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Hydro-morphological processes (HMP, any natural phenomenon contained within the spectrum defined
between debris flows and flash floods) are globally occurring natural hazards which pose great threats to
our society, leading to fatalities and economical losses. For this reason, understanding the dynamics
behind HMPs is needed to aid in hazard and risk assessment. In this work, we take advantage of an
explainable deep learning model to extract global and local interpretations of the HMP occurrences
across the whole Chinese territory. We use a deep neural network architecture and interpret the model
results through the spatial pattern of SHAP values. In doing so, we can understand the model prediction
on a hierarchical basis, looking at how the predictor set controls the overall susceptibility as well as doing
the same at the level of the single mapping unit. Our model accurately predicts HMP occurrences with
AUC values measured in a ten-fold cross-validation ranging between 0.83 and 0.86. This level of predic-
tive performance attests for an excellent prediction skill. The main difference with respect to traditional
statistical tools is that the latter usually lead to a clear interpretation at the expense of high performance,
which is otherwise reached via machine/deep learning solutions, though at the expense of interpretation.
The recent development of explainable AI is the key to combine both strengths. In this work, we explore
this combination in the context of HMP susceptibility modeling. Specifically, we demonstrate the extent
to which one can enter a new level of data-driven interpretation, supporting the decision-making process
behind disaster risk mitigation and prevention actions.
� 2024 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hydro-morphological processes (HMP) define a large spectrum
of phenomena that include debris flows, debris floods, flash floods,
etc., essentially reflecting the dynamics of a mixture of water and
debris moving under the effect of gravity (van den Bout et al.,
2023). Because of their impulsive and stochastic nature, they can
pose a significant threat to most global communities (Kobiyama
and Goerl, 2007). As a result, HMP prediction is one the most emer-
gent topics among researchers working on natural hazards
(Gariano and Guzzetti, 2016). Historically, this has been attempted
and achieved with satisfying results through statistical methods, in
the case of debris flows (Carrara et al., 2008), mud flows (Ozdemir,
2009), earth flows (Can et al., 2005), debris floods (Santangelo
et al., 2011), flash floods (Marchi et al., 2010) and even riverine
floods (Merz et al., 2009). These approaches share some degree
of dissimilarity, but they also have something consistently in com-
mon: the need to understand the given HMP under consideration
and predict its occurrence probability. The term ‘‘understand” here
refers to the inference that statistical solutions offer when explain-
ing the distribution of HMP presences and absences in space (or
g).
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more rarely in space and time, Fang et al., 2023a,b) according to a
set of predictors (Amato et al., 2023). However, statistical models
are not performance-oriented tools, which is the reason why
recent advancements in artificial intelligence have produced valid
alternatives (e.g., Merghadi et al., 2020). In such cases, machine
and deep learning models are employed to maximize the HMP pre-
diction capacity (Kern et al., 2017). However, this happens at the
expense of interpretation. In fact, most of the standard machine
learning models become so complex that it is impossible to under-
stand why a given probability has been assigned to a given map-
ping unit (Korup and Stolle, 2014; Goetz et al., 2015). Only in
recent years, the computer science community has worked out
potential solutions to combine the performance of machine/deep
learning and the interpretation of statistical modelling, giving birth
to the concept of explainable AI (XAI; Gunning, 2017; Samek et al.,
2017). As a result, XAI has started to attract the attention of
researchers even in the field of natural hazards, in the hope of per-
forming predictive tasks with high precision but also understand-
ing the processes underlying the observed data (Li, 2022; Tehrani
et al., 2022).

The probabilistic estimation of locations prone to experience
HMPs is a notion commonly referred to as susceptibility mapping
(Guzzetti et al., 2006) and constitutes an integral part of the hazard
and risk standard definitions (e.g., Fell et al., 2008; Domeneghetti
et al., 2013). In a data-driven context, the susceptibility is usually
quantified using statistical models that either linearly or nonlin-
early relate the effect of a set of covariates to the distribution of
presence/absence hazard data in the study area. The simpler case
belongs to the family of Generalized Linear Models (GLMs), which
still constitute the most common method in the literature
(Reichenbach et al., 2018; Lima et al., 2022). As for more flexible
approaches, these are usually built in the framework of General-
ized Additive Models (GAMs; Brenning, 2008; Di Napoli et al.,
2023). The regression coefficients estimated for each covariate lead
to the model interpretation in both cases. For GLMs, this is done by
examining the sign andmagnitude of a single regression coefficient
(Brenning, 2005; Lombardo and Mai, 2018). In contrast, for GAMs,
this is done over a number of regression coefficients that together
define a function associated with each covariate (Loche et al.,
2022b; Steger et al., 2022). The role of each model component is
then interpreted by reading the sign of the coefficients, with posi-
tive values indicating a marginal (assuming all other covariates
contributions are fixed) increase of the final susceptibility and neg-
ative values indicating the opposite (Shirzadi et al., 2017; Loche
et al., 2022a). Another appealing advantage of statistical-based
models is their capability to capture and display spatial effects
(Song et al., 2020), such as spatially varying coefficients models
(e.g., Geographically Weighted Regression, Fotheringham et al.,
2003) or (e.g., Spatially Varying Regression, Opitz et al., 2022).
However, restricted by the data size and the relationships’ com-
plexity, statistical models are usually computationally challenging
when dealing with big spatial data (Lombardo et al., 2019).

