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ABSTRACT

Arti�cial benchmark functions are commonly used in optimization

research because of their ability to rapidly evaluate potential solu-

tions, making them a preferred substitute for real-world problems.

However, these benchmark functions have faced criticism for their

limited resemblance to real-world problems. In response, recent

research has focused on automatically generating new benchmark

functions for areas where established test suites are inadequate.

These approaches have limitations, such as the di�culty of gener-

ating new benchmark functions that exhibit exploratory landscape

analysis (ELA) features beyond those of existing benchmarks.

The objective of this work is to develop a method for generating

benchmark functions for single-objective continuous optimization

with user-speci�ed structural properties. Speci�cally, we aim to

demonstrate a proof of concept for a method that uses an ELA

feature vector to specify these properties in advance. To achieve

this, we begin by generating a random sample of decision space

variables and objective values. We then adjust the objective values

using CMA-ES until the corresponding features of our new problem
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match the prede�ned ELA features within a speci�ed threshold.

By iteratively transforming the landscape in this way, we ensure

that the resulting function exhibits the desired properties. To create

the �nal function, we use the resulting point cloud as training data

for a simple neural network that produces a function exhibiting

the target ELA features. We demonstrate the e�ectiveness of this

approach by replicating the existing functions of the well-known

BBOB suite and creating new functions with ELA feature values

that are not present in BBOB.
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1 INTRODUCTION

The development of optimization algorithms creates a natural need

for test problems to assess their search behaviour, robustness and
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overall performance. The choice of test problems is far from trivial

and will determine the course of development. Ideally, we would

like to guide this process by confronting the algorithm with chal-

lenging and representative problems that resemble problems we

encounter in real-world settings. An impeding factor is that those

real-world problems are often very expensive to evaluate and sub-

ject to companies’ proprietary information. Standardized arti�cial

benchmark suites, like the Black-Box Optimization Benchmark

(BBOB) suite [6], the annually changing CEC benchmark (e.g. [37]),

and to some degree Nevergrad [31], strive to alleviate this issue by

o�ering a wide range of di�erent problem instances. These suites

contain a set of hand-picked arti�cial problems that are chosen to

cover a range of di�erent problem properties such as a varying

degree of multi-modality, presence of global and funnel structures,

and so forth. While this approach is not without merit, it begs the

question whether these suites are su�ciently diverse and resemble

prominent real-world problems as a whole. Research endeavours

such as [21] and [34] show that this might not always be the case.

This in turn may bias the development and evaluation of algorithms

where they achieve competitive results on arti�cial benchmarks but

are e�ectively never used in practice. As algorithm selection and

con�guration become increasingly automated [17, 18, 29], there is

a rising incentive to further increase the heterogeneity of solvers

from which a model can choose from. Given these pitfalls con-

cerning arti�cial benchmarks in general, it is not surprising that

several approaches have been developed to address these issues

[3, 4, 19, 25].

One of the earliest works to build a tune-able landscape generator

was presented by Gallagher and Yuan [4]. The generator uses a

set of Gaussian functions and a small number of parameters that

can be linked to a problem’s geometric properties. This allowed

them to achieve new insights on the behavior of some estimation

of distribution algorithms, indicating the usefulness and need for a

feature driven problem generator.

Another approach has been developed by Lang and Engelbrecht

[19]. In their work, they construct a novel benchmark suite by sys-

tematically evaluating existing benchmark functions originating

from a multitude of di�erent suites. They used exploratory land-

scape analysis (ELA) [24] to test how diverse each of these functions

really is w.r.t. a subset of ELA features. Using self-organized feature

maps, they construct a space spanned by the ELA features. They

aim to maximize the coverage of this space by selecting the most

appropriate functions out of their pool of benchmark functions for

each cell map. The only drawback of their approach is that they

are not proposing a mechanism to generate entirely new functions.

Muñoz and Smith-Miles [25] presented another approach. In

a similar fashion to [19], they use ELA features to evaluate the

diversity of a single benchmark (BBOB). This allowed them to char-

acterize every function using an eight-dimensional feature vector.

By projecting the vectors into a two-dimensional instance space,

they could identify uncovered areas and thereby identify target ELA

feature vectors. New functions that exhibit the respective target

ELA vector properties are then generated making use of genetic

programming. They achieve good results in being able to interpo-

late within and even extrapolate beyond the convex hull that the

BBOB suite spans in the instance space.

