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ABSTRACT
Exploratory landscape analysis has been at the forefront of charac-
terizing single-objective continuous optimization problems. Other
variants, which can be summarized under the term landscape anal-
ysis, have been used in the domain of combinatorial problems.
However, none to little has been done in this research area for
mixed-integer problems. In this work, we evaluate the current state
of existing exploratory landscape analysis features and their appli-
cability on a subset of mixed-integer problems.
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1 INTRODUCTION
Exploratory landscape analysis (ELA) [4] has been the driver of
many research advancements related to optimization in the past
decade. By providing valuable insights into high-dimensional fit-
ness landscapes or being used as fundamental components in au-
tomated algorithm selection studies, ELA facilitated areas such as
algorithm design and optimization of real-world problems [1, 3].
However, ELA has been largely restricted to the continuous single-
objective domain. This is not to be conflated with fitness landscape
analysis in general which has been applied in some way, shape, or
form in other optimization domains as well. These methods, how-
ever, have been used in either a pure combinatorial or continuous
setting. Yet, these domains are not intrinsically disjunct, rather they
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can intersect in form of mixed-integer problems. In this prelimi-
nary study, we want to create a bridge in feature landscape analysis
between these domains. To disseminate existing ELA features to dif-
ferent optimization domains, we consider a subset of mixed-integer
problems which exhibit continuous and discrete decision variables,
i.e., each variable possesses an ordinal nature.

2 EXPLORATORY LANDSCAPE ANALYSIS
For single-objective continuous optimization, ELA provides the
means to characterize an optimization landscape in terms of a
given set of properties via numerical surrogates. Any ELA feature
requires a sample - a so-called initial design - of the decision space
{𝑥 (1) , ..., 𝑥 (𝑛) } ∈ 𝑋𝑛×𝑑 , where 𝑑 refers to the dimensionality of
the decision space and 𝑛 governs the size of the initial design. To
generate the respective objective values 𝑓 (𝑥 (1) ), every individual
observation 𝑥 (1) has to be evaluated on a given objective function
𝑓 : 𝑋 → R. The final sample then consists of values of the decision
and objective space in form of (𝑋, 𝑓 (𝑋 )).

Based on (𝑋, 𝑓 (𝑋 )), a multitude of different feature sets can be
calculated. The feature sets used in this study have been selected
based on past research [8, 9]. The chosen feature sets are given in
the following and are computed with the Python package pflacco1:

• ela_distr: ELA distribution
• ela_meta: ELA meta model
• fitness_distance: Fitness distance correlation
• nbc: Nearest better clustering
• pca: Principal component analysis
• ic: Information content
• disp: Dispersion

3 EXPERIMENTAL METHODS
To investigate the viability of continuous ELA features within the
mixed-integer setting, we make use of the mixed-integer variant
of the Black-Box Optimization benchmark (BBOB) suite [10]. To
avoid confusion, we will refer to the mixed-integer variant of BBOB
as mixint-BBOB and to the continuous as cont-BBOB from here
on forward. Similar to the single-objective continuous version,
mixint-BBOB comprises the same 24 distinct optimization problems
which are labeled as functions (FID). Each function can be subject to
different linear transformations and rotations. Thereby, these func-
tions offer different variations, so called instances (IID). The span of
possible problem dimensions of mixint-BBOB functions is compara-
tively larger than the conventional BBOB suite. Here, functions can
only be created for dimensions 𝑑 = {5, 10, 20, 40, 80, 160}. Whether

1https://github.com/reiyan/pflacco
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a particular dimension is on a discrete or continuous scale is deter-
mined by the following (recurring) sequence𝑑′ := (𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5),
where𝑑1 = {0, 1},𝑑2 = {0, 1, 2, 3},𝑑3 = {0, 1, ..., 7},𝑑4 = {0, 1, ..., 15},
and 𝑑5 ∈ R. If a problem has 10 dimensions, then the sequence 𝑑′
will repeat itself twice, whereas only the 5th and 10th dimension
are on a continuous scale. A 20 dimensional problem would repeat
the sequence 𝑑′ four times and so forth.

As is apparent, each dimension offers potentially different vari-
ables types but also ranges. In contrast, the function domain of
cont-BBOB is box-constrained within the interval [−5, 5] for all
dimensions. To avoid an over importance of certain dimensions, we
normalize the decision space as well as the objective space to [0, 1]
for both benchmark suites via min-max normalization. The lower
and upper bounds of the decision space are given and therefore
the normalization of the decision space is straightforward. For the
objective space, we use the respective minima and maxima of a
given initial design (𝑋, 𝑓 (𝑋 )) as is recommended in [6].

We calculate the set of ELA features for both benchmarks where
we keep the selected problem instance comparable. Meaning, we
consider the first five IIDs of all 24 FIDs in dimensions𝑑 = {5, 10, 20}
for both benchmark suites.