This level of understanding is generally lost in the case of
machine learning tools, where the prediction rule becomes so com-
plex that even visualizing it does not really help understand why
the stable or unstable label was assigned to a given catchment
(e.g., Yeon et al., 2010). In this context, local interpretation meth-
ods such as LIME (Local Interpretable Model-agnostic Explanation;
Ribeiro et al., 2016), and SHAP (SHapley Additive exPlanations,
Lundberg and Lee, 2017), offer the opportunity to flexibly model,
visualize and interpret complex geographical phenomena. Rather
than providing the feature importance for the whole model, local
interpretation methods allow giving detailed feature contributions
at the level of each mapping unit. As a result, the integration of
machine/deep learning tools with locally interpretable techniques
(Collini et al., 2022; Chang et al., 2023; Dahal and Lombardo, 2023)
2

has been explored in a number of geographical studies (Lubo-
Robles et al., 2020; Li, 2022; Ullah et al., 2023). These achievements
open up a new explainable modeling avenue built by computing
and visualizing the SHAP patterns in space, and ultimately by
interpreting individual predictions.

China has suffered severe destructive HMPs in recent years (He
et al., 2018; Liu et al., 2018a; Wang et al., 2020). Therefore, it is
important to use this unfortunate information and understand
which areas may undergo analogous disasters in the years to come.
The Chinese geoscientific community has worked together for this
objective, producing a number of documents where the suscepti-
bility to HMP has been assessed at various scales (Lin et al.,
2022; Wang et al., 2022b). Following the international trends
where machine learning solutions are the preferred architectures
to solve prediction tasks, most of the national efforts have priori-
tized performance (e.g., Zhao et al., 2022a). However, seeking
model performance only highlights susceptible locations, thus
neglecting the required knowledge necessary to understand why
HMP may hit specific areas rather than others. In turn, this implies
that decision-makers may not be sufficiently supported in plan-
ning suitable mitigation actions. For this reason, we test the extent
to which deep learning solutions can be explained by examining
the SHAP results and their spatial pattern across the whole Chinese
territory. Specifically, due to the continental scale of the study area,
we opted for a catchment partition, assigning the presence label if
at least one HMP has been locally recorded in the Chinese HMP cat-
alogue (more details in Wang et al., 2021). To offer an interactive
experience for the reader, we also created a web-GIS platform
where our model results can be queried and used to understand
the potential of explainable AI tools.

The paper is organized as follows: Section 2 presents the HMP
data, the mapping unit and the variables used in this study; Sec-
tion 3 describes the adopted methodology for the susceptibility
model and how to produce interpretable deep learning results.
The analytical protocol we implemented is outlined in Section 4,
from calibration to performance assessment and model explana-
tion. In Section 5, we explore the implications of local interpreta-
tion and the possible improvements to this work. Ultimately, the
conclusions are drawn in Section 6.
2. Materials

2.1. HMP inventory

In this work, we accessed the digital collection of HMP records
put together thanks to the China National Flash Flood Disasters
Prevention and Control Project (Liu et al., 2018b, 2021; Xiong
et al., 2019, 2020). This project is a large-scale national initiative
that has involved many administrations and research centers
across China, to collect, standardize and digitize HMP occurrence
data in the last fifty years. Here, we selected HMP locations
mapped between 1985 and 2015, and only kept the records with
a complete metadata description (x, y, and time in year-month-
date format). We adopted this filter to remove noisy and imprecise
information, leading to 24,956 selected HMPs (Fig. 1).
2.2. Mapping units

The choice of a suitable mapping unit boils down to three crite-
ria. The first links the mapping unit to the process one wants to
model. For instance, landslides are often modeled at the slope unit
scale because half-basins can reflect the morphodynamic response
to slope failures (Carrara et al., 1995; Alvioli et al., 2022). Con-
versely, HMPs can manifest, travel and develop involving whole



Fig. 1. Geomorphological settings of HMPs in China.

Table 1
Overview of environmental variables used in this study.

Variable Description Source

Elv mean of elevation SRTM, https://earthexplorer.usgs.gov/
Slp mean of slope
Prc mean of profile

curvature
Plc mean of plan

curvature
Rr relief ratio HydroSHEDS, https://hydrosheds.org/
Ff form factor
Er elongation ratio
Dd drainage density
Wr wandering ratio
NDVI mean of NDVI GIMMS NDVI, https://data.tpdc.ac.cn/
MaxRain maximum daily

rainfall
Meteorological Data, https://data.cma.cn/

Sa settlement area WSF2015, https://developers.google.com/
earthengine/datasets/
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catchments, thus making these units the most appropriate choice
for flow-type hazards (Lin et al., 2021; Wang et al., 2022b).

