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The literature on landslide susceptibility is rich with examples that span a wide range of topics. However,
the component that pertains to the extension of the susceptibility framework toward space–time mod-
eling is largely unexplored. This statement holds true, particularly in the context of landslide risk, where
few scientific contributions investigate risk dynamics in space and time. This manuscript proposes a
modeling protocol where a dynamic landslide susceptibility is obtained via a binomial Generalized
Additive Model whose inventories span nine years (from 2013 to 2021). For the analyses, the data cube
is organized with a mapping unit consisting of 26,333 slope units repeated over an annual temporal unit,
resulting in a total of 236,997 units. This phase already includes several interesting modeling experi-
ments that have rarely appeared in the landslide literature (e.g., variable interaction plots). However,
the main innovative effort is in the subsequent phase of the protocol we propose, as we used climate pro-
jections of the main trigger (rainfall) to obtain future estimates of yearly susceptibility patterns. These
estimates are then combined with projections of urban settlements and associated populations to create
a dynamic risk model, assuming vulnerability = 1. Overall, this manuscript presents a unique example of
such a modeling routine and offers a potential standard for administrations to make informed decisions
regarding future urban development.
� 2023 China University of Geosciences (Beijing) and Peking University. Published by Elsevier B.V. on

behalf of China University of Geosciences (Beijing). This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Historical advancements in landslide susceptibility modeling
(through data-driven solutions) explored a number of themes,
spanning from the most suitable mapping unit on to base the anal-
yses (e.g., Van Den Eeckhaut et al., 2009; Schl€ogel et al., 2018), to
the most suitable predictor set (e.g., Budimir et al., 2015; Ozturk
et al., 2021), passing from experiments on the most appropriate
sampling strategies (Yilmaz, 2010; Conoscenti et al., 2016) to take
and encompassing solutions to remove potential biases due to
incomplete inventories (Stegeret al., 2016; Lima et al., 2021).

As for the most recent trends in landslide susceptibility model-
ing, most contributions focused on the choice of modeling archi-
tectures able to ensure the highest predictive performance
(Reichenbach et al., 2018; Lima et al., 2022). In this overall scenar-
io, very isolated efforts have been put forward to move toward
space–time solutions (Samia et al., 2017; Lombardo et al., 2020).
These are models whose structure allows for modeling the distri-
bution of landslide presence/absence instances simultaneously
across the geographic space and across time. The way they usually
work is to incorporate explanatory variables whose spatiotemporal
variation reflects changes in the distribution of multi-temporal
landslide occurrences. This can be done explicitly (e.g., using rain-
fall or vegetation parameters; Wang et al., 2022a; Mondini et al.,
2023) or at the latent level (Lombardo et al., 2018, Lombardo
et al., 2019). Some exceptions to this rule do exist and they repre-
sent very innovative examples where the typical structure of
space–time data-driven solutions is used to mimic landslide early
warning systems (e.g., Steger et al., 2022; Nocentini et al., 2023).

However, even if recent studies are pointing towards an
increasing interest in dynamic landslide predictions, these are
mostly confined to the occurrence probability case (Segoni et al.,
2018; Lombardo and Tanyas, 2020). In other words, the number
of contributions beyond the susceptibility context, even including
space–time cases, is a minority (Tyagi et al., 2022). This is an issue
that certainly exists for landslide hazard assessment contributions
(see, Van Westen et al., 2006), and becomes even more evident in
g).
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the case of landslide risk research (see, Corominas et al., 2014).
Focusing on risk aspects, what stands out is that most of the con-
tributions on landslide risk are site-specific (Dai et al., 2002;
Glade et al., 2005) and mainly involve pure spatial assessments
(Lateltin et al., 2005; Abella and Van Westen, 2007). Conversely,
hardly any examples can be found where the landslide risk
assumes space–time connotations (Remondo et al., 2008; Rossi
et al., 2019).

