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Abstract: This paper presents the modeling, fabrication, and testing of a 3D-printed Coriolis mass
flow sensor. The sensor contains a free-standing tube with a circular cross-section printed using
the LCD 3D-printing technique. The tube has a total length of 42 mm, an inner diameter of about
900 µm, and a wall thickness of approximately 230 µm. The outer surface of the tube is metalized
using a Cu plating process, resulting in a low electrical resistance of 0.5 Ω. The tube is brought into
vibration using an AC current in combination with a magnetic field from a permanent magnet. The
displacement of the tube is detected using a laser Doppler vibrometer (LDV) that is part of a Polytec
MSA-600 microsystem analyzer. The Coriolis mass flow sensor has been tested over a flow range of
0–150 g/h for water, 0–38 g/h for isopropyl alcohol (IPA), and 0–50 g/h for nitrogen. The maximum
flow rates of water and IPA resulted in less than a 30 mbar pressure drop. The pressure drop at the
maximum flow rate of nitrogen is 250 mbar.

Keywords: 3D-printed tube; Coriolis mass flow sensor; circular cross-section

1. Introduction

In the past several decades, several microfluidic mass flow sensors were developed
based on the Coriolis effect [1]. The most important advantages of Coriolis mass flow
sensing compared to other flow sensing principles are the independence of pressure, flow
profile, and fluid properties [2]. Most micro-Coriolis mass flow sensors are fabricated
based on silicon micromachining techniques, such as anisotropic wet [3–5] and dry etch-
ing [2,6,7], and surface channel technology [8–12]. However, the high fabrication costs
of these silicon micromachined sensors make them unsuitable for applications that need
a disposable sensor. Furthermore, these fabrication methods result in channels with a
hexagonal, rectangular, or semicircular cross-sectional shape, whereas, to decrease the
deformation of the tube due to the pressure of the medium and increase the flow range
of the sensor, a circular cross-section with a large diameter is needed [13]. Pressure de-
pendency of the cross-sectional shape affects the stiffness of the tube structure, which
results in measurement errors when used in resonant sensors such as a Coriolis mass flow
sensor or a density sensor [14]. To reduce fabrication costs and increase the tube diameter,
devices were developed based on polymer photolithography [15] and 3D printing [16].
However, these technologies resulted in a rectangular cross-sectional tube shape. To obtain
a circular cross-sectional shape, electroplated nickel [17] tubes and glass capillaries [18] can
be considered. In [17], it was shown that the nickel-plated tubes can in principle be used in
a Coriolis mass flow sensor, but the demonstrated performance needs much improvement.
Glass capillaries have been used successfully for density and mass sensing. However, these
capillaries can only be fabricated as straight tubes [19–22].

In 2020, the first 3D-printed Coriolis mass flow sensor was proposed by Pagani [16].
This design contained a tube with a rectangular cross-sectional shape with inner dimensions
of 1 mm × 2 mm and a wall thickness of 500 µm. However, this sensor was only tested
with air at only two flow rates, 0 g/h and 150 g/h, which means it was only tested by
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detecting the effect of the on/off switching of airflow. As a result, it is not clear whether the
change in the output signal is due to the applied mass flow or due to the changing pressure
inside the tube.

In this paper, we present the modeling, fabrication, and measurement results of a
3D-printed micro-Coriolis mass flow sensor. First, in Section 2, we explain the design and
basic operating principle of the Coriolis mass flow sensor. Next, in Section 3, the fabrication
sequence is described in detail. Finally, in Section 4, we discuss the results of mass flow
measurements performed with different fluids, water, IPA, and nitrogen, and compare
these with the mathematical model to confirm that the device indeed measures mass flow.

2. Modeling and Design of the Sensor
2.1. Basic Structure and Operating Principle

The U-shaped tube structure and operation principle of the Coriolis mass flow sensor
is shown in Figure 1. A U-shape was chosen because it has less corners in comparison to
other common shapes used for Coriolis mass flow sensors, which makes it easier to print.
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Substituting (11) and (12) into (10), the amplitude of the detection mode angular dis-

placement can be expressed as: 

Figure 1. A U-shaped free-suspended tube that is fixed at both ends. (a) Twist mode vibration due to
Lorentz force, and (b) swing mode vibration due to Coriolis force. ωact and ωdetection are the actuation
and detection mode of angular velocity, respectively.