Nevertheless, as recently pointed out by Dietrich and Mers-

mann [3], there are some downsides to the results of Muñoz and

Smith-Miles [25]. For one, there is a lack of knowledge about the

global optima of genetically programmed functions. But the high

computational cost of genetic programming weighs more severely.

While Dietrich and Mersmann [3] were able to get rid of both these

downsides by using a�ne recombinations of the BBOB functions

as new benchmark problems, this approach could only interpolate

within the convex hull of the ELA feature space within BBOB.

The main contribution of this paper is that we address this short-

coming by proposing a new, neural-network based, method for

generating novel problem instances with an arbitrary property

combination w.r.t. the chosen ELA features. At the same time, we

retain the auspicious aspects of [25] and [3]. In other words, our

devised approach is not only able to interpolate but also to extrapo-

late beyond the problem space and thereby can potentially generate

truly novel problem instances in less time.

This paper can be compartmentalized into two distinct sets of

experiments. The �rst experiments focus on validating and demon-

strating that our method works reasonably well in principle. We

accomplish this by trying to emulate certain benchmark functions

for which we sample and compute a so-called target ELA feature

vector. We start by creating a random sample in the decision space

and random objective values corresponding to each observation

in our sample. We optimize these objective values until they ex-

hibit the desired ELA values which are determined by the target

ELA feature vector. The resulting point cloud contains our anchor

points to generate a new benchmark problem. To construct the new

problem we then make use of a simple neural network which is

trained on this optimized point cloud. In order to show that the

resulting functions mimic the existing ones well, we compare the

behavior of optimization algorithms on both sets. This gives us the

opportunity to investigate where our devised approach excels and

where it encounters issues by comparing the emulated landscape

with the original one as well as the algorithm rankings between

these two. The second set of experiments highlights the potential

of our devised approach to create entirely novel functions which

are not represented in our selected benchmark suite.

The remainder of this paper is structured as follows. In Section 2,

we give a general overview of ELA as well as a justi�cation for the

selected features and some technical details for their calculation.

Section 3 provides a full account of our devised approach where the

construction of the aforementioned point cloud is subject of Subsec-

tion 3.1, and the surrogate models are discussed in Subsection 3.2. In

Section 4, we validate our approach by imitating functions from the

BBOB suite, discussing the results from the landscape perspective

in Subsection 4.1 and from an algorithm performance perspective

in Subsection 4.2. Our general work�ow is then evaluated by gen-

erating functions for ELA feature vectors which are not part of

the chosen benchmark suite in Subsection 4.3. Finally, we conclude

our paper in Section 5 and provide an outlook on future research

opportunities based on our �ndings.
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2 EXPLORATORY LANDSCAPE ANALYSIS

While the hardness and properties of an optimization problem,

given enough samples, may be characterized visually for up to two-

dimensional problems, visualizations of higher-dimensional prob-

lems are generally infeasible. Thus, other mechanisms are required

to identify problem properties, such as the degree of multi-modality

or the presence of global and funnel structures [16, 23, 24]. These

properties ultimately de�ne the hardness of a problem. The afore-

mentioned mechanisms manifest themselves in a set of numerical

features, which, in the single-objective continuous optimization

domain, are consolidated under the term exploratory landscape

analysis (ELA) [24].

In essence, ELA is a collection of heterogeneous methods to

extract quantitative information about a black-box optimization

problem. The majority of ELA features can be computed based on

a �xed sample of randomly generated points from the search space,

along with their respective (evaluated) objective values. Di�erent

sampling procedures have been investigated over the years [32].

The sampling size, on the other hand, often depends on the scope

of the analysis. In automated algorithm selection [14], the sampling

size must be competitive and, therefore, small, whereas theoretical

undertakings can be more lavish (e.g., [3, 11, 33]). Regardless of

the scope, the sampling size is typically scaled with the dimension-

ality 3 of the problem instance. In this work, we use a sampling

size of 250 · 3 , which balances between a su�cient coverage of the

search space together with keeping the generation of new problem

instances computationally less intensive. This size is also recom-

mended by [33] to correctly classify all BBOB problems. For our

work, we choose Latin hypercube sampling as the sampling strat-

egy. Furthermore, for any given sample we normalize the objective

values to the range of [0, 1] via their respective sample minimum

and maximum. This has two desirable e�ects. Firstly, it recently

has been shown that not all ELA features are invariant to linear

transformations of the objective space [30]. The proposed method

to deal with this issue is to normalize the objective values. Secondly,

a lower and upper bound of zero and one alleviates certain prob-

lems for our neural networks which act as surrogate models in the

consecutive section. This allows us for instance to utilize a sigmoid

activation function in the output layer which naturally maps all

values in the interval [0, 1].
Up to this point, we only discussed details pertaining to the

