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Abstract. Correlation immune Boolean functions play an important
role in the implementation of efficient masking countermeasures for side-
channel attacks in cryptography. In this paper, we investigate a method
to construct correlation immune functions through families of mutually
orthogonal cellular automata (MOCA). First, we show that the orthog-
onal array (OA) associated to a family of MOCA can be expanded to
a binary OA of strength at least 2. To prove this result, we exploit the
characterization of MOCA in terms of orthogonal labelings on de Bruijn
graphs. Then, we use the resulting binary OA to define the support of a
second-order correlation immune function. Next, we perform some com-
putational experiments to construct all such functions up to n = 12
variables, and observe that their correlation immunity order is actually
greater, always at least 3. We conclude by discussing how these results
open up interesting perspectives for future research, with respect to the
search of new correlation-immune functions and binary orthogonal arrays.

Keywords: Boolean Functions · Cellular Automata · Correlation
Immunity · Side-channel countermeasures · Orthogonal Latin Squares

1 Introduction

Boolean functions are basic combinatorial objects that map a set of fixed size
bitstrings to a single output bit. Notwithstanding their simplicity, such func-
tions find countless applications in many diverse fields of computer science and
mathematics [5]. In cryptography, Boolean functions have long been used to
design low-level primitives in symmetric ciphers, such as combiners and filters
for linear feedback shift registers [2]. The rationale is that the resilience of these
ciphers against different cryptanalytic attacks can be reduced to the crypto-
graphic properties of the underlying Boolean functions. For example, a Boolean
function used in the combiner model for Vernam stream ciphers should be at a
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high Hamming distance from the set of affine functions to resist fast-correlation
attacks, or equivalently it should possess a high nonlinearity [21]. At the same
time, the output of the function should be statistically independent from any
subset of t or fewer variables, to resist correlation attacks of order t: in other
words, the Boolean functions should be correlation immune of high order t [24].

The literature related to the cryptographic applications of cellular automata
(CA) features a solid body of works investigating the properties of the involved
Boolean functions. For example, it has been shown that Wolfram’s pseudoran-
dom number generator (PRNG) based on a simple one-dimensional CA is unsuit-
able for cryptographic purposes, as the underlying local rule 30 is not first-order
correlation immune and does not have a high enough nonlinearity [20]. This
allows to apply respectively Meier and Staffelbach’s correlation attack [22] and
Koc and Apohan’s inversion attack [12] to efficiently recover the initial config-
uration of Wolfram’s PRNG. Following this research thread, a few subsequent
works [6,14] focused on the search of local rules with a larger diameter and a
better trade-off of nonlinearity and correlation immunity. Some of these rules
with better properties have then been adopted in the design of CA-based stream
ciphers such as CARPENTER and PENTAVIUM [8,13].

The correlation immunity criterion also gained relevance in recent years con-
cerning a different type of attacks, namely side-channel analysis (SCA). Instead
of focusing on the mathematical design of a cipher as classical cryptanalysis does,
SCA targets the implementation of a cipher on a device. In particular, the aim of
SCA is to exploit leakages on side-channel sources such as electromagnetic ema-
nations, timings, and variations of voltages to infer the secret key used to encrypt
a message on the device. One of the options to counteract these attacks is Boolean
masking, where noise is added to the intermediate values computed by the cipher
during the encryption process, changing them from one execution to the other.
In this respect, correlation immune functions of high order t and low Hamming
weight (i.e., with as few 1s as possible in the output of their truth tables) can
be used to implement masking countermeasures, such as leakage squeezing and
rotation S-box masking [3,23], which have minimal implementation overhead and
optimal resistance towards SCA attacks of order t.

Contrasting with the large number of works related to the study of the cryp-
tographic properties of CA—be it at the local rule level as mentioned above,
or by considering them as S-boxes as in [17,19]—there seems to be compara-
tively a smaller literature dedicated to the exploration of CA as a means to con-
struct side-channel countermeasures. To the best of our knowledge, the works by
Karmarkar and Roy Chowdury [9–11] are the only ones addressing the design
of leakage squeezing countermeasures through hybrid CA. There, the authors
remark that there exist several methods to design linear codes with hybrid CA
by leveraging the techniques in [4], which can be readily used to implement a
leakage squeezing countermeasure. However, they also argue that the linearity
of such codes introduces other weaknesses, and thereby set out to study the
cryptographic properties of nonlinear hybrid CA for leakage squeezing.