The sensor consists of a free-suspended tube that is fixed on both ends. To generate
Lorentz forces and to bring the tube into vibration, an AC actuation current (iact) is applied
to the tube in the presence of a magnetic field (B). According to the direction of the magnetic
field in this design, as shown in Figure 1a, the resulting Lorentz forces are in opposite
directions at the left and right sides of the sensor tube. This will induce a twist mode
vibration, indicated by the angular velocity ωact and rotation angle θa. The Lorentz force at
each side of the tube can be expressed as:

Fact = Ly·|
→
i act ×

→
B | = LyBîact cos(ωat) (1)

where Ly is the length of the tube segments perpendicular to the magnetic field direction as
indicated in Figure 1b, and îact and ωa are the amplitude and frequency of the actuation
current. When driven in resonance, the angular displacement θa will have a 90 degrees
phase shift with respect to the actuation current, and can be expressed as:

θa = α sin(ωat) (2)

where α is the amplitude of the actuation angle around the y-axis.
As shown in Figure 1b, when a medium is flowing through the vibrating tube, Coriolis

forces will be generated and result in a secondary vibration of the tube in swing mode.
The Coriolis force linearly depends on the mass flow rate, Φm, and the amplitude of the
resulting swing mode vibration will be proportional to mass flow.
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The Coriolis force is given by:

→
F coriolis = −2Lx(

→
ωact ×

→
Φm) (3)

where Lx is the length of the tube segment which is perpendicular to the rotation axis. The

actuation mode of angular velocity
→
ωact is equal to d

→
θ a
dt .

The Coriolis force generates a torque along the x-axis. This detection torque is defined as:

Td = Ly·Fcoriolis (4)

Taking the time derivative of angular displacement in actuation mode (2), inserting
this in (3), and substituting in (4), we obtain:

Td = −2LxLyΦmωaα cos(ωat) (5)

This torque results in angular displacements θd in the detection mode, as indicated
in Figure 1b. To obtain an estimate of the amplitude of the displacements in the detection
mode, we can describe the detection mode by a simple lumped element second-order
differential equation [23]:

Jd
d2θd(t)

dt2 + Rd
dθd(t)

dt
+ Kdθd(t) = Td(t) (6)

where Jd is the modal moment of inertia, Rd is the modal damping coefficient, and Kd is the
modal spring constant, which can be expressed as:

Jd =
5
9

mL2
y (7)

Rd =
Kd

ωdQd
(8)

Kd = ω2
d Jd (9)

with m as the total mass of the tube and the fluid inside it, and Qd and ωd the quality factor
and resonance frequency of the detection mode, respectively. The modal moment of inertia
Jd is calculated assuming that the tube is a slender rod because the diameter of the tube is
much smaller than the length of the tube, and assuming that Lx ≈ Ly.

Substituting (5) into (6), the solution for the detection angle θd will be in the form:

θd = A sin(ωat) + B cos(ωat) (10)

Inserting (7) to (10) into (6) and solving for A and B results in:

A =
−2 LxLyΦmωd α Qdω2

a

Jd[
(
ω2

d −ω2
a
)2Q2

d + ω2
aω2

d]
(11)

B =
−2 LxLyΦmωa α Q2

d
(
ω2

d −ω2
a
)

Jd[
(
ω2

d −ω2
a
)2Q2

d + ω2
aω2

d]
(12)

Substituting (11) and (12) into (10), the amplitude of the detection mode angular
displacement can be expressed as:

θ̂d =
√

A2 + B2 =
2 LxLyωa

Jd

Qd√(
ω2

d −ω2
a
)2Q2

d + ω2
dω2

a

Φmα (13)
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The amplitude ẑd of the displacement of the tube in the Coriolis mode, as indicated in
Figure 1b, can now be expressed as:

ẑd = Ly·θ̂d (14)

This displacement is measured, and it shows a linear relation with both the mass flow
rate Φm and the actuation amplitude α. Therefore, in Section 4, we will plot the ratio ẑd/a,
which is proportional to the mass flow and independent of actuation amplitude.