ELA sample. But ultimately, problem hardness is subject to the

properties of the �tness landscape making the selection of suitable

ELA features another crucial aspect of this work. We adapt a semi-

structured approach. Meaning, we utilize the �ndings of [33] and

[35] and iteratively remove and add certain hand-picked features to

improve the landscape properties of our generated functions. The

�nal chosen ELA features are listed below and computed with the

Python package pflacco∗:

ela_meta.lin_simple.adj_r2 Adjusted coe�cient of deter-

mination of the linear regression model without variable

interactions [24].

ela_meta.lin_w_interact.adj_r2 Adjusted coe�cient of de-

termination of the linear regression model with variable

interactions [24].

∗https://github.com/reiyan/p�acco

ela_meta.quad_simple.adj_r2 Adjusted coe�cient of deter-

mination of the quadratic regression model without variable

interactions [24].

ela_meta.quad_w_interact.adj_r2 Adjusted coe�cient of

determination of the quadratic regression model with vari-

able interactions [24].

ela_distr.skewness Skewness of the sample’s objective val-

ues [24].

nbc.nb_fitness.cor The correlation between the �tness val-

ues of the search points and their indegree in the nearest-

better point graph [15].

nbc.nn_nb.sd_ratio Ratio of the standard deviation of all

nearest neighbor distances to the standard deviation of all

nearest better distances [15].

fitness_distance.fitness_std Standard deviation of the

sample’s objective values [12].

3 BLACK-BOX FUNCTION GENERATION

The generation of novel problem instances consists of three steps.

Conceptually, we want to (1) identify a target vector of ELA

features, which occupies sparse regions of an existing benchmark

to enhance its diversity. Meaning, this target vector should be con-

stituted of vastly di�erent ELA feature values compared to the

values of ELA features of any given benchmark suite. Note that

the exact identi�cation of this target vector is not the focus of this

work. However, for �ve novel ELA vectors we demonstrate this

generation procedure is able to generate functions with landscape

structures arguably di�erent to BBOB. In addition, we compute

these target ELA feature vectors on the problem instances of BBOB.

This gives us the opportunity to discern how successful our devel-

oped approach in general is by comparing our generated function to

the existing BBOB instance which has served as a target. Given this

target ELA vector, we (2) generate a sample of points (i.e., a point

cloud) through an optimization process that exhibits the desired

ELA vector values. Once the similarity of the values is satisfactory,

we (3) build a surrogate model based on the found point cloud.

The entire process is depicted in Figure 1. In the following, we

will discuss the second and third components in more detail.

3.1 Optimization of Point Clouds

Given a target ELA feature vector a (which is constituted of the

aforementioned 8 features) that we want to emulate, we �rst create

a random sample - ∈ R=×3 in the decision space and generate its

objective values y ∈ R= randomly in the interval [0, 1]. We refer to

the tuple (-, y) as the point cloud. For this current iteration of the

point cloud, we then compute the corresponding ELA feature vector

b = ℎ(-, y), where ℎ is the set of functions required to calculate the

ELA features of interest based on the point cloud (-, y). Within our

optimization procedure, we then only adjust the objective values y

such that the distance between the ELA feature vectors b and a is

minimal. Hence, we can formally de�ne the function 5 : R= → R
to generate an adequate point cloud, where we strive to �nd a

y∗ ∈ arg miny 5 (y) such that the distance between the two ELA

feature vectors a and b is minimal:

5 (y) = | |ℎ(-, y) − a| |2 (1)
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1) Identify Target ELA Vector

Initialize 

Random Point 

Cloud (X, y)

2) Generation of Point Clouds

Calculate ELA 

feature vector

b = h(X, y)

Find y* by 

minimizing

||b – a||2

3) Surrogate Model Fitting

𝐚 = (𝑎1,𝑎2, … , 𝑎𝑝) Fit surrogate model on 

optimized point cloud (X, y*) 

Figure 1: High-level process description of our approach to generate arbitrary black-box problems. In 1), an ELA target vector is

identi�ed in sparse regions of an existing benchmark suite. In 2), we generate a random point cloud, calculate the respective

ELA features and minimize between the former and the latter by changing y. In 3), we use the optimized point cloud as the

basis for �tting our surrogate model.