The goal of this paper is to investigate how cellular automata may be used
to design correlation immune functions of low weight. To this end, we use a
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construction of mutually orthogonal CA (MOCA), i.e., a family of CA giving rise
to a set of mutually orthogonal Latin squares (MOLS), recently introduced in [16].
In particular, we exploit the well-known fact that any set of MOLS is equivalent
to an orthogonal array (OA) of strength 2. Then, taking any set of MOCA, we
prove that the corresponding binary expansion is a binary OA of strength at least
2, leveraging on the MOCA characterization as orthogonal labelings on de Bruijn
graphs. This result allows us to use the expanded binary OA of a MOCA fam-
ily as the support of a Boolean function with correlation immunity order at least
2. We then perform a computational search experiment to generate all families
of 3 MOCA defined by local rules of diameter d = 4, 5, and construct the cor-
responding Boolean functions. Interestingly, all generated functions turn out to
have correlation immunity order at least 3, indicating that our theoretical result
is not a tight lower bound. Although the Hamming weight reached by our correla-
tion immune functions is far from optimal, we discuss how it could be improved by
solving an associated optimization problem. The objective in this case is to remove
a subset of rows from the binary expansion of a MOCA family while retaining the
correlation immunity order of the resulting function.

The rest of this paper is organized as follows. Section 2 collects all neces-
sary background definitions and results related to Boolean functions, cellular
automata, Latin squares and orthogonal arrays used in this work. Section 3
proves the main theoretical result of the paper, i.e., that the binary expan-
sion of a set of MOCA is the support of a Boolean function with correlation
immunity order at least 2. Section 4 presents the results of the computational
search experiment for families of k = 3 MOCA, giving rise to Boolean functions
of up to n = 12 variables. Finally, Sect. 5 recaps the main contributions of this
paper, and discusses some directions for future research.

2 Preliminary Definitions

In this section, we recall all relevant definitions to describe our results in the
remainder of the paper. We start with basic concepts and results of Boolean func-
tions, and how correlation immune functions can be characterized by orthogonal
arrays. Then, we give a formal definition of the CA model used in our work, and
describe the CA-based construction of mutually orthogonal Latin squares of [16].

2.1 Boolean Functions and Orthogonal Arrays

As a general reference, we follow Carlet’s recent book on Boolean functions [2].
Let F2 = {0, 1} be the finite field with two elements, with sum and mul-

tiplication defined respectively as the XOR (denoted by ⊕) and logical AND
(denoted by concatenation). For any n ∈ N, the set F

n
2 of all n-bit bitstrings is

endowed with the structure of a vector space, with vector sum defined as bitwise
XOR, and multiplication by a scalar a ∈ F2 being the field multiplication of
a with each coordinate of a vector x ∈ F

n
2 . Given two vectors x, y ∈ F

n
2 , their

Hamming distance dH(x, y) is the number of coordinates where x and y disagree,
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while their scalar product is defined as x ·y =
⊕n

i=1 xiyi. The support of a vector
x ∈ F

n
2 is the set supp(x) = {i : xi �= 0}, and its Hamming weight wH(x) is the

cardinality of supp(x). Equivalently, wH(x) corresponds to the Hamming dis-
tance dH(x, 0) between x and the null vector 0 ∈ F

n
2 . In practice, the Hamming

weight is the number of nonzero coordinates in x.
For all n ∈ N, a Boolean function of n variables is a mapping f : Fn

2 → F2.
The most straightforward way to represent f is by means of its truth table.
Suppose that a total order is fixed on the vectors of Fn

2 (e.g., the lexicographic
order). Then, the truth table of f is the vector Ωf ∈ F

2n

2 defined as:

Ωf = (f(0, . . . , 0), f(0, . . . , 1), . . . , f(1, . . . , 1)) . (1)

In other words, the truth table is the 2n-bit vector that specifies for each input
vector x ∈ F

n
2 in lexicographic order the corresponding output value f(x). Sim-

ilarly to what we defined above for binary vectors, the support of f is the set
supp(f) = {x ∈ F

n
2 : f(x) �= 0}, while its Hamming weight is wH(f) = |supp(f)|.