2.2. Sensor Design

According to Equations (13) and (14), to maximize the Coriolis mode displacement
for a given mass flow rate Φm and actuation amplitude α, there are many parameters that
need to be considered. Increasing the dimensions Lx and Ly will increase the sensitivity,
but also lower the resonance frequencies ωa and ωd, and increase the pressure drop over
the sensor. Choosing Lx and Ly that are too large may even cause bending of the tube
during the fabrication and curing of the device. Reducing the wall thickness will increase
the sensitivity, but the minimum thickness is limited by the 3D-printing process. We
have chosen a wall thickness of 230 µm, which could still be printed reliably without
introducing leakage. With this wall thickness, choosing the inner diameter of 900 µm and
the dimensions Lx = 14 mm and Ly = 14 mm will result in resonance frequencies around
2 kHz for the actuation mode and 1 kHz for the Coriolis mode, while the overall tube
length of 42 mm still results in a very low pressure drop.

2.3. Measuring the Motion of the Tube with a Laser Doppler Vibrometer (LDV)

In the device presented in this paper, to measure the motion of the tube in swing mode,
a laser Doppler vibrometer is chosen as a readout. Because of the round outer surface of
the tube, measuring the displacement ẑd in the Coriolis mode is challenging. Furthermore,
the actuation axis can slightly shift due to a pressure gradient inside the tube. Therefore,
we have chosen to measure the vibration of the tube in three points as indicated in Figure 2.
Both the actuation amplitude α in (2) and the detection amplitude ẑd from (14) are then
calculated from the three measured amplitudes.
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Figure 2. A U-shaped tube with three measurement points. There is no need for the second point
(X2, Y2) to be in the exact center of the tube.

From the positions of the three points, we can calculate the distances between d1 and d2:

d1 =

√
(X1 − X2)

2 + (Y1 −Y2)
2 (15)

d2 =

√
(X2 − X3)

2 + (Y2 −Y3)
2 (16)

Taking the middle point as a reference, we can consider this as a one-dimensional
problem along the x-axis with the middle point at the position x2 = 0, point 1 at position
x1 = −d1 and point 3 at position x3 = d2.
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The measured displacement zi of each of the three points can be expressed in terms of
an amplitude ai and phase ϕi:

z1(t) = a1 sin(ωat + ϕ1) (17)

z2(t) = a2 sin(ωat + ϕ2) (18)

z3(t) = a3 sin(ωat + ϕ3) (19)

In general, to find a least-squares fit of a line z = ax + b through three points (x1, z1),
(x2, z2), (x3, z3), we can sum the values of x, z, x2, and xz [24]:

Sx = x1 + x2 + x3 = d2 − d1 (20)

Sz = z1 + z2 + z3 (21)

Sx2 = x1
2 + x2

2 + x3
2 = d2

1 + d2
2 (22)

Sxz = x1z1 + x2z2 + x3z3 (23)

to find the slope a and offset b:

a =
3Sxz − SxSz

3Sx2 − SxSx
(24)

b =
Sz − aSx

3
(25)

By substituting (15) to (19) into (20) to (23), summing all time-dependent terms, which
are sine waves with the same frequency but different amplitude and phase, and inserting
the result in (24) and (25), we find the slope a and offset b as a function of time:

a = A sin(ωt + ϕA) (26)

b = B sin(ωt + ϕB) (27)

where a corresponds to the actuation angle θa of the tube (see Figure 1a), and b corresponds
to the swing motion. The constants A, B, ϕA, and ϕB depend on the measured amplitudes
a1, a2, a3 and phases ϕ1, ϕ2, ϕ3 of the three points on the tube. The swing motion will be
a combination of the motion due to Coriolis forces, zd (see Figure 1b), and motion due to
the fact that the three measurement points may not be located exactly symmetrically with
respect to the twist axis. However, the motion due to Coriolis forces will be 90 degrees out
of phase with the actuation motion. Therefore, the amplitude of the Coriolis motion ẑd as
given by (14) is obtained by evaluating b(t) at the zero crossings of a(t):

ẑd, measured = B sin(ϕB − ϕA) (28)

In Section 4, we will plot the measured ratio ẑd/α, which is given by:(
ẑd
α

)
measured

=
B sin(ϕB − ϕA)

A
(29)

and compare that with the theoretical response derived in Section 2.1.