The global optimum in such a case is known to be zero since dis-

tances between two objects w.l.o.g. are in the interval [0,∞). The
dimensionality of this problem is governed by the sample size = of

the point cloud. In our experiments, we use a sample size of 250 · 3 ,
which scales linearly with the dimensionality 3 of the problem we

want to create. Meaning if we want to create a two-dimensional

problem instance, the dimensionality of our minimization prob-

lem is 250 · 2 = 500. It is apparent that these problems can be-

come extremely high-dimensional. Here, the work of [38] provides

valuable insight into this matter. The authors show that the con-

ventional CMA-ES [7] still achieves competitive results even for

higher-dimensional problems. While our problem dimension ex-

ceeds their limit of up to 320, we argue that their �ndings are still

relevant for and can be extrapolated to our case, i.e., we use the

CMA-ES to solve the optimization problem given in Equation 1.

Each attempt to generate a point cloud is allocated a budget of 200·=,
where = is simultaneously the dimensionality of our optimization

problem of Equation 1 and by extension the size of our point cloud.

The required CPU time is dependent (1) on the time it requires

to calculate 5 (y) (i.e., ELA feature calculation) for each candidate

solution and (2) on the time necessary to update the covariance

matrix Σ ∈ R=×= . Generating a single 23 point cloud takes up to 4

CPU hours whereas a single 33 point cloud demands almost 3 CPU

days.

Until now, as hinted at in Section 2, we only normalize the objec-

tive values of any given sample by applying min-max normalization.

While ELA features value ranges become less prone to having un-

usually small or large values, it does not account for the di�erent

scales between distinct ELA features. This biases the search trajec-

tory of the CMA-ES and places more importance on certain ELA

features without justi�able reason. Therefore, we experimentally

determined the minima and maxima of each ELA feature where no

theoretical lower or upper bound can be determined (e.g, the upper

bound of any '2 value is 1) and use these values to apply min-max

normalization to our ELA features during the optimization process.

3.2 Surrogate Model Fitting

To construct a novel function based on a given optimized point

cloud (-, y∗), we use neural networks (NNs) as surrogate model

< : R
=×3 → R,<(x) = ~̂ �tted on D = {x(8 ) , ~∗ (8 ) }8=1,...,= , where

x(8 ) is the 8-th row of - and ~∗ (8 ) the 8-th element of y∗. We use

a simple feed forward architecture consisting of one hidden layer

with 512 units and a tanh activation function. As a �nal output we

use a sigmoid activation function (due to objective values being

normalized via min-max normalization and wewant the predictions

of the model< to be on the same scale).

On the one hand, our choice of surrogate model is motivated

based on theoretical properties, as feed forward NNs are known to

be universal function approximators, i.e., already a feed forward

NN with a single hidden layer can approximate any continuous

function to any desired accuracy, given arbitrary width (number of

hidden units) [10]. On the other hand, NNs have desirable practical

properties:

(i) They scale well with the number of data points (which will

become relevant for higher dimensions).

(ii) They are easy to deploy and integrate in benchmarking

suites.

(iii) They induce very little latency overhead during evaluation,

i.e., a forward pass.

All in all, this makes NNs very attractive as surrogate models in

our scenario compared to other regression models such as general-

ized additive models, splines, support vector machines, tree-based

models or Gaussian Processes. Still, one has to be aware that NNs

have a strong inductive bias to learn smooth functions (see, e.g.,

[5]) – especially when using tanh and sigmoid activation functions

– which can only be in�uenced to a certain degree by architectural

design choices.