The second criterion relates to the computational burden a
given mapping unit choice inevitably leads to. For instance, choos-
ing an extremely small mapping unit compared to the extent of the
study area may lead to data matrices made of several million rows
(or billions of elements overall). Such dimensions are computation-
ally challenging and either may end up limiting the complexity of
the model one may choose or impose the need for dedicated com-
putational facilities (Lombardo et al., 2020). The third criterion
consists of the data aggregation step required for medium to coarse
mapping units. Remote sensing technologies lead to characterize
the earth’s surface on a very fine scale. For instance, global digital
elevation models are now expressed at the scale of a few meters
(Moreira et al., 2004). As a result, from thousand to million pixels
may be contained in a single catchment. Therefore, one usually
needs to summarize the distribution of values expressed at the
pixel scale to a much coarser hierarchical level (e.g., Jacobs et al.,
2020). This is usually done by computing mean and standard devi-
ation values, but one can also opt for a much more detailed quan-
tile description at times (e.g., Camilo et al., 2017).

In this study, we selected a catchment partition, by using the
Hydrological data and maps based on Shuttle Elevation Derivatives
atmultiple Scales (HydroSHEDS database, https://hydrosheds.org/).
This data contains several levels of details, from which we selected
the 12th level. This resulted in a partition made of 73,587 catch-
ments for the whole Chinese territory. The catchment size spans
from 0.1 km2 to 667 km2, with an average area of 130 km2 and a
95% confidence interval of 231 km2.

2.3. Environmental variables

We chose our predictor set to reflect the environmental condi-
tions responsible for the HMP hazard occurrences, listing terrain,
climatic and anthropic influences. As also introduced before, the
native covariate resolution differed among covariate groups, and
was also inconsistent with respect to the catchment partition.
We then adopted the strategy of calculating the mean values per
3

catchment for the following numerical predictors: elevation, slope,
planar and profile curvatures. Stream/catchment features (includ-
ing form factor (Horton, 1932), relief ratio (Schumm, 1956), elon-
gation ratio (Schumm, 1956), and drainage density (Strahler,
1952) are morphometric characteristics representative of the
catchment hydrology, thus they did not require any aggregation
step. As for NDVI (Normalized Difference Vegetation Index), settle-
ment area and rainfall, these required a dual aggregation step, cal-
culating the respective mean values over 30 years and then per
single catchment. Notably, we could have also calculated standard
deviation values but the interpretation of such summary statistics
becomes very difficult. Because in this work we seek a clear expla-
nation of the predictors’ role, we opted to leave out these mea-
sures, the additional information they would introduce to the
model, and the possible performance increase this would imply.
Therefore, we selected a total of 12 variables, whose acronyms
and sources are reported in Table 1.

https://hydrosheds.org/
https://earthexplorer.usgs.gov/
https://hydrosheds.org/
https://data.tpdc.ac.cn/
https://data.cma.cn/
https://developers.google.com/earthengine/datasets/
https://developers.google.com/earthengine/datasets/
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3. Methodology

The modeling protocol we followed includes two steps, one
where a ‘‘black box” neural network is built to produce HMP sus-
ceptibility estimates and a second one where the box gets opened
for interpretation calculating SHAP values and assessing their spa-
tial patterns per predictor. These are illustrated in Fig. 2, through a
general flowchart.
3.1. Susceptibility model

Deep learning models have been proven to be effective in sus-
ceptibility modeling in recent studies (Bui et al., 2020; Panahi
et al., 2021; Zhao et al., 2022a). To demonstrate the explainability
of our model, we opted for an Artificial Neural Networks (ANN;
Yilmaz, 2009), although we stress here that SHAP values (the build-
ing blocks of explainable AI; Baptista et al., 2022) can be computed
even for other data-driven approaches such as random forest (e.g.,
Titti et al., 2022) or support vector machine (e.g., Yu et al., 2012) to
mention a few.

The basic structure of our ANN model consists of nodes and
connections that are organized into three layers, i.e., the input
layer, the hidden layer, and the output layer. Among them, the hid-
den layer is used herein to prevent the ANN from falling into bad
local minima (De Villiers and Barnard, 1993). In this work, we kept
the structure and parameters of the ANN model to be simple, with
12 variables in the input layer, together with 12 hidden layers
made out of fully connected layers of size 64 and an output layer
with a sigmoid activation function (Albawi et al., 2017). We imple-
mented a ReLU non-linear activation and adopted 30% dropout in a
dropout layer, which could be used to prevent overfitting (Li and
Yuan, 2017).

As for the explainable component, we used DeepLIFT, and more
details are provided in Section 3.2.
Fig. 2. Flowchart of the met
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3.1.1. Model calibration
We randomly divided the dataset into the training (70%) and

testing (30%) parts. In each training epoch, 20% of the training data-
set was further randomly selected with replacement to evaluate
the training performance. The model was trained via a weighted
binary cross-entropy loss function, and some of the important
parameters were set as follows:

� optimizer: Adam optimizer
� learning rate: 0.001
� decay steps: 10,000
� decay rate: 0.9
� early stopping option: 500

3.1.2. Model validation
The model performance was evaluated on the testing dataset to

monitor the generalization ability stemming from the calibration.
We recall that the input of a susceptibility model is a vector of
presence/absence data, i.e., an array of zeroes and ones. However,
the output is not discrete but rather continuously expressed in
probabilities. Therefore, to assess the performances of any binary
classifier, the first requirement is always the classification of the
probability spectrum into a sequence of binary information to be
matched against the initial presence/absence observation. This
procedure entails the selection of a probability cutoff and for this
reason, performance metrics of binary classifiers either fall in the
cutoff-dependent or cutoff-independent categories. Here we use
both criteria, using a single confusion matrix for the cutoff-
dependent analyses. A confusion matrix is made of four elements,
reflecting all possible combinations between observed and pre-
dicted presence/absence data (Townsend, 1971). As a result, one
can define True Positives (TP) and Negatives (TN) for presences
and absences that are respectively matched. As for False Positives
(FP) and Negatives (FN), these two correspond to model errors,
for misclassified absences and presences, respectively. Therefore,
it is of utmost importance to select an appropriate probability
hodology in this study.