On each problem instance 𝑝 := (𝐹𝐼𝐷,𝑑, 𝐼 𝐼𝐷), we create 10 inde-
pendent initial designs based on Sobol sequences of size 50 · 𝑑 and
compute the selected ELA features. Thereby, we hope to reduce
the stochastic interference on our results any random sampling
strategy might introduce.

In line with other works [8, 9], we conduct a classification study,
where we try to predict the underlying FID based on its respec-
tive ELA values for each benchmark, mixint-BBOB and cont-BBOB,
separately. For this endeavour, we consider SVMs, Random Forests,
and Gradient Boosting Machines as an appropriate set of different
machine learning models. Furthermore, we perform rudimentary
hyperparameter tuning as well as extensive feature selection to
identify a suitable subset of ELA features (out of 52) as this has
been shown to improve the model accuracy [2, 8]. Each model is
implemented in Python using the packages scikit-learn [5] and
mlxtend [7].

For both benchmark suite classification scenarios, we use a 5-fold
cross-validation strategy, where each fold consists of only a single
IID, e.g., the first fold includes only the first instance of all 24 FIDs
in all considered dimensions 𝑑 . The best model in both cases is a
Random Forest.

4 RESULTS
Before discussing the results of the classification scenario, we want
to provide an overview of the ELA feature values in general and
the similarities they share despite being computed on two different
benchmark suites. The frequency in which certain ELA feature
values occur is depicted in Figure 1. This is further divided by their
source of origin, i.e., the benchmark suite in question. For most of
the features, we can observe a clear overlap in terms of distributions.
Most prominent are the features sets ela_meta and to some degree
also nbc and pca. While these are most apparent, other singular
features also exhibit a similar pattern. Noteworthy is that some
features seem to share little in terms of raw values. An example for
this is the feature fitness_distance.distance_std.

Table 1: Spearman correlation for each feature between the
two benchmark suites mixint-BBOB and cont-BBOB.

Feature Correlation
ela_distr.skewness 0.95
ela_distr.kurtosis 0.94
ela_distr.number_of_peaks 0.75
ela_meta.lin_simple.adj_r2 0.94
ela_meta.lin_simple.intercept 0.95
ela_meta.lin_simple.coef.min 0.89
ela_meta.lin_simple.coef.max 0.90
ela_meta.lin_simple.coef.max_by_min 0.73
ela_meta.lin_w_interact.adj_r2 0.96
ela_meta.quad_simple.adj_r2 0.95
ela_meta.quad_simple.cond 0.66
ela_meta.quad_w_interact.adj_r2 0.97
fitness_distance.fd_correlation 0.58
fitness_distance.fd_cov 0.74
fitness_distance.distance_mean 0.95
fitness_distance.distance_std 0.18
fitness_distance.fitness_mean 0.95
fitness_distance.fitness_std 0.95
nbc.nn_nb.sd_ratio 0.92
nbc.nn_nb.mean_ratio 0.97
nbc.nn_nb.cor 0.91
nbc.dist_ratio.coeff_var 0.96
nbc.nb_fitness.cor 0.91
pca.expl_var.cov_x 1.00
pca.expl_var.cor_x 1.00
pca.expl_var.cov_init -0.36
pca.expl_var.cor_init 0.70
pca.expl_var_PC1.cov_x 0.89
pca.expl_var_PC1.cor_x 0.89
pca.expl_var_PC1.cov_init 0.84
pca.expl_var_PC1.cor_init 0.99
ic.h_max 0.88
ic.eps_s 0.95
ic_eps.max 0.88
ic.eps_ration 0.90
ic.m0 0.92
disp.ratio_mean_02 0.89
disp.ratio_mean_05 0.92
disp.ratio_mean_10 0.93
disp.ratio_mean_25 0.95
disp.ratio_median_02 0.81
disp.ratio_median_05 0.82
disp.ratio_median_10 0.83
disp.ratio_median_25 0.85
disp.diff_mean_02 0.82
disp.diff_mean_05 0.83
disp.diff_mean_10 0.85
disp.diff_mean_25 0.88
disp.diff_median_02 0.78
disp.diff_median_05 0.76
disp.diff_median_10 0.72
disp.diff_median_25 0.70

This, however, compares only the degree of which singular fea-
tures’ values overlap. We dissect the feature values further from a
different perspective, namely by choosing to calculate the Spear-
man’s rank correlation coefficient for each feature between the
different benchmark suites. This is provided in Table 1. Again, the
feature set ela_meta garners attention by displaying a large cor-
relation of the feature values between the two benchmark suites.
This is also the case for the feature sets ic and nbc.