Our explicit training procedure looks like the following: As our

goal is to perfectly interpolate D, we perform gradient descent

using the mean squared error as a loss function and AdamW as

optimizer with default parameters and a learning rate of 0.001
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for 5000 epochs. The objective here is to perfectly interpolate the

training data and essentially over�t drastically. Only under these

circumstances we can guarantee that the resulting model< will

exhibit the same (or reasonably similar) target ELA feature vector

a when evaluated at the anchor points - , i.e., | |ℎ(-, ŷ) − a| |2 is

su�ciently small†. Note that we do not employ mini-batches but

use a single batch of all available data - again due to our goal to

heavily over�t the training data.We implement our NNs in PyTorch

[27]. We provide the required code to replicate our experiments on

GitHub‡.

4 RESULTS

4.1 Landscape Perspective

To validate our devised methodology, we use ELA feature vectors

generated based on the functions of the Black-Box Optimization

Benchmark (BBOB) suite [6] as targets. The BBOB suite consists

of 24 di�erent functions, conveying distinct challenges to numeric

optimization algorithms. Each function (FID) belongs to one of

�ve so-called function groups, which share the same major char-

acteristics, and is instantiated using a set of transformations such

as rotations and shifts, yielding di�erent function instances with

fundamentally the same properties. In this study, we consider only

the �rst instance of each FID in the dimensions 3 = {2, 3}, where
we denote a problem instance as ?8 := (FID, 3). This amounts to 48

distinct problem instances we endeavour to recreate. For each ?8 ,

we run the Python implementation of CMA-ES called pycma with

a budget of 200= where = is the dimensionality of the point cloud

optimization problem and not the dimension 3 of the function we

are trying to generate. We perform ten replications of which all are

able to minimize Equation 1 similarly. For every problem ?8 , we

then select the point cloud that achieved the best objective value to

provide our neural networks with the best possible point cloud to

�t. All the results presented below, therefore, refer to the �ts of the

best point clouds.

Exemplary point clouds, where the approximation of the target

ELA feature vector works su�ciently well and a counterexample,

are given in Figure 2. The left-hand side depicts the case for BBOB

function 3. Sub�gure 2(a) depicts a random sample of the original

BBOB function 3 whereas the adjacent subplot visualizes our point

cloud after optimization. We can discern that the two landscapes

are rotated, yet in essence they structurally remain the same. The

right-hand side showcases an approximation attempt which did not

terminate satisfactorily. While some aspects of the original BBOB

function (FID 14) are present in our point cloud, the general land-

scape is far too quadratic and noisy. We believe that the observed

phenomenon is attributable to a low resolution of the point cloud.

A full account for every problem instance ?8 is given in Figure 3.

As pointed out in Section 3.1, each ELA feature is normalized to

fall into the interval [0, 1]. Hence, we can determine the maximum

distance between any two ELA feature vectors ∈ R8 is
√
8. This

helps to contextualize the reported results because these will be in

the interval of [0,
√
8]. The vast majority of cells is colored white

†Here, ŷ is the vector of predictions of the surrogate model consisting of predic-
tions ~̂ =< (x)for each point x ∈ - .

‡https://github.com/Reiyan/ela_nn_function_generation

which indicates the CMA-ES was able minimize the distance be-

tween the two ELA feature vectors up to a precision of 10−7. These
results are only tarnished by the functions 6, 9, 14 and 15 for 3 = 2,

and for 3 = 3 this list is extended by functions 4, 12, 17 and 20.

However, we cannot observe any statistical association which lets

us divine the cause of these unsatisfactory instances. Yet, we have

to put these values into context, meaning despite their perceptible

coloring their values pale in comparison only and not when viewed

in isolation. We deem them still su�cient to be used as training

data for our surrogate model.

To judge the accuracy of these point clouds further, we create 100

samples for each problem instance ?8 (using Latin hypercube sam-

pling) and compute the respective ELA feature vectors. These are

aggregated into a single vector a8 via the arithmetic mean. While

we make only use of a single dedicated NN architecture for all 48

problem instances, we train a NN individually for a single problem

and each ?8 receives its own NN model. In general, the training

procedure in each individual attempt introduces a stochastic compo-

nent. Hence, we trained �ve NNs for each problem instance where

every NN is identical except their initial weights. Surprisingly, all

�ve NNs interpolate between samples provided by the point cloud

in similar fashion. Ultimately, this means that the resulting �tness

landscape of our newly generated function is not subject to the

training procedure of our NNs, i.e., the initialization of weights

and biases. Similar to creating our target ELA vectors, we generate

100 ELA feature vectors b
( 9 )
8 for each of the �ve NNs, therefore

9 ∈ {1, 2, . . . 500}.
We report our results using the same metric of Equation 1. Mean-

ing, the Euclidean distance between the target ELA vector a8 of ?8

and the 500 ELA feature vectors b
( 9 )
8 of our constructed function.