Equivalently, support and weight of f are defined respectively as the set of
nonzero coordinates and the size of such set in the truth table Ωf .

Another method to represent a Boolean function usually adopted in cryptog-
raphy is the Walsh transform. Given f : Fn

2 → F2, the Walsh transform of f is
the function Wf : Fn

2 → Z defined for all a ∈ F
n
2 as:

Wf (a) =
∑

x∈F
n
2

(−1)f(x)⊕a·x . (2)

Intuitively, Wf (a) measures the correlation between f and the linear function
defined by the scalar product a·x. The Walsh transform is useful to assess several
cryptographic properties of f , among which correlation immunity is of special
interest for this paper. A Boolean function f : Fn

2 → F2 is correlation immune
of order 1 ≤ t ≤ n if any subset of 1 ≤ k ≤ t input variables is statistically inde-
pendent from the output of f . This property has an equivalent characterization
through the Walsh transform (originally due to Xiao and Massey [27]): f is t-th
order correlation immune if and only if Wf (a) = 0 for all coefficients a ∈ F

n
2 of

Hamming weight k, with 1 ≤ k ≤ t.
Correlation immunity plays an important role in the context of correlation

attacks on stream ciphers based on the combiner model [24]. More recently,
this criterion also gained relevance for designing masking countermeasures to
withstand side-channel analysis. In this case, the goal is to find a t-th order
correlation immune function to resist SCA attacks of order t. At the same time,
it is desirable that this function has the lowest Hamming weight possible, to
have an efficient implementation of the masking countermeasure.

Beside the Walsh transform, correlation immune functions have also a nice
combinatorial characterization in terms of orthogonal arrays. Formally, an
orthogonal array of N runs, k factors, s levels and strength t (denoted as an
OA(N, k, s, t)) is a N × k array with entries from a set S with s elements such
that, for any N × t subarray, each t-uple of St occurs exactly λ = N/st times [7].
The value λ is also called the index of the OA, and is completely determined by
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the other parameters. The link between binary OA (i.e., with s = 2 levels) and
correlation immune functions is given by the following result proved in [1]:

Lemma 1. A Boolean function f : Fn
2 → F2 is correlation immune of order t if

and only if its support supp(f) = {x ∈ F
n
2 : f(x) �= 0} is an OA(N,n, 2, t).

In other words, one can reduce the design of n-variable, t-th order correlation
immune Boolean functions for SCA masking countermeasures to the search of
binary OA of n factors and strength t. The requirement of minimizing the Ham-
ming weight of the function corresponds to the minimization of the number of
runs N in the OA. Once such an OA has been found, one can define the cor-
responding correlation immune function f by taking the runs of the OA as the
vectors in the support of f .

2.2 Cellular Automata and Latin Squares

In this work, we use cellular automata (CA) as a particular kind of vectorial
Boolean functions, which we formally define below:

Definition 1. Let n, d ∈ N with d ≤ n, and let f : Fd
2 → F2 be a d-variable

Boolean function. A cellular automaton of length n, diameter d and local rule f
is a mapping F : Fn

2 → F
n−d+1
2 defined for all x ∈ F

n
2 as:

F (x1, . . . , xn) = (f(x1, . . . , xd), f(x2, . . . , xd+1), . . . , f(xn−d+1, . . . , xn)) . (3)

Intuitively, each output coordinate i ∈ {1, . . . , n − d + 1} of the CA F is deter-
mined by evaluating f on the local neighborhood (xi, . . . , xi+d−1). Remark that
the output is smaller than the input: indeed, we can apply f as long as there
are enough neighboring coordinates to the right of the current output cell i.
Therefore, we do not enforce any boundary conditions on the CA state, as it is
commonly done in the CA literature. This means that the CA cannot be iterated
for multiple time steps, but this issue does not concern us since we are interested
only in the single-step application of F . This model is also called no-boundary
CA in related works [16,19].