N. Wang, H. Zhang, A. Dahal et al. Geoscience Frontiers 15 (2024) 101800
cutoff, as a wrong choice can drastically change the confusion
matrix. For balanced datasets (equal number of presence absences)
a straightforward choice is to set the cutoff at 0.5 because the
resulting probability distributions are typically bell-shaped. How-
ever, in case of unbalanced data, the resulting probability distribu-
tions become heavily skewed, with the predominant class pulling
the probability spectrum (Ramyachitra and Manikandan, 2014).
The latter case is the typical situation one may find in HMP data-
sets (and luckily for most natural hazards) because the number
of occurrences is much lower than the number of absences
(Frattini et al., 2010). To address this issue, we opted for a two-
stepped approach. The first step is actually part of the model archi-
tecture where we used a class-weight binary cross-entropy crite-
rion (Aljohani et al., 2021). This criterion allows one to add a
penalty to the model’s error measured on the class of interest. In
our dataset, the number of absences is approximately seven times
the number of presences. Therefore, the model would naturally
learn to recognize zeroes (absences) better than ones (presences).
However, this issue can be addressed by increasing the weight of
the error in the classification of the unstable catchments (by a fac-
tor of seven in our case), effectively minimizing the unbalance in
the data proportion. In the second step, we a posteriori used a stan-
dard procedure based on the Youden Index to select the best prob-
ability cutoff (Fluss et al., 2005). We recall here that the Youden
Index can be calculated as Eq. (1):

J ¼ TP
TP þ FN

þ TN
TN þ FP

� 1 ð1Þ

However, even if the retrieved cutoff is the best numerical solution,
it still remains only one of the possible solutions. For this reason, we
complemented this cutoff-dependent assessment together with
Receiver Operating Characteristic (ROC) curves and their integral
(AUC, Area Under the Curve ROC) for the cutoff-independent analy-
ses. These curves are generated by plotting pairs of FP/(FP + TN) and
TP/(TP + FN) computed for a large number of possible probability
cutoffs. As a result, the function linking all pairs sorted by cutoff
can be used to calculate its integral, whose resulting value (AUC)
indicates how the model performed irrespectively of any specific
cutoff. These metrics have then also been assessed over a bootstrap-
ping procedure that randomly selected a 10% subset from the total
for further testing.
3.2. Explainable model

The most important goal of explainable deep learning models is
to demonstrate how the predictions are reached, highlighting the
role (Li, 2022). SHapley Additive exPlanations (SHAP), which orig-
inated from the game theory, can be used to quantify the contribu-
tion of each predictor to the model (Strumbelj and Kononenko,
Fig. 3. An illustration demonstrating the SHAP-explained deep
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2014) (Fig. 3). Therefore, we computed SHAP values (Lundberg
and Lee, 2017b) for each catchment partitioning the Chinese land-
scape, allowing to summarize predictors’ contributions to the glo-
bal model and also their relevance at the scale of a single mapping
unit. We recall here that SHAP values can be estimated using a
number of approaches ranging from Kernel SHAP (e.g., Roshan
and Zafar, 2022), Tree SHAP (e.g., Wang et al., 2022a), and Deep
SHAP (e.g., Singh et al., 2020). Among these, the latter consists of
a high-speed approximation algorithm for SHAP values, whose
estimates are reached through a DeepLIFT (Deep Learning Impor-
tant FeaTures) approach (Panati et al., 2022). Specifically, DeepLIFT
is a method used for decomposing the output of a neural network
on a specific input by back-propagating the contributions of all
neurons in the network to each feature of the input Shrikumar
et al., 2017). SHAP values’ main strength is to generate locally addi-
tive feature attribution via the Eqs. (2) and (3).
byi ¼ shap0 þ shap X1ið Þ þ shap X2ið Þ þ � � � þ shap Xji
� � ð2Þ
shap0 ¼ E byi
� �

(3) where byi is the model prediction for the catchment
i, shap0 is the mean value of predictions cross all catchments, and
shap Xji

� �
is the SHAP values of the jth variable for the catchment.

In this way, the SHAP values start from the initial intercept value
shap0, which is the mean value of all predictions, and then add
the least contributed term shap X1ið Þ, followed by the second least
shap X2ið Þ, and so on. Finally, the absolute SHAP value reflects each
variable’s importance for the final prediction (Molnar, 2020).