3. Fabrication Process

Figure 3 illustrates the fabrication process of the device. First, the whole mechanical
structure of the device is 3D printed using a Phrozen Sonic mini 4K LCD 3D printer. The
resin is Phrozen aqua grey 8k [25]. The entire structure is printed in 3 h and requires
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12 mL of resin. Table 1 shows the properties of the 8k grey resin. This step, along with a
post-printing process, includes cleaning and post-curing the structure. Then, the structure
is immersed in a beaker of IPA in an ultrasound bath for 3 min to remove the uncured
resin. In addition, a syringe is used to flush the IPA and uncured resin inside the tube
to fill out the tube and is then placed in an ultrasonic cleaner for three more minutes to
ensure that there is no uncured resin inside the structure. Then, the structure is dried with
a nitrogen flow and UV-cured for one hour. Table 2 shows the detailed settings used for
printing the design shown in Figure 3 with 8k grey resin. In addition, Figure 4 shows the
45-degree angle of the printed device on the printer stage for high-quality printing. This
figure also shows the heavy supports on the bottom of the structure and much smaller
supports underneath the tube to prevent the tube from floating inside the resin during
printing. Figure 5 shows an SEM picture of a tube cross-section with a diameter of 900 µm
and a wall thickness of 230 µm. In the second step, see Figure 3b, a thin layer of silver
was applied to the outer surface of the tube to provide a conductive track on the tube
to generate Lorentz force. The silver layer resulted in an electrical resistance of 9.8 Ω. A
thin layer of copper was deposited by the electroplating, see Figure 3c [26], to reduce the
resistance to 0.5 Ω. Figure 6 shows photographs of the completely assembled Coriolis mass
flow sensor. The sensor contains a freely suspended U-shaped tube with a total length of
42 mm and a total mass of 0.05 g, a magnets holder, and a flow inlet and outlet.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 12 
 

 

Coriolis motion �̂�𝑑 as given by (14) is obtained by evaluating 𝑏(𝑡) at the zero crossings 

of 𝑎(𝑡): 

�̂�𝑑,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐵 sin(𝜑𝐵 − 𝜑𝐴) (28) 

In Section 4, we will plot the measured ratio �̂�𝑑/𝛼, which is given by: 

(
�̂�𝑑

𝛼
)

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
=

𝐵 sin(𝜑𝐵 − 𝜑𝐴)

𝐴
 (29) 

and compare that with the theoretical response derived in Section 2.1. 

3. Fabrication Process 

Figure 3 illustrates the fabrication process of the device. First, the whole mechanical 

structure of the device is 3D printed using a Phrozen Sonic mini 4K LCD 3D printer. The 

resin is Phrozen aqua grey 8k [25]. The entire structure is printed in 3 h and requires 12 

mL of resin. Table 1 shows the properties of the 8k grey resin. This step, along with a post-

printing process, includes cleaning and post-curing the structure. Then, the structure is 

immersed in a beaker of IPA in an ultrasound bath for 3 min to remove the uncured resin. 

In addition, a syringe is used to flush the IPA and uncured resin inside the tube to fill out 

the tube and is then placed in an ultrasonic cleaner for three more minutes to ensure that 

there is no uncured resin inside the structure. Then, the structure is dried with a nitrogen 

flow and UV-cured for one hour. Table 2 shows the detailed settings used for printing the 

design shown in Figure 3 with 8k grey resin. In addition, Figure 4 shows the 45-degree 

angle of the printed device on the printer stage for high-quality printing. This figure also 

shows the heavy supports on the bottom of the structure and much smaller supports un-

derneath the tube to prevent the tube from floating inside the resin during printing. Figure 

5 shows an SEM picture of a tube cross-section with a diameter of 900 µm and a wall 

thickness of 230 µm. In the second step, see Figure 3b, a thin layer of silver was applied to 

the outer surface of the tube to provide a conductive track on the tube to generate Lorentz 

force. The silver layer resulted in an electrical resistance of 9.8 Ω. A thin layer of copper 

was deposited by the electroplating, see Figure 3c [26], to reduce the resistance to 0.5 Ω. 