We now introduce the basic concepts related to Latin squares to recall the
main results of [16]. For all n ∈ N, let us denote by [n] = {1, . . . , n} the set of
the first n natural numbers. A Latin square of order n is a n × n matrix L such
that each row and each column of L is a permutation of [n]. Equivalently, this
means that each number from 1 to n occurs exactly once in each row and in each
column of L. Then, two Latin squares L1, L2 of order n are called orthogonal if
their superposition yields all pairs in the Cartesian product [n] × [n]. Formally,
for any distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [n] × [n], one has:

(L1(i1, j1), L2(i1, j1)) �= (L1(i2, j2), L2(i2, j2)) . (4)

A set of k Latin squares L1, . . . , Lk of order n that are pairwise orthogonal
is also called a set of k-MOLS (mutually orthogonal Latin squares). The con-
struction of MOLS is a rich research line in the combinatorial designs literature,
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and finds several applications in cryptography, coding theory and statistics [25].
Interestingly, k-MOLS of order n are also equivalent to orthogonal arrays with
N = n2 runs, k factors, n levels and strength 2. Indeed, one can construct an
OA(N, k, n, 2) from a set of k-MOLS by “linearizing” each Latin square as a
column of the OA: for each i ∈ [k], the i-th column of the OA corresponds to the
Latin square Li in the MOLS set, with its entries listed in lexicographic order.

The authors of [16] proposed a method to construct sets of k-MOLS from
cellular automata, by focusing on the subclass of bipermutive rules. Formally, a
local rule f : Fd

2 → F2 is called bipermutive if it is defined as f(x1, . . . , xd) =
x1 ⊕ ϕ(x2, . . . , xd−1) ⊕ xd for all x ∈ F

d
2, where ϕ : Fd−2

2 → F2 is any function of
the d − 2 central variables. Then, one can construct a Latin square LF of order
n = 2d−1 from a CA F : F2(d−1)

2 → F
d−1
2 as follows:

1. The left half of the CA input (x1, . . . , xd−1) is used to index the rows of LF .
2. The right half (xd, . . . , x2(d−1)) is used to index the columns of LF .
3. The output F (x1, . . . , x2(d−1)) of the CA is used as the entry indexed respec-

tively by the coordinates (x1, . . . , xd−1) and (xd, . . . , x2(d−1)).

Clearly, the procedure above assumes that a bijective mapping φ : Fd−1
2 → [n] is

used to convert the binary vectors of Fd−1
2 in numbers from 1 to 2d−1, and vice

versa. The authors of [16] focused on the construction of MOLS from bipermutive
CA by further focusing on the class of linear rules. Here, however, we will consider
the general setting of MOLS defined by generic bipermutive CA. In particular,
we define two bipermutive CA F1, F2 : F

2(d−1)
2 → F

d−1
2 to be orthogonal (or

equivalently they are OCA) if the corresponding Latin squares are orthogonal.
Accordingly, a family of k pairwise orthogonal bipermutive CA F1, . . . , Fk will
be called a set of k-MOCA (mutually orthogonal cellular automata).

3 Construction of Correlation Immune Functions

We now prove our main result, namely that a set of k-MOCA can be used to
define a binary OA of strength at least 2. This will allow us, in turn, to construct
correlation immune functions of order at least 2. To this end, let us first review
the concept of coupled de Bruijn graph introduced in [18], which will be useful
in our proof.