In this work, we implemented SHAP in open source python
package (‘‘shap”).
4. Results

In this section, we will initially look into an overall assessment
of model performance, and later dive into global and local interpre-
tations of the established model. As part of the last procedure, we
will also present a step that even other recent explainable AI con-
tributions in natural hazard research have not yet explored
(Dikshit and Pradhan, 2021; Zhou et al., 2022). This corresponds
to the ability to generate maps of SHAP values for each predictor
under consideration and plot them according to the spatial varia-
tion each SHAP map presents. Notably, this is done for each catch-
ment partitioning the study area, assigning a colorbar to each SHAP
map and allowing for further interpretation. The resulting geo-
graphic overview offers a unique perspective on variable contribu-
tions and we believe this to be an important element that future
explainable AI solutions should be equipped with. This section will
be concluded with the estimated susceptibility map.
learning models (modified from Lundberg and Lee, 2017a).
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4.1. Model performance

Our neural network architecture produced performance in the
range of excellent results according to the classification system
proposed by (Hosmer et al., 2013). This is shown in Fig. 4a, where
this panel contains both the ROC curves generated from the ran-
dom cross validation procedure as well as the AUC values esti-
mated at each bootstrap replicate. The latter is summarized with
a boxplot where the median AUC is 0.85, and the two extremes
of the AUC distribution are confined between 0.83 and 0.86. As
described in Section 3.1.2, this is a perspective independent of
the probability cutoff one may opt for to translate susceptibility
values back into presence/absence classes. To complement this
assessment, we also report the probability density function of the
susceptibility spectrum, together with the estimated Youden Index
(Y = 0.52) in Fig. 4b. This cutoff leads to the confusion matrix and
confusion maps (Nicu et al., 2023) shown in Fig. 4c. There, we sum-
marize the frequency distribution for each class of the confusion
matrix and plot the corresponding geographic distribution expres-
sion across China. We recall here that this confusion matrix relates
to the predictive performance assessment. What we observe is that
the classification generally reflects the original distribution of pres-
ence/absence HMP data, with the dominant class represented by
TN. However, the high number of TP (7347 out of 8821 = 83% accu-
racy) and low number of FN (the complementary 17%) indicate the
model’s ability to recognize susceptible catchments. In turn, this
implies that the FP catchments (15,862 out of 64,768 = 24%) high-
lighted in the confusion map may surely be the result of a model
error. But, they may also represent locations that the model actu-
ally recognizes to likely host HMPs in the future. Answering the
question as to whether these FP may be due to misclassification
or if they may actually be susceptible but have not yet experienced
HMP occurrence is not straightforward. However, examining FP
actually constitutes the reason behind susceptibility modeling,
and the accuracy we observed in recognizing presence data war-
rants trusting the model prediction. Notably, these are mostly
located in the central and southeast sectors of China.
Fig. 4. The ROC curves (a) and confusio
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4.2. Model interpretation

4.2.1. Global interpretation
The most traditional way to understand how a machine-

learning models work is to list the variable importance ranking
(e.g., Band et al., 2020; Hosseini et al., 2020; Zhao et al., 2022b).
Here, we also produce the same graphics in Fig. 5 but use SHAP val-
ues to sort each predictor according to the impact it may have over
the final susceptibility. Among all the variables we considered,
NDVI, settlement area, maximum daily rainfall, elevation, and
slope steepness appear to be the dominating ones. One of the inter-
esting aspects of using SHAP values instead of traditional variable
importance is that SHAP is not bound to positive values, but it
ranges from negative to positive ones. The way to read SHAP values
essentially matches the interpretation of regression coefficients in
statistical models. The magnitude of the SHAP value indicates the
influence on the final susceptibility whereas the sign indicates
whether the given predictor contributes to increasing or decreas-
ing the probability estimates. For instance, most of the predictors
have a positive contribution to the pattern of relative probabilities
in space. This is not the case for the elongation rate (Er) of the
catchment as well as the planar (Plc) and profile (Prc) curvatures.

An additional solution to assess variable contribution in tradi-
tional machine learning consists of response plots (e.g., Park,
2015). Here we also produce an analogous illustration but again
as a function of SHAP values. Specifically, we plot the SHAP esti-
mates against the normalized variables’ domain for each catch-
ment and for each predictor under consideration. This is shown
in Fig. 6, where the resulting scatterplots present the marginal
effects (assuming all other covariate effects to be fixed) adding
another dimension to the static view offered by the variable impor-
tance. Here we can distinguish portions of each variable domain
and how they individually contribute to increasing or decreasing
the susceptibility. For instance, NDVI, maximum daily rainfall
(MaxRain), and form factor (Ff) revealed a weak positive effect
on the HMP occurrences, whereas the elongation ratio showed a
slightly negative association with HMPs.
n map (b) for the validation model.



Fig. 5. Variable importance expressed in terms of SHAP values.