The distribution of Euclidean distances for each ?8 can be found in

Figure 4.

A cursory assessment already reveals that our devised approach

works very well for the majority of the 48 considered problem

instances. Nevertheless, the results for 3 = 2 are about an order

of magnitude better than the results for 3 = 3. The cause for this

relatively poor performance can partially be traced back to ill-suited

point clouds found by CMA-ES. This is the case for functions 4, 6, 9,

12, 14, 17, and 20. Overall, we anticipate that premature termination

of network training due to insu�cient number of epochs is another

contributing factor to this observation.

In the following, we provide a more in-depth view into the �t-

ness landscape of a few selected functions. These are functions

in which we excel but also functions which did not work out as

well. In addition, we present exemplary uni-modal and multi-modal

problem instances. These functions are visualized in Figure 5. We

contrast the contour plot of the original BBOB problem instance to

its corresponding approximation of our approach. This is accom-

panied by a parallel coordinate plot of the ELA features where the

target ELA features are given in black and the values of our �ve

surrogate models are colored.

The �rst row shows the Sphere function (FID 1), which is ar-

guably one of the easiest optimization problems there is. This is also

the case for the approximation of its landscape. The only notable

di�erence between the two is that our function is not as arti�cially

smooth as the BBOB function.
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(a) BBOB FID 3 (b) Generated Point Cloud for FID 3 (c) BBOB FID 14 (d) Generated Point Cloud for FID 14.
G1- and G2-axis have been rotated for ac-
cessibility.

Figure 2: Generated point clouds optimized by CMA-ES in contrast to a sample generated from the respective BBOB function

directly. Objective values of the respective functions have been scaled to [0, 1] via min-max normalization.
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Figure 3: Heatmap of 48 distances in terms of 5 (y) between a

target ELA feature vector and the ELA feature vector calcu-

lated on the point cloud found by CMA-ES. The theoretical

boundaries of these objective values are in the interval [0,
√
8].

BBOB Function 2 displays a similar case. In terms of the cap-

tured landscape properties, we are able to emulate the separability

of this problem well and also the quadratic structure as a whole. In

addition, the generated landscape is rotated but we argue that this

fundamentally no issue, since this does not change the characteris-

tics of this problem.

Another function we deem worthy to report individual results

on, is the rotated Rosenbrock function (FID 9). This function re-

quires a solver to follow a long path to the global optimum while

also accounting for changes in the search direction. Our approxi-

mation of it mimics this to a certain degree where we can observe

a convergence into the corners of the search space. Yet, we cannot

model the strength of this turn as strongly as it is present in the

BBOB function.

We also want to critically discuss the inadequacies of our de-

veloped approach. This pertains to FID 14. This problem instance

exhibits the worst performance in terms of our similarity measure

B8 and also in terms of 5 (y) when optimizing the point cloud. In

this case, we can notice that over�tting our NNs leads to a more

rugged landscape with drastically increasing and decreasing objec-

tive values of the landscape. This is, on the other hand, a property

we require to model BBOB functions which are multi-modal and ex-

hibit a mediocre to high conditioning of their respective landscape

as will be shown in the following.
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target ELA vector a8 and each associated problem instance

b
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Up until now, we only discussed the uni-modal functions with

varying degrees of separability and conditioning. The last subplot

of Figure 5 depicts the BBOB Function 21. This function is highly

multi-modal with no global structure. The basin sizes of attraction

134



Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Figure 5: The left column shows contour plots of �ve selected BBOB functions. The a�liated eight dimensional target ELA

vectors are represented by the black lines in the parallel plots of the middle column. The �ve colored lines show the mean ELA

feature vector of the �ve trained neural networks. The matching colored area around the lines covers the tenth to ninetieth

percentile of ELA feature values achieved during sampling. The right column represents the contour plots of one of the trained

neural networks.
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are are aligned in random directions with di�erent convex shapes.

Our approximation is able to capture these properties in general. A

meaningful di�erence is that our basins of attraction more often run

parallel to the axes of the search space in contrast to the original

BBOB function.