Recall that a de Bruijn graph of order b over a set S of m symbols is defined
as Gm,b = (V,E), where V = Sb, while two vertices u, v ∈ V are connected by
a directed edge if and only if they overlap respectively on the rightmost and
leftmost b − 1 coordinates. Assume now that S = F2, and let b = d − 1. A
local rule f : Fd

2 → F2 of diameter d can be represented as a labeling function
lf : E → F2 on the edges of G2,b. In particular, for each pair (u, v) ∈ E, we set
l(u, v) = f(u � v), where u � v ∈ F

d
2 represents the fusion of u and v as defined

in [26]. In other words, u � v is the d-variable vector formed by adding the last
coordinate of v to u. Then, it can be seen that the output of a CA equipped
with rule f corresponds to a path on the edges of the associated de Bruijn graph,
following the overlapping vertices that form a particular input. Remark that if
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00

0110

11

1, 1

1, 01, 0

1, 1

0, 0

0, 1

0, 0

0, 1

(v1, v2) → (u1, u2) lf lg
00 → 00 0 0
10 → 00 1 1
01 → 10 0 1
11 → 10 1 0
00 → 01 1 1
10 → 01 0 0
01 → 11 1 0
11 → 11 0 1

Fig. 1. Example of orthogonal labelings for the de Bruijn graph G2,2 induced by the
CA local rules 90 and 150 of diameter d = 3.

f is bipermutive, then the labels of the outgoing (respectively, ingoing) edges of
any vertex v ∈ V form a permutation of F2. This implies that one can traverse
the edges in both directions, and that the CA is surjective.

Suppose now that we have two labelings lf , lg : E → F2 defined by biper-
mutive rules f, g : F

d
2 → F2. We call the corresponding graph as the coupled

de Bruijn graph associated to f and g, since each label is now a pair of bits
(f(u � v), g(u � v)) for each edge (u, v) ∈ E. We call two bipermutive labelings
lf , lg orthogonal if for each pair of vectors (x, y) ∈ F

b
2 there exists exactly one

path on the edges of the coupled de Bruijn graph that is labelled by (x, y). It is
not difficult to see that this is an equivalent characterization of orthogonal CA.
We formally state this fact below, since it will become useful later in our proof:

Lemma 2. Let d ∈ N with b = d − 1, and f, g : Fd
2 → F2 be two bipermutive

rules of diameter d. Then, the CA F,G : F2b
2 → F

b
2 respectively equipped with

rule f and g are orthogonal if and only if the labelings on the coupled de Bruijn
graph of f and g are orthogonal.

To fix ideas, let d = 3, and assume that the two bipermutive local rules
are f(x1, x2, x3) = x1 ⊕ x3 and g(x1, x2, x3) = x1 ⊕ x2 ⊕ x3 (respectively rules
90 and 150 in Wolfram’s notation). The two rules induce orthogonal CA with
Latin squares of order 22 = 4, and the corresponding coupled de Bruijn graph is
depicted in Fig. 1. One can see that the two labelings lf , lg defined in the table
are indeed bipermutive and orthogonal. In particular, for each of the 16 pairs
(x, y) ∈ (F2

2)
2 there is exactly one path of length 2 in G2,2 labeled by (x, y).

Let F1, F2, . . . , Fk : F2b
2 → F

b
2 be a set of k-MOCA respectively defined by

local rules f1, . . . , fk : Fd
2 → F2 of diameter d, with b = d − 1. We define the

N × n array A where N = 22b and n = kb as follows: for each (x, y) ∈ F
2b
2 , the

row of A indexed by (x, y) is equal to:

A(x, y) = (F1(x, y), F2(x, y), . . . , Fk(x, y)) . (5)
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In other words, A is formed by simply juxtaposing the output of the k MOCA
for each possible combination of input (x, y) ∈ F

2b
2 . We now prove that this array

is an OA of strength 2.

Lemma 3. The array A defined in Eq. (5) is an OA(N,n, 2, 2), where the num-
ber of runs is N = 22b and the number of factors is n = kb.

Proof. We need to show that in any subset of t = 2 columns i, j of A each pair
of bits (xi, xj) ∈ F

2
2 occurs exactly λ = N/2t = 22b−2 times. Without loss of

generality, we can assume that k = 2, since F1, . . . Fk is a family of k-MOCA.
Hence, we have two main cases to check for two columns i �= j:

1. i, j belong to the output of the same CA Fl.
2. i, j belong to the output of two different CA Fl, Fm (which are orthogonal).