Fig. 7. The SHAP value distribution for each variable against the susceptibility. Each
dot corresponding to a specific catchment, the color map showed the final
susceptibility.
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This plot essentially corresponds to the limit of model explain-
ability of traditional machine learning studies. The next session is
dedicated to further exploring predictors’ effects and understand-
ing their contribution to the HMP susceptibility model.
4.2.2. Local interpretation
The first step to deepen our understanding of the model results

focuses on moving from global to individual catchment predic-
tions. Fig. 7 illustrates an intermediate level between the two
options by plotting SHAP values for each normalized predictor
domain. This further adds another exploratory dimension by plot-
Fig. 6. Scatter plots for each va
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ting the actual susceptibility estimate for each catchment in a vio-
lin plot. In such a way, one can quickly visualize whether a given
predictor behaves linearly or not. For instance, the elongation ratio
shows high susceptibility values on the left side of the violin plot,
transitioning to low probabilities at greater elongation ratio values.
Conversely, elevation is initially associated with high susceptibil-
riable used in the model.



Fig. 9. The variation of the probability estimates for all catchments partitioning the
study area.
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ity, then moves to non-susceptible catchments and transitions to
the right side of the violin to high susceptibility once more.

Fig. 8 is the first level of localized interpretation of the model
results. This plot is built by showing the base and final probabilities
for two random catchments, highlighting how each predictor has
contributed to the final susceptibility estimate. We recall here that
the base probability value is analogous to a model intercept for a
statistical model and its definition depends on the proportion of
presence/absence data across the whole study area (Frattini
et al., 2010; Petschko et al., 2014). For instance, Fig. 8a and 8b both
start from the same probability value of 0.32 and respectively
reach a final susceptibility of 0.21 and 0.52. The magnitude and
sign of each predictor contributing to this value change are color
coded in the figure, with the actual numerical variation written
to further improve readability. It is important to stress that the
same variable does not bring the same level of change to the two
catchments. For instance, elongation ratio (Er) has a much larger
contribution in Fig. 8a than it has in Fig. 8b. This is a characteristic
of SHAP values, as they essentially visualize the combinations of
predictor weight and relative predictor value for each individual
mapping unit. As explanatory as this illustration may be, it is diffi-
cult to use this level of detail for each catchment.

For this reason, another level of model exploration is offered by
computing the combination of each predictor contribution and
plotting the ranked probability from the base value to the final
one, for each catchment. This provides an alternative option for
end users to look into how the susceptibility varies, and for the
whole Chinese HMP susceptibility, this can be visualized in
Fig. 9. Implications of the information conveyed will be presented
in Section 5.

So far, this level of model explainability was already presented
in few recent articles, featuring mostly susceptibility studies (e.g.,
Pradhan et al., 2023a, 2023b; Sun et al., 2023; Zhang et al., 2023)
and even some interesting InSAR deformation experiments (Al-
Najjar et al., 2023). However, what they all missed is translating
the information offered by the SHAP values across the geographic
space, which is what we will present in the next section.
4.3. Geographic view of predictors’ effects

As mentioned above, the strength of using SHAP seen so far for
model explainability can be taken a step further. Here we propose
to do so by looking into the spatial patterns of SHAP values for each
predictor. Such a procedure can offer the added value of hierarchi-
cally understanding not only the variable at the global and individ-
Fig. 8. Examples of catchments that were detect
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ual catchment level but also exploring relative contributions and
how they vary across the Chinese landscape. This is shown in
Fig. 10. There, with the exception of the wandering ratio, form fac-
tor, elongation ratio, and relief ratio, all other variables’ impacts on
susceptibility showed distinctive spatial patterns. For instance, this
is evident in the positive influence of elevation across the Yungui
Plateau and Hexi Corridor (Fig. 10a). In the most mountainous
areas, the slope exhibited a positive impact on HMPs, and in the
plain areas, it showed a negative impact (Fig. 10b). As for the max-
imum daily rainfall, a positive contribution can be observed in
eastern China (Fig. 10j), and a similar pattern can also be detected
in the NDVI (Fig. 10k).

The combination of all the exploratory tools we present here is
what we believe can become a new standard for the future gener-
ation of landslide susceptibility studies.
4.4. Susceptibility mapping

Ultimately, we summarized the resulting susceptibility map for
HMPs across the entire Chinese territory in Fig. 11. There, we
reclassified the susceptibility spectrum, binning the probability
ed as the negative (a) and positive (b) ones.



Fig. 10. Spatial effects of variables to HMPs detected via the SHAP values, where the pink colors indicate positive contributions and the blue colors represent negative
contributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The final mean susceptibility map of HMPs in China.
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values at a decile interval. In general, the areas that present a
higher susceptibility are prone to be in southeast China, whereas
the low values tend to show in the northwest. However, it is diffi-
cult to recognize details in such a vast landscape. For this reason,
we also plotted four static zooms, offering a closer view of the sus-
ceptibility patterns and the catchment sizes/shapes. Nevertheless,
even zooming into the map does not offer a clear view and explain-
ability of the susceptibility estimates. Therefore, we built a webGIS
application where each catchment can be queried and the relative
SHAP values interactively queried (https://arcg.is/0eGGT8).
5. Discussions