4.2 Algorithm Perspective

Figure 6: Performance rankings based on the performance

of each optimizer with budget 10 000 · 3 for each dimension

separately between BBOB and our imitated versions. Ties are

identi�ed by a non-parametric Nemenyi test and indicated

by the horizontal lines. Lower rank is better.

It is imprudent to solely rely on the analysis of landscape prop-

erties to investigate the similarities between our imitated functions

and their original counterparts. A di�erent analysis avenue is pro-

vided by observing the behaviour of algorithms on each of these two

sets and whether they exhibit a similar performance on the original

as well as on the imitation. Hence, we conducted a comprehensive

benchmark on BBOB making use of the Nevergrad framework [31].

Nevergrad provides a wide range of gradient-free optimization

algorithms but what makes it most useful for our scenario is its

interface for implementing and testing custom benchmark func-

tions. As solvers we selected the following seven complementary

algorithms:

• estimation of multivariate normal algorithm (EMNA) [20],

• Nelder-Mead algorithm (ND) [26],

• di�erential evolution (DE) [36],

• particle swarm optimization (PSO) [13],

• diagonal covariance matrix adaptation evolution strategy

(dCMA-ES) [8],

• constrained optimization by linear approximation

(Cobyla) [28],

• and random search (RS) [1].

Each of these algorithms is is given a budget of 10 000 ·3 function

evaluations and is applied 10 times on every single problem in the

dimension two and three.

Figure 6 shows critical distance (CD) plots [2] for the BBOB and

NN problems. We compute rankings based on the performance of

each optimizer (median of 10 replications) on each of the BBOB

and NN problems. A non-parametric Friedman test with Nemenyi

post-hoc test is performed to identify ties in the optimizer rank-

ings, which are indicated by the horizontal lines. We rely on the

implementation in the Python package autorank [9].

In Figure 6, we observe a comparable behavior in the algorithms

examined. Speci�cally, the top three performing algorithms are

DE, PSO, and COBYLA. In the 23 scenario, there is no statistically

signi�cant di�erence between these three. However, there are slight

variations in the ranking of the remaining four algorithms. In our 23

imitations of BBOB, these variances are indistinguishable, whereas

in the original BBOB suite, other algorithms sometimes tie with

the three best performers in terms of their overall performance

indicated by the horizontal line. Overall, our imitations of BBOB

divide the seven algorithms more strongly into two groups. The 33

case provides a more convoluted case. Here, the best performing

algorithms on BBOB are DE and COBYLA (which are statistically

tied) whereas on our imitation suite this is extended by PSO. These

permutations in rankings are to be expected and we think that over-

all also from an algorithmic perspective these two sets of functions

are similar.

4.3 Generation of Novel Benchmark Functions
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Figure 7: Projection of the ELA feature vectors of BBOB and

newly generated functions (represented by a black dot) into

a Cartesian plane via PCA.

While the imitation of existing benchmark functions allows us

to dissect our approach in isolation and to identify possible short-

comings, we ultimately propose this method to create problem

instances which are not covered by an existing benchmark suite. At

�rst glance the creation of an ELA feature vector which is not repre-

sented by any problem instance of a given benchmark suite seems

simple. This, however, is not the case since interactions between

ELA features exist. For example, it is not possible to create an ELA

feature vector which has '2 of 1 for a linear model and simultane-

ously for a quadratic model (assuming non-zero model coe�cients).

Thereby, the identi�cation of feasible ELA feature vectors - which

are also di�erent to ELA feature vectors of a benchmark - poses a

separate research question which is not addressed in this work.
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Figure 8: Landscape of the 5 newly created 23 Functions where the black points represent the point cloud optimized by the

CMA-ES

Figure 9: Performance rankings based on the performance

of each optimizer with budget 10 000 · 3 for each dimension

separately between BBOB function groups 4 and 5 in contrast

to the 5 newly created functions. Ties are identi�ed by a non-

parametric Nemenyi test and indicated by the horizontal

lines.

Rather, we handpicked �ve exemplary and feasible ELA feature

vectors which have a considerable distance to the existing ELA

feature vectors of BBOB to showcase the potential of our method.

A projection of these �ve exemplary ELA feature vectors into a two

dimensional plane (using PCA) is depicted in Figure 7.