Figure 6 shows photographs of the completely assembled Coriolis mass flow sensor. The 

sensor contains a freely suspended U-shaped tube with a total length of 42 mm and a total 

mass of 0.05 g, a magnets holder, and a flow inlet and outlet. 

   

(a) (b) (c) 

 

Figure 3. Schematic representation of a top view of the fabrication process. (a) Printing the whole 

structure, (b) applying silver conductive paint on the tube to provide a conductive track for applying 

the actuation current, and (c) copper plating on the surface of the tube to reduce the resistance of 

the conductive track. 

  

Figure 3. Schematic representation of a top view of the fabrication process. (a) Printing the whole
structure, (b) applying silver conductive paint on the tube to provide a conductive track for applying
the actuation current, and (c) copper plating on the surface of the tube to reduce the resistance of the
conductive track.

Table 1. Properties of the 8k grey resin [25].

Specs

Density 1.1 g/cm3

Surface hardness 85 shore D
Tensile modulus 2256 MPa
Flexural strength 54 MPa
Flexural modulus 1551 MPa

Table 2. Detailed setting for printing the structure with 8k grey resin by Mini 4K Phrozen printer.

3D Printer Setting Parameter

Layer height 0.035 mm
Bottom layer count 6

Transition layer count 6
Exposure time 2.5 s
Light-off delay 13 s
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Table 2. Cont.

3D Printer Setting Parameter

Bottom exposure time 35 s
Lifting distance 6 mm

Lifting speed 60 mm/min
Retract speed 150 mm/min
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Figure 5. SEM photographs of the tube with a diameter of 900 µm, and a wall thickness of 230 µm.
Based on the resolution of the printer that we used, this is the thinnest wall that could be reached for
this U-shaped tube. A thinner wall caused leakage and a thicker wall decreased the sensitivity of the
sensor due to the increased mass of the tube.
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4. Experimental Results and Discussion

A block schematic of the experimental setup for applying liquid flows is shown in
Figure 7. In this setup, a pressure controller sets the input pressure of a pressurized
container that is filled with liquid, such as water or IPA. To prevent gas bubbles inside the
liquid, a degasser is connected to the fluid container. A filter is inserted after the degasser
to eliminate particles. Two pressure sensors are connected close to the inlet and outlet of
the sensor that is being tested for measuring the pressure drop along the tube. A voltage
source is used to apply the actuation signal to generate Lorentz forces. The displacement of
the tube in both actuation and detection mode was detected by a laser Doppler vibrometer
(LDV), a Polytec MSA-600 microsystem analyzer, as described in Section 2.3. A Bronkhorst
mass flow controller is used as the last component in the line to control the mass flow rate.
When testing with gases, the pressurized container and degasser are not needed and are
removed from the setup. When measuring with liquids, the input pressure was between
4.5 and 5 bar. When measuring with gases, an input pressure of 8 bar was used.
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Figure 7. Block schematic of the experimental setup.

The measured vibration spectrum of the tube when filled with air at atmospheric
pressure and with zero flow rate is shown in Figure 8. A periodic chirp with an amplitude
of 30 mV was used as actuation voltage. Table 3 shows the measured resonance frequencies
in both swing (detection) and twist (actuation) modes for water, IPA, and nitrogen with
zero flow rate.
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Figure 8. Measured vibration spectrum of air-filled tube detected by LDV. A periodic chirp signal
with an amplitude of 30 mV was applied to the tube as an input voltage. The measured resonance
frequencies and quality factors are 822 Hz and 27 for the swing mode, and 2015 Hz and 26 for the
twist mode, respectively.