Let us start from the first case, i.e., i and j are chosen among the columns
of the same CA Fl. Let (x̃i, x̃j) ∈ F

2
2 be the value of the two bits of which

we want to compute the multiplicity of occurrence in columns i and j. Since
the two CA Fl and Fm are orthogonal, it means that by fixing the output of
Fm to a specific vector (y1, . . . , yb) ∈ F

b
2, each possible vector (x1, . . . , xb) ∈ F

b
2

occurs exactly once as an output of Fl. Suppose now that we fix the i-th and j-th
coordinates respectively to x̃i and x̃j in the output of Fl. Since we have 2b−2

free coordinates, it follows that the pair (x̃i, x̃j) occurs 2b−2 times if we keep the
output of Fm fixed to (y1, . . . , yb). If we consider the occurrences of (x̃i, x̃j) in
Fl across all possible outputs of Fm we need to multiply 2b−2 by 2b, i.e., the
number of possible ways to fix the output of Fm. Therefore the total number of
occurrences is 2b−2 · 2b = 22b−2.

Suppose now that i and j are columns respectively of Fl and Fm. If all output
coordinates of Fl and Fm are fixed respectively to x and y ∈ F

b
2, then there exists

a single row of A labeled by x and y, since Fl and Fm are orthogonal, and by
Lemma 2 there is a unique path on the coupled de Bruijn graph labelled by (x, y).
We proceed by induction on the number of free coordinates in (x, y) to show that
if we only have two of them fixed, i.e., x̃i and ỹj, then there are exactly 22b−2

paths on the de Bruijn graph that feature x̃i and ỹj in those coordinates. As a
base case, suppose that we have only one free coordinate in the pair of paths, i.e.,
all other 2b − 1 are fixed. Then, since each of the two labelings is bipermutive,
it follows that there are exactly 2 paths labelled by the 2b − 1 fixed coordinates.
For the induction step, suppose that there are 1 ≤ p < 2b free coordinates, and
thus 2p paths labelled by the remaining 2b − p fixed coordinates by induction
hypothesis. If we free an additional coordinate, we need to multiply the number
of paths with p free coordinates by 2, since each of them can be completed in 2
different ways in the additional free coordinate, due to the bipermutivity of the
two rules. Hence, the number of partially labelled paths with p+1 free coordinates
is 2p+1. If we take the particular case where only 2 coordinates i and j are fixed
respectively to x̃i and ỹj (or equivalently, 2b − 2 are free), it follows that there
are 22b−2 paths partially labeled by x̃i and ỹj. �	
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Remark 1. One of the anonymous reviewers correctly remarked that there is a
more compact proof for Lemma 3: for the first case, it suffices to observe that
the coordinate functions fi are all balanced (because of bipermutivity). For the
second case, each pair of b-tuples (x1, . . . , xb), (y1, . . . , yb) occurs exactly once in
each pair of column for two different CA Fl, Fm, because of their orthogonality.
Hence, in each pair i, j in these tuples the same pair of bits occurs the same
number times, since the remaining positions are set freely. We decided however
to keep the proof above since it further demonstrates a property of the coupled de
Bruijn graph associated to a pair of orthogonal CA: namely, that it is strongly
balanced in the sense that any partially labelled path on it occurs the same
number of times.

Putting together Lemma 1 and 3, we have thus obtained the following result
to construct a second-order correlation immune function from a set of k-MOCA:

Theorem 1. Let F1, . . . , Fk : F2b
2 → F

b
2 be a set of k-MOCA of diameter d =

b + 1, and let n = kb. Then, the n-variable function f : Fn
2 → F2 whose support

is defined by the array A in Eq. (5) is correlation immune of order at least 2. In
particular, the Hamming weight of f is N = 22b.

Remark that the case where k = 2 trivially gives the constant function f(x) =
1 for all x ∈ F

n
2 . As a matter of fact, the number of input variables is n = kb = 2b,

which means that the truth table of f is composed of 22b values. At the same
time, the number of runs of the OA corresponding to k = 2 MOCA is also
N = 22b. Therefore, the support of f coincides with its whole truth table. For
this reason, in what follows we will address mainly the case where k = 3.