5.1. From global to local model interpretations

Standard approaches to understanding why machine learning
models return certain outputs are generally based on variable
importance ranks. In this contribution, we stress how important
it is to extend this traditional view to welcome the SHAP-
oriented model explanation instead. The main reason behind this
has to do with the static view that variable importance plots offer.
Conversely, SHAP-based graphics expand toward variable interac-
tion processes, adding another dimension to the explainability
potential of machine learning solutions. An intuitive explanation
of how SHAP values work can be thought of comparing these
parameters to the regression coefficients typical of statistical mod-
els. Traditionally, one interprets the outcome of a statistical model
according to the sign and magnitude of the regression coefficients
estimated for each corresponding covariate. However, this is usu-
ally represented as a single linear values or nonlinear functions
of values for the whole model under consideration. A machine/
deep learning model does not estimate regression coefficients
but rather multiple weights associated to the range of each predic-
tor. However, SHAP values can be thought of as parameters con-
veying the role of each predictor onto the final susceptibility.
Main difference with respect to a statistical model is that SHAP val-
ues are obtained by solving the predictive equation for each map-
ping unit under consideration. Therefore, rather than obtaining a
general overview of each predictors’ contribution, SHAP values
present how each predictor have modified the HMP occurrence
probability for each catchment. Therefore, the level of explanation
one can be obtained from using SHAPs is arguably even more than
what regression coefficients or weight can offer, in traditional sta-
tistical or machine learning applications, respectively.

This becomes clear in Fig. 9, where a closer inspection high-
lights a cluster of catchments with final susceptibility close to 1.
These catchments all start from the same starting point as all
others (susceptibility = 0.32), but their predicted value stays essen-
tially the same because of the Dd influence. We recall here that Dd
stands for drainage density, whose dominant effect can be geomor-
phologically justified. As for how this parameter specifically con-
tributes on an individual catchment basis, one can then dive into
graphics such as Fig. 8, where the second example purposely
reports a catchment where the Dd is responsible for a marginal
increase in the final susceptibility. Analogous considerations arise
for the other dominant factors, including NDVI, maximum daily
rainfall, slope, and settlement area. These results well align with
other HMP studies (Ragettli et al., 2017; Zhao et al., 2018). How-
ever, as informative as these explainable components may be, they
still only offer a non-spatial view of the model output. Therefore, to
further enrich the model interpretation, here we demonstrate an
additional use of SHAP values. In fact, being SHAPs calculated for
individual predictors and for individual mapping units, one can
easily translate their combination in map form (see Fig. 10). As a
result, one can visualize and query a unique spatial pattern for each
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predictor and assess their effect and consistency/heterogeneity
across the geographic space. For instance, the influence of the NDVI
was previously shown to be among the most important HMP pre-
dictors. In Fig. 10k though, the spatial dimension is added to this
consideration, showing how its model contribution varies across
the landscape, with the largest positive contribution depicted
across South China, transitioning to smaller SHAP values in Central
and Northeast China. Even such a view though is nothing but a sta-
tic image of the predictors’ contribution. With this idea in mind, we
decided to prompt the reviewers in thinking about the potential of
spatially querying SHAP values, especially, if this can be done
through webGIS applications. At this link https://arcg.is/0eGGT8,
we provided an interactive cloud-based platform where we stored
all our modeling results. There, each catchment susceptibility can
be visualized together with each predictor SHAP value responsible
for the local HMP probability. We believe that such a way of sum-
marizing model results can become a future standard for suscepti-
bility modeling, in view of maximizing the opportunities of the
digital era for risk assessment. In fact, the webGIS application not
only reports model results but also offers the ability to bring infor-
mation on exposure together. To do so, we used data accessed at
this link, https://risk.preventionweb.net/ where information on
population density and land economical value is reported at the
global scale with a 1 km resolution along the coastlines and
5 km resolution inland (Koks et al., 2019). The exposure informa-
tion complements the susceptibility, allowing for risk-oriented
considerations. This is shown in Fig. 12, where we plot the sum-
mary of the population and land value as a function of the pre-
dicted HMP probability. The catchments labeled as susceptible
that contextually report high population and/or high financial
value would represent those that may need further attention for
tailored risk mitigation strategies.

5.2. Supporting and opposing arguments

For a long time, despite the higher performance offered by
machine learning solutions, statistical models have still repre-
sented the preferred alternative for researchers equally interested
in comprehending and interpreting why a given data-driven model
has produced a certain prediction. Recent advancements in SHAP-
explained deep learning modeling have the potential to unify these
two fundamental aspects within the very same tool. This is partic-
ularly relevant in the context of spatial big data, where machine
learning ensures performance, efficiency, and computational
speed. For this reason, here we tried to push the boundaries of cur-
rent explainable AI applications on HMP prediction, testing it over
a very large dataset reflecting a continental scale.

The performance and level of interpretation provided, support
the choice of this approach. As part of the explainability character-
istics, we particularly stress the relevance of converting SHAP val-
ues into map form, here called SHAP maps. What is also important
to stress is that the calculation of SHAP values is not limited to
Neural Network architectures but rather SHAP metrics can be com-
puted for any machine/deep learning model. Therefore, the inter-
pretability of the whole spectrum of such models has recently
received quite a substantial boost, especially if one would explore
SHAP values both non-spatially, as per previous literature, or in a
spatial manner, as per the current contribution. The latter resulting
geographic view allows for considerations of variable contributions
and potential interactions in a straightforward way. This could
support decision-making processes, especially if beyond the static
map perspective, SHAP values are interactively queried in webGIS
applications. The webGIS app we built is meant to showcase these
aspects together with considerations of potential HMP risk. In fact,
one can dynamically overlay susceptibility estimates, their SHAP
corresponding contributors, and exposure information to lay down

https://arcg.is/0eGGT8
https://arcg.is/0eGGT8
https://risk.preventionweb.net/


Fig. 12. Summary plot of log values of (a) population and (b) land value vs. the HMP
probability.
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a comprehensive platform for territorial management and civil
protection agencies.