Figure 9 shows the measured ratio between the Coriolis motion and the actuation
motion as a function of mass flow of water, IPA, and nitrogen. The device was actuated
using a sinusoidal voltage with an amplitude of 40 mV at the twist mode resonance
frequency given in Table 3, resulting in a twist mode vibration amplitude α between 1 and
1.5 mrad. Each point is the average of six measurements. The error bars correspond to the
minimum and maximum measured values. For each measurement, the mass flow was
first allowed to stabilize for at least 5 min, and then the ratio between Coriolis motion and
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actuation motion was calculated from the amplitude and phase of the three measurement
points according to Equation (29). Figure 9 also shows the theoretical response calculated
using the simple lumped element model presented in Section 2.1 and using the measured
resonance frequencies listed in Table 3. The simple model overestimates the sensitivity by
approximately a factor of 1.7 for all fluids. Therefore, in Figure 9, a constant correction
factor of 0.6 was applied for all fluids such that the model matches the measured response.
With this factor, the model correctly predicts the differences in sensitivity between the three
fluids that result from the different resonance frequencies [27].

Table 3. Measured resonance frequencies in twist and swing mode, and the quality factor in swing
mode. During flow measurements, the device is actuated in resonance in the twist mode. Coriolis
forces due to mass flow will actuate the swing mode at the vibration frequency of the twist mode.

Fluid
Resonance

Frequency in Swing
Mode (Hz)

Quality Factor in
Swing Mode

Resonance
Frequency in Twist

Mode (Hz)

Water 611 18 1465
IPA 722 35 1756

Nitrogen 843 31 2056
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Figure 9. Measured and theoretical ratio between the Coriolis motion and the actuation amplitude
according to Equations (29) and (14), respectively, as a function of mass flow of (a) water, (b) IPA, and
(c) nitrogen. For all fluids, the same correction factor of 0.6 was applied to the model (14) such that
the theoretical response matches the measurement results.

Apart from the correction factor of 0.6, the measured and theoretical responses match
very well with each other. The fact that the model overestimates the sensitivity may have
several reasons. The model is a simple lumped element approximation that assumes that
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the tube structures rotate around the twist and swing mode axes and ignores bending of
the tube. Furthermore, the effect of the smooth bends in the actual device with a relatively
large radius of curvature is not taken into account. Because of these bends, the Coriolis
forces will result in a significantly smaller detection torque (4) because only the straight
part of the tube segment with length Lx is at a distance Ly from the swing mode axis.
Figure 10 shows all measured responses together when using the theoretical response (14)
to convert the measured displacement amplitude into the corresponding mass flow. The
slopes of the linear fit for water, IPA, and nitrogen are 1.03, 1.01, and 0.95, respectively.
Ideally, these slopes should all be equal to 1.0. The difference in slopes is slightly more than
the 2.6% found in [27] and could be due to a slight change in the vibration mode due to the
pressure gradient introduced by the mass flow, which depends on the type of fluid and is
not included in the model.
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Figure 10. Measured mass flow rate as a function of applied mass flow rate for water, IPA, and
nitrogen, using the theoretical response (14) to convert the measured response into the corresponding
mass flow.

The pressure drop over the tube vs. flow rate is shown in Figure 11. An estimation
of the pressure drop based on the Hagen–Poiseuille equation shows that the maximum
pressure drop for water and IPA should be 1.1 mbar and 0.8 mbar, respectively [17]. The
pressure drop for nitrogen is expected to be around 5 mbar, mainly due to the two 90-degree
bends in the tube. As is clear from Figure 11, the measured pressure drop is significantly
higher because of the extra pressure drop in the relatively long connecting tubing between
the sensor and the two pressure sensors.
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5. Conclusions

This paper reported the modeling, fabrication, and testing of a fully 3D-printed Coriolis
mass flow sensor using 8k grey resin. The sensor consists of a U-shaped tube with a total
length of 42 mm. The tube has a circular cross-section with an inner diameter of about
900 µm, and a wall thickness of approximately 230 µm. The sensor was actuated by Lorentz
force and read out by a laser Doppler vibrometer. The measurement results showed a linear
response for different flow rates. It results in a circular cross-section tube which decreases
pressure drop over the tube during measurements. Future work will focus on reducing the
wall thickness to decrease the tube mass and integrating the readout circuit on the sensor
to eliminate the need for the laser Doppler vibrometer. Furthermore, additional research is
needed to obtain the same sensitivity to mass flow for all fluids.
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