The generation of the respective point clouds as well as the

training of our NN surrogate models is identical to our previous

undertaking. The optimization process to generate the point clouds

terminates with objective values ranging from 2.374−06 to 1.264−02
and an average of 3.014 − 03 for 23 and 33 problems. We deem this

su�ciently well approximated to build our surrogate models upon.

Furthermore, we apply the same algorithm benchmark procedure

outlined in Subsection 4.2.

Landscape Perspective. The landscape of the newly generated

23 functions is depicted in Figure 8. All �ve functions are highly

multi-modal without any or very weak apparent global structure.

The conditioning of these functions is also extremely high, i.e., small

changes in the decision space generally lead to drastic changes in

the objective space. The �rst three landscapes tend to have the

majority of their local and global optima located more in the center

of the search space, whereas the latter two follow no observable

pattern and have even highly competitive local optima right at

the vertices of the box-constraints. Especially the fourth and �fth

problem share commonalities with the Katsuura function (FID 23)

of BBOB. However, our functions do not exhibit the same regular

pattern for local optima which presumably makes it more di�cult.

This irregular pattern is uncommon for BBOB in general.

Algorithm Perspective. These aforementioned landscape prop-

erties make the newly generated functionsmost similar to the BBOB

function group 4 or 5. Hence, we present the algorithm rankings in

form of CD-plots for these groups speci�cally as the CD plots for

the remaining function groups do not share any resemblance at all

with the CD plots of the newly generated functions.

When assessing Figure 9, there seems to be no conclusive evi-

dence, that our newly generated problems are substantially di�er-

ent in terms of algorithm rankings. ND performs the worst on the

new generated functions which is also the case for BBOB group 4.

The top performing algorithms are mainly PSO, DE, COBYLA and

occasionally even RS. While we would have appreciated a more

indicative �nding from the algorithm perspective, we are satis-

�ed with the structural di�erences in the constructed landscapes

compared to BBOB.

5 CONCLUSION

In this work, we propose a novel approach for creating new bench-

mark problems for single-objective continuous black-box optimiza-

tion. Our approach is mainly based on creating a so-called point

cloud which exhibits the desired ELA features and thereby the

desired �tness landscape properties. This point cloud is used to

train a neural network which acts as a surrogate model and newly

created benchmark function. Our approach solves the previously

unaddressed issues of [3] by providing the capability to not only

interpolate in the ELA feature space of benchmark functions but

also extrapolate beyond the convex hull of this region. Furthermore,

NNs are fully di�erentiable in theory (not only with respect to the

weights and biases, but also with respect to the input variables)

and we hypothesize that we can determine all optima comparably

e�ciently. This, however, needs to be fully explored. We evaluated

our approach on a set of BBOB functions where the goal was to
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recreate them as closely as possible. Our approach generates prob-

lem instances of identical nature. This is supported by a systematic

benchmark study of di�erent optimizers which exhibit an overall

similar performance ranking on the original BBOB functions and

their respective imitations.

In addition, we showcase that it is possible to create functions

based on ELA feature vectors which are not represented by any

BBOB function. The resulting functions o�er interesting irregular

structures and landscape property combinations which are not

present in the current BBOB suite.

Yet, our devised approach is only the �rst foray into relatively

uncharted territory. An inundating number of research opportuni-

ties still remains such as, e.g., improving the scalability to create

functions of higher dimensionality. This can be done by employing

more CPU-e�cient algorithms such as the LM-CMA-ES [22]. Fur-

thermore, a systematic evaluation of di�erent sampling sizes and

strategies may conclude that a smaller sample size still produces

su�cient results. This would e�ectively reduce the dimensionality

of our point cloud optimization and presumably the complexity of

this optimization task.

While we evaluated a multitude of di�erent NN architectures, we

still believe that there is potential for improvement in this area. Test-

ing di�erent architectures or investigating the viability of smaller

point clouds is only a small excerpt of possible re�nements. We

could also employ our approach to model real-world problems

where a small sample of data exist. While this amount of data may

be not su�cient enough to build a surrogate model on it alone, we

can use it to calculate ELA features. Thereafter, our procedure can

be applied to generate a surrogate function comparatively cheaply.

While solving this surrogate function does not lead to the identi-

�cation of the global optimum of the real-world problem, it can

serve as a proxy to benchmark and design algorithms more tailored

to real-world problems.
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