4 Computational Search Results

To investigate the construction described in the previous section, we performed
an exhaustive search of all k-MOCA for k = 3 and d = 4, 5. In particular, we
discarded d = 3 since there are no families of 3-MOCA in that case. On the
other hand, going for higher values of k and d makes the search space too huge
to be exhaustively visited in a limited time. Following Theorem1, this means
that we addressed the construction of correlation immune functions of n = 9, 12
variables.

We first generated all pairs of OCA (i.e., 2-MOCA) of diameters d = 4, 5
by using the combinatorial algorithm described in [15]. Then, we incrementally
constructed the families of 3-MOCA by exhaustively visiting each of the 22

d−2

bipermutive rules of diameter d, and checking that the corresponding Latin
squares were orthogonal with each of those in the previously generated lists
of OCA. Next, we defined the corresponding Boolean functions of n = 3b vari-
ables using Theorem 1, and computed their Walsh transform to verify their order
of correlation immunity. Table 1 reports the main results of this computational
search experiment. In particular, for each considered diameter (d) the table gives
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the number of 3-MOCA generated (#3-MOCA), the number of variables (n),
the Hamming weight (wH), the correlation immunity order (CI) and the num-
ber of functions achieving that order (#CI), and the best known lower bound
on the Hamming weight for the corresponding order of correlation immunity
(Min(wH)), taken from [2].

Table 1. Classification of correlation immune functions generated by 3-MOCA of
diameter d ∈ {4, 5}.

d #3-MOCA n wH CI #CI MinwH

4 2 9 64 3 2 20

5 36 12 256 3 27 24

5 36 12 256 4 9 24

From the table, one can see that all generated functions actually have a cor-
relation immunity order higher than 2. Indeed, both functions of n = 9 variables
generated from the 3-MOCA of diameter d = 4 have correlation immunity order
3, as well as the majority of functions of n = 12 functions obtained from 3-MOCA
of diameter d = 5. Further, a few functions of n = 12 variables obtained from this
latter case are even 4-th order correlation immune. This empirical observation
suggests that the correlation immunity order proved in Theorem1 may not be a
tight lower bound. Further experiments on larger diameters should be performed
to see if this hypothesis holds, or if there exist functions constructed through our
methods that are effectively second-order correlation immune. Additionally, one
can remark that the Hamming weight of the functions generated through our
method are far from the known best lower bounds, reported in the last column
of Table 1. Indeed, for n = 9 variables we obtain functions of weight 64, while
the best lower bound is 20. For n = 12 variables the gap is even greater, since
the weight of our functions is 256, while the lower bound is 24.

5 Conclusions

In this work, we proposed a method to construct correlation immune Boolean
functions from sets of mutually orthogonal cellular automata. Our main theoret-
ical result shows that the binary array formed by juxtaposing the output tables
of a set of k MOCA is an orthogonal array of strength 2. Hence, on account of
Lemma 1 such an array can be used as the support of a Boolean function with
correlation immunity order at least 2. Our exhaustive search experiments on
the sets of 3-MOCA defined by rules of diameters d = 4, 5 show an interesting
fact, namely that the resulting Boolean functions always have a higher order of
correlation immunity, namely at least 3.

There are several directions along which this work can be extended in future
research. The most natural open question remains whether our Theorem 1 is
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really a tight lower bound on the correlation immunity of the Boolean functions
constructed through k-MOCA. If further experiments show that the lowest cor-
relation immunity order is always at least 3, then it would be interesting to try
refining Lemma 3, and prove that the binary OA obtained from a set of k-MOCA
has always at least strength 3.

A second direction concerns the non-optimal weights of the correlation
immune functions generated by our method. Indeed, one possible approach to
improve on this aspect would be to adopt the so-called expurgation procedure
used in the field of error-correcting codes. In the context of orthogonal arrays,
this basically amounts to the removal of a subset of rows, such that the result-
ing array is still an OA of the same strength (but clearly with a smaller index
λ). The choice of the rows to be removed can be conceived as a combinato-
rial optimization problem, which could be addressed with different optimization
algorithms.
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