(
𝑝ref

𝑝

)𝑅𝑑∕𝑐𝑝𝑑
,

with pressure boundary condition 𝑝(0) = 𝑝ref. The initial temperature perturbation defined by

𝜃′ =

{
𝜃𝑐 cos

(
𝜋𝑟

2

)
if 𝑟 ≤ 𝑟𝑐 ,

0 if 𝑟 > 𝑟𝑐 ,

with

𝑟 =

√
(𝑥− 𝑥𝑐)2

𝑟2𝑥
+

(𝑧− 𝑧𝑐)2

𝑟2𝑧
, 𝑥𝑐 = 75km, 𝑟𝑥 = 10km, 𝑧𝑐 = 2km, 𝑟𝑥 = 1.5km, 𝑟𝑐 = 1, 𝜃𝑐 = 3K.

We obtain the temperature perturbation by solving the constitutive equation for the potential temperature

𝜃 = 𝑇
(
𝑝ref

𝑝

)𝑅𝑑∕𝑐𝑝𝑑
= 𝑇

(
𝑝ref

(𝜌𝑑𝑅𝑑 + 𝜌𝑣𝑅𝑣)𝑇

)𝑅𝑑∕𝑐𝑝𝑑
.
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