As for the weaknesses behind the experiment we present here,
it should be stressed that the temporal component is still missing.
Therefore, even putting together HMP susceptibility and exposure
data, these are not enough to fully characterize the expected risk
but rather constitute an approximation of it. Conversely, the sus-
ceptibility model should be extended toward its space–time coun-
terpart (Lombardo et al., 2020; Steger et al., 2022). Such a shift
would ensure two possible applications of explainable AI, one
where the prediction is performed as a nowcasting/forecasting ser-
vice for specific events (Collini et al., 2022), and one where its
potential can be tapped in for long term scenario-building based
on the return time of the HMP trigger.

Another important element to be discussed is the generalization
of the current model. Machine and deep learning models tend to
become overly specific, limiting the ability to generalize their
results in areas other than the ones they have been trained for.
Here the scale of our model covers the whole Chinese mainland,
demonstrating already the flexibility of our model over such a large
and diverse territory. Ideally, we would have tested our model for
generalization purposes even in neighboring countries. However,
the response variable and the predictor set we collected here are
China-specific and therefore testing model transferability was not
11
possible at this stage. In the future, we plan to use more generic
predictors, potentially computing them from global data and cloud
platforms such as Google Earth Engine (Ahmed et al., 2023), thus
ensuring that generalization test could be included.

Ultimately, here we would like to stress once more the ele-
ments of innovation presented in this manuscript with respect to
the available literature. The first novelty resides in the exploration
of SHAP values in their spatial form. So far, geoscientists have pre-
sented SHAP values as means to explain machine/deep learning
architectures only by presenting them into static plots such as
scatter plots or bar plots and so on. In this work, we highlight
the added value of translating SHAP values into maps. The second
element of novelty corresponds to the scale at which we applied
our explainable AI. Machine and deep learning models often
become overly specific of the area they have been applied to, some-
thing that has limited their applicability mostly to catchment or
regional susceptibility models. Here we take the opportunity to
test a similar modeling architecture but extending the spatial
application to the continental scale corresponding to the Chinese
territory. The last main innovative element we present has to do
with the interactive accessibility of our results to the audience.
In fact, most of the illustrations nowadays are still confined to sta-
tic figures presented as part of scientific article. Here, we created a
Web Application where our modeling results are presented, allow-
ing for anyone interested to perform spatial queries even on indi-
vidual catchments, thus obtaining information on susceptibility
estimates, SHAP plots, population at risk and total land economic
worth under potential threat. We conclude here by mentioning
that risk oriented considerations are also a very minor component
of the geoscientific literature and a unified web platform where all
the results are presented together can be hardly found in the rele-
vant literature.

The future challenges we foresee mainly correspond to the
extension of the present protocol beyond susceptibility studies.
In fact, susceptibility only corresponds to one of the three require-
ments of the hazard definition (Guzzetti et al., 1999). The other
requirements correspond to the temporal prediction of the HMP
under consideration as well as its intensity. For floods, the latter
corresponds to water height or peak flow (Schumann et al.,
2007), whereas for landslides this may corresponds to velocity
(He et al., 2023) or planimetric area (Bryce et al., 2022). Therefore,
future developments may involve using a regression framework
rather than a classification one, using one of the above intensity
parameters as the response variable of the deep learning routine.
Interestingly, such parameters usually have a very heavy-tailed
structure, therefore requiring for specific solutions in the direction
of extreme value theory applications (Yadav et al., 2022) and their
implementation as part of deep learning routines (Cisneros et al.,
2023). Aside from the regression framework, a natural extension
would lead to a space–time deep-learning model rather than a
pure spatial application.
6. Conclusion

We tested a SHAP-explained deep learning architecture across
the whole Chinese territory. Our work showcases a hierarchical
overview of predictors’ contributions to the final susceptibility,
offering both global to local perspectives. The combination of a
suite of non-geographic SHAP summaries already represents a step
forward compared to traditional alternatives, not only in machine
learning but also for the more explainable statistical solutions. This
takes another explainable dimension when predictors’ effects are
examined over the geographic space for individual catchments,
something we exemplified in a dedicated webGIS application (ac-
cessible at https://arcg.is/0eGGT8) to allow for user interactions.

https://arcg.is/0eGGT8
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There, we report not only the model results (final HMP susceptibil-
ity and SHAP values) but also relevant information on exposure.
We believe this modeling approach will constitute the future stan-
dard for data-driven solutions not only for HMP but for any natural
hazard predictive model. As pointed out in the discussions, we
believe risk assessments will be possible once the temporal dimen-
sion will be added to the model, something we are already working
on.

To promote analogous analyses, we refer the readers to Dahal
and Lombardo (2023), where the core code upon which this contri-
bution is based is shared with the public.
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