The only exceptions to this phenomenon are the two features
fitness_distance.distance_std and pca.expl_var.cov_init.
The probable cause of this can be traced back to the discretized
decision variables which only allow for a finite number of integer
values. Meaning, it is more likely to share the exact same values for
discretized decision variables between different samples of an initial
design. This naturally reduces the standard deviation of distances
between those samples.

In order to validate the suitability of continuous ELA features
in the mixed-integer setting further, we depict the results of our
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Figure 1: Histograms for each of the 52 ELA features.

classification undertaking in Figure 2. A cursory assessment reveals
no clear disparity between the quality of the two models. Funda-
mentally, they exhibit the same pattern of classifying certain FIDs
perfectly while struggling on the same subset of FIDs. Both models
display even the same manner in which misclassifications occur.
This is the case for FIDs 17 and 18 where they are often mistaken
for one another. This hints to the fact that the chosen subset of ELA
features is not descriptive enough to distinguish between the two.

5 CONCLUSION
In this work, we show that existing ELA features are intrinsically
suited to be used for a subset of mixed-integer problems. We only
adjusted for different scales of the search space but this would also
be necessary for different scales in the continuous domain. We
demonstrate that many ELA feature values, regardless of being cal-
culated on the continuous BBOB suite or mixed-integer BBOB suite,
exhibit a strong correlation and to some degree even identical value
ranges. While this is certainly promising, this is neither conclusive
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Figure 2: Confusion matrix of the classification scenario. The classifier trained for cont-BBOB achieves an 𝐹1-score of 0.863 on
the validation set where in the case of mixint-BBOB an 𝐹1-score of 0.869 is reached.

nor indicative for the entire space of mixed-integer problems. As
previously hinted at, mixint-BBOB is a discretized version of cont-
BBOB where every decision variable is ordinal. To generalize to all
mixed-integer problems, we also have to account for categorical
decision variables in which binary variants are just a special case.
Moreover, it can be questioned whether mix-int BBOB is truly
indicative for mixted-integer problems and not just derivative of
the existing cont-BBOB suite.

REFERENCES
[1] Pascal Kerschke, Holger H. Hoos, Frank Neumann, and Heike Trautmann. 2019.

Automated Algorithm Selection: Survey and Perspectives. Evolutionary Compu-
tation 27, 1 (2019), 3 – 45.

[2] Pascal Kerschke and Heike Trautmann. 2019. Automated Algorithm Selection on
Continuous Black-Box Problems By Combining Exploratory Landscape Analysis
and Machine Learning. Evolutionary Computation 27, 1 (2019), 99 – 127.

[3] Fu Xing Long, Bas van Stein, Moritz Frenzel, Peter Krause, Markus Gitterle, and
Thomas Bäck. 2022. Learning the Characteristics of Engineering Optimization
Problems with Applications in Automotive Crash (GECCO ’22). Association for
Computing Machinery, New York, NY, USA.

[4] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs,
and Günter Rudolph. 2011. Exploratory Landscape Analysis. In Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation (Dublin,
Ireland) (GECCO ’11). Association for Computing Machinery, New York, NY,

USA, 829–836.
[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[6] Raphael Patrick Prager and Heike Trautmann. 2023. Nullifying the Inherent Bias
of Non-invariant Exploratory Landscape Analysis Features. In Applications of
Evolutionary Computation, João Correia, Stephen Smith, and Raneem Qaddoura
(Eds.). Springer Nature Switzerland, Cham, 411–425.

[7] Sebastian Raschka. 2018. MLxtend: ProvidingMachine Learning and Data Science
Utilities and Extensions to Python’s Scientific Computing Stack. The Journal of
Open Source Software (JOSS) 3, 24 (April 2018).

[8] Quentin Renau, Johann Dreo, Carola Doerr, and Benjamin Doerr. 2021. To-
wards Explainable Exploratory Landscape Analysis: Extreme Feature Selection
for Classifying BBOB Functions. Proceedings of the 24th International Conference,
EvoApplications 2021 12694 LNCS (2021), 17–33.

[9] Moritz Vinzent Seiler, Raphael Patrick Prager, Pascal Kerschke, and Heike Traut-
mann. 2022. A Collection of Deep Learning-Based Feature-Free Approaches
for Characterizing Single-Objective Continuous Fitness Landscapes. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (Boston, Mas-
sachusetts) (GECCO ’22). Association for Computing Machinery, New York, NY,
USA, 657–665.

[10] Tea Tušar, Dimo Brockhoff, and Nikolaus Hansen. 2019. Mixed-Integer Bench-
mark Problems for Single- and Bi-Objective Optimization. In Proceedings of
the Genetic and Evolutionary Computation Conference (Prague, Czech Repub-
lic) (GECCO ’19). Association for Computing Machinery, New York, NY, USA,
718–726.

454


	Abstract
	1 Introduction
	2 Exploratory Landscape Analysis
	3 Experimental Methods
	4 Results
	5 Conclusion
	References