The main reasons behind such discrepancies are the require-
ment of such type of assessment. For instance, risk assessment
requires data on the distribution of exposure (Pellicani et al.,
2014; Emberson et al., 2020) and vulnerability (Galli and
Guzzetti, 2007; Kaynia et al., 2008). The former can still be found
to some extent, with products that report building, infrastructure,
and population density distributions. However, vulnerability infor-
mation (Ahmed, 2021; Peduto et al., 2017) and specifically on vul-
nerability curves estimated for specific infrastructures (Quan Luna
et al., 2011; Uzielli et al., 2015) are hardly available, especially
when the scale of the analyses involves large spatiotemporal
domains (Pascale et al., 2010; Luo et al., 2023). And yet, this consti-
tutes the most relevant information for decision-makers because it
is precisely the combination of exposure and vulnerability that
controls the potential losses due to a given landslide occurrence
(Petley, 2012; Papathoma-K€ohle et al., 2015).

In this context, we devised our research question and the exper-
imental design presented in this contribution. Specifically, due to
the prohibitive task behind the acquisition of vulnerability data
over large regions and over time, we hypothesize that if a landslide
occurs, it would damage irreparably any structure in its path. This
is certainly a strong assumption but it would allow to produce
landslide risk estimates if building and population data are com-
bined with a susceptibility map. To this idea, we add a further
dimension by framing the proposed routine in a space–time mod-
eling context. We do so thanks to a rich landslide database col-
lected over a decade in the northeastern sector of Chongqing,
China. There, a systematic landslide mapping protocol has been
set up over the years due to historical disastrous events (e.g.,
Zhao et al., 2018), equipping local authorities and academic institu-
tions with complete multi-temporal inventories. Due to analogous
reasons, the area is also equipped with a dense rain gauge network
(Chen et al., 2019), making it an ideal case for testing space–time
modeling techniques. There, we will calibrate and validate a
space–time susceptibility model with the intent of using it as a
base for future simulations, which we will then combine with
urban and population projections to obtain future landslide risk
scenarios.
2. Study area

2.1. Geography and geological condition

The study site is located in the southeast of Chongqing, China,
and extends over an area of �34,000 km2 (Fig. 1a). It is located
on the northeastern edge of the Sichuan Basin, and as a result of
an ongoing tectonic compression started in the late Mesozoic, the
topography features numerous folds and high peaks, low hills,
and incised valleys. The mountain ranges are oriented either NE–
SW or E–W, with mountain elevations between 800 and 2700 m,
while valleys occupy a much lower position in the topographic
profile, with elevations ranging from 300 to 1000 m (Fig. 1b).
Due to the complex nature of the terrain, slopes cover a wide range
of 0-60�, mostly centered at 25� (Fig. 1c). The geomorphology is
structurally controlled, featuring anticlinal mountains and syncli-
nal valleys, with trends being roughly consistent with the direc-
tions of tectonic lineaments. The Yangtze River, the longest river
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in Asia, flows from west to east in the study area. Such complex
terrain is prone to widespread slopes failures, a characteristic that
has unfortunately led to proportional losses. As a result, the study
area has been previously investigated in a number of contributions
dedicated to assess the susceptibility to slope failures. These stud-
ies have covered the generic extent of the region (Deliang Sun
et al., 2023; Liu et al., 2023), and they have also been tailored to
specific counties such as Fengjie (Guo et al., 2020; Zhang et al.,
2023), Yunyang (Guo et al., 2019; Zhang et al., 2022a, Zhang
et al., 2022b), Wanzhou (Xiao et al., 2020; Wang et al., 2022c;
Guo et al., 2023), Wushan (Li et al., 2022a, Li et al., 2022b; Wei
et al., 2023), Wuxi (Liao et al., 2022; Sun et al., 2023).

2.2. Rainfall condition

The region is exposed to a subtropical monsoon climate, with
four distinct seasons and high precipitation discharges. Thousands
of rain gauges have been installed in the last decade to monitor the
rainy weather and characterize the monsoon-influenced humid
subtropical climate. These are all new-generation weather stations,
automatically recording and airing the digital transcripts to the
data center daily. The very same data was shared from the meteo-
rological agency of Chongqing to support this research, covering
the period from January 1st 2013 to December 31st 2021, and cor-
responding to the precipitation signal captured across 729 rain
gauges (Fig. 1d).

