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Non-Rigid Motion Compensation for Breast CT
Mikhail Mikerov, Koen Michielsen, Nikita Moriakov, and Ioannis Sechopoulos

Abstract—The image quality in dynamic contrast-enhanced
breast CT is expected to suffer from motion artifacts due to
the extended acquisition time involved. We propose an iterative
method for compensation of motion artifacts due to non-rigid
movement of the breast. The motion vector field is approximated
using b-splines on a sparse grid and its values are found by
minimizing errors in the projection domain. We evaluated the
method on an anthropomorphic phantom with realistic motion
and visual assessment yielded a clear reduction in motion
artifacts. Quantitatively, we observed an increase of the structural
similarity from 0.9988 to 0.9995 and a decrease of the normalized
root mean squared error from 0.1448 to 0.0932.

I. INTRODUCTION

Motion artifacts are expected to become one of the main
causes of image quality degradation in dynamic contrast-
enhanced (DCE) breast CT due to long acquisition times [1]
needed to characterize contrast agent uptake and washout.
These artifacts will not only make the analysis of images by
radiologists more difficult, but will also limit the quantitative
accuracy that is necessary for automatic data analysis. Hence,
a motion compensation method is required to avoid these
pitfalls. Earlier we demonstrated that the expected motion
of the breast during DCE breast CT imaging is non-rigid
and does not necessary exhibit periodic patterns [2]. On the
contrary, it is expected that the breast will undergo sudden and
rather abrupt movements, making the application of motion
compensation methods that assume specific motion trajectories
not applicable [3].

In this work, we propose a method for non-rigid motion
compensation for breast CT that does not require any prior
knowledge about the motion and uses b-splines to represent
the motion vector field. The b-spline parameters are updated
using gradient descent by minimizing a loss function in the
projection domain. We demonstrate the feasibility of our
method on an anthropomorphic phantom with realistic known
motion obtained from DCE-MRI sequences.

II. MATERIALS AND METHODS

A. Deformable image resampling

In this work we opted to approximate motion using cubic b-
splines since they provide a good trade-off between being able
to capture the motion and computational complexity. Given
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a motion field, we can resample the volumes in the image
domain using spatial transformers – differentiable modules to
apply spatial transformations when training neural networks
with gradient descent introduced by Jaderberg et al. [4]. The
main component of a spatial transformer is a flow-field grid
of the same dimensionality as the image, which specifies
the locations of pixels in the original image that need to
be used to create a pixel value in the transformed image.
In case of 3D volumes, one would require three 3D grids,
one for deformation along each axis. Rigid transformations
can be effectively represented using such grids since all
voxels move in the same way. However, it is also possible
to apply deformable image resampling using the same idea by
populating the flow-field grid with the corresponding values.

B. Combined motion estimation and compensation

Our method is inspired by the joint motion estimation
and compensation method of Sun et al. [5] with the major
difference being that we resample in the image domain instead
of virtually shifting the detector. The modified estimation
and compensation algorithm works as follows: the b-spline
coefficients Bp in the form of a three-channel 3D tensor for
each projection p are initialized with zeros (i.e., no motion
present), and the projection data P are reconstructed using
FDK without any corrections, generating image I . For each
iteration of the joint algorithm, motion is then estimated
sequentially for all projections p ∈ P so that the data can
fit in GPU memory. To update the estimated motion Bp,
the reconstruction is deformed using the spatial transformer
introduced in the previous section with the current b-spline
coefficients, and reprojected. The coefficients are then updated
by gradient descent to minimize the mean squared error (MSE)
in the projection. After this procedure has been performed for
all projections, a new FDK reconstruction is performed using
the updated motion represented in the b-spline coefficients.

C. Evaluation on an anthropomorphic phantom

We tested the performance of our method on a previously
developed anthropomorphic phantom with known motion [2].
In short, real non-rigid patient motion was obtained by regis-
tering subsequent frames in a DCE-MRI sequence. Next, the
motion was parameterized in time using a sigmoid function
to simulate abrupt motion during a scan. In this evaluation,
the motion occurred during acquisition of projections 125-
175 out of 300 in one full revolution. Finally, the obtained
motion vector field was applied to a digital phantom followed
by forward projection of the phantom at each projection
time point. The detector’s dimensions were 700x200 pixels,
the reconstructed volume was 300x500x500 voxels. At each
time point, the motion was represented by 17x27x27 b-spline
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Fig. 1. Breast CT reconstruction of anthropomorphic phantom that underwent non-rigid motion during acquisition. The reconstruction with motion compensation
is shown on the right for coronal plane, and on the bottom for sagittal and transverse planes.

coefficients for each direction, resulting in approximately 11
million parameters needed to be estimated. The method was
stopped after three iterations.

III. RESULTS

Figure 1 shows the comparison of images reconstructed with
and without our motion compensation. Noticeable changes
are the removal of ghosting of fine structures and sharpening
of the edges between fibro-glandular and adipose tissues.
Moreover, the correct skin line profile is recovered. Using
the reconstruction of the ground truth phantom without added
motion as the reference image, the structural similarity index
(SSIM) in the whole volume (window size 3x3x3 voxels)
improved from 0.9988 to 0.9995. Figure 2 shows that the
SSIM increases for all slices. Likewise, the normalized root
mean squared error (RMSE) compared to the reference image
decreased from 0.1448 to 0.0932.
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Fig. 2. SSIM as a function of slice number for reconstructed volumes with
and without motion compensation compared to the ground truth phantom with
no motion.

IV. DISCUSSION

Both qualitative and quantitative analysis indicate improve-
ment of the image quality after motion compensation. This
indicates that the b-spline based motion field can represent
the non-rigid motion captured from patient data. Additionally,
we find that the method converges quickly to the correct
motion representation. It should be noted that a denser grid
of b-spline coefficients will likely slow down the convergence
since more parameters need to be optimized. The number of
parameters used to describe the motion in the evaluation was
not optimized, but based on our results it appears the selected
grid was sufficiently dense.

The runtime of a single iteration of the method was found
to be 0.8 s to estimate the motion for a single projection and
about 4 minutes to perform motion-compensated FDK on an
Nvidia A6000 GPU, for a total of approximately 24 minutes
for 3 iterations. The runtime could be further improved both
by moving to a more efficient implementation and by using a
multiresolution approach.

A potential drawback of our method is the resolution loss
due to multiple resampling in the image domain; once in the
ray tracer to calculate the forward and backward projections,
and once in the spatial transformation to apply the motion.
Although we did not observe this effect with our phantom, it
could be more obvious with real patient data, and we plan to
avoid this in the future by adding the motion transformation
to the ray tracer.

V. CONCLUSION

We developed a non-rigid motion compensation method
for breast CT. The main advantage of our method is the
ability to remove motion artifacts that originate due to fast
non-rigid movement of the breast in the field of view and
do not necessary exhibit certain motion patterns that can be
approximated by a model.
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