2.3. Landslide inventory

Chongqing widely hosts landslide-prone steep terrains, espe-
cially in the northeast sector, where landslides tend to concentrate
along the Yangtze River and some of its tributaries, especially in
the regions of Wanzhou, Yunyang, and Wushan. The genesis of
the failure mechanism in the area has been documented in several
scientific contributions, highlighting the primary role of seasonal,
intense, and prolonged rainfall events (see, Zhang et al., 2023), fol-
lowed by the fluctuation of reservoir water level and anthropic
interventions involving slope cuts. From 2013 to 2021, the number
of landslides with detailed records (location and date) in the study
area reached a total number of 2978, out of which, 2142 landslides
occurred just in 2014 (Fig. 1e). These account for 72 % of the total
failures over the 9 examined years, and were triggered by an
extreme storm (Li et al., 2022a, Li et al., 2022b). The vast majority
of landslides manifest as shallow translational slides. As for the
materials the failures mostly involve, these correspond to sand-
stone, mudstone, and intercalations of the latter into the first
(Wang et al., 2019).
3. Material and methods

3.1. Mapping and temporal units

To predict the occurrence of landslides in an area, it is necessary
to first select a suitable mapping unit. Among the units explored in
previous studies, four main types can be found: geomorphological
units (Meijerink, 1988; Seijmonsbergen, 2013), unique condition
units (Calcaterra et al., 2010; Titti et al., 2021), slope units
(Carrara et al., 1991), and grid-cells (Fang et al., 2020; Lima et al.,
2021). Slope units have recently gained more and more attention,
as they represent the morpho-dynamic response of slopes in which
the landslides initiated. As a result, specifically for data-driven
models, they offer a partition for which any landslide activation
should be mostly independent (or very weakly dependent) from
a potential failure occurring in an adjacent slope. For this reason,
the ‘‘slope unit” (SU) is selected here to be the designated mapping



Fig. 1. Panel (a) locates the study site concerning the Chinese territory; Panel (b) presents an overview of the terrain; Panel (c) graphically shows the summary statistics of
the slope steepness; Panel (d) geographically plots the distribution density of the rain gauges; Panel (e) represents the multi-temporal landslide inventories; Panels (f) and (g)
show the slope unit partition and a dedicated zoom, respectively.
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unit in this study (Alvioli et al., 2016). In short, SU can be mapped
between drainage and divide lines. Their calculation relies on the
same foundation behind catchment delineation (Jenson and
Domingue, 1988) because they theoretically correspond to half-
basins (Carrara, 1988). Notably, the study area includes both rough
terrain and near-flat areas in the form of plains, tablelands, and
water bodies. The latter usually correspond to trivial areas where
no landslide can physically take place. The latest version of the
software r.slopeunits by (Alvioli et al., 2016) allows one to remove
flat areas from the SU generation, excluding them based on the
results pass by the r.geomorphon module (Jasiewicz and
Stepinski, 2013). After a number of sensitivity (unreported) tests,
the final number of SU was 26,333, ranging in size from 2.04�104
m2 to 1.5�107 m2 (l = 1.25�106 m2, r = 1.23�106 m2). This corre-
sponds to an average density of one SU approximately every
1.3 km2 (Fig. 1f and 1 g).

As for how we partitioned the temporal dimension, we opted
for a yearly unit (YU). Therefore, the landslide inventory was
divided into nine consecutive YUs. The combination of the spatial
and temporal dimensions eventually led to a total of 236,997 SUs
(26,333 SUs multiplied by 9 YUs).

3.2. Covariates

The covariates set includes environmental characteristics
related to geology, geomorphology, and meteorology to cover dif-
ferent aspects related to the genesis of landslides. Some of them
featured properties that remain essentially constant within the
time scale of the analyses. For instance, lithological classes can
be considered time-invariant. Analogously, terrain characteristics
also exhibit a slow rate of temporal variation and can also be
approximated to be time-invariant (or at least there is no topo-
graphic data acquired frequently enough to support a different
solution). Conversely, vegetation density and rainfall patterns do
change at a fast rate, allowing for a space–time model to incorpo-
rate their dynamic signal.

Table 1 lists the initial covariate set we considered for this
study. It includes 14 static covariates and 3 dynamic ones. Out of
the static group, ten are derivatives of a 30 m � 30 m resolution
digital elevation model (DEM). We recall here that a SU partitions
the landscapes into high-order half-basins with an average areal
extent of 1.25�106 m2. Therefore, their surface expression can host
hundreds or even thousands of 30 m � 30 m grid cells. For this rea-
son, we summarized the corresponding grid-based covariates’ dis-
tribution in a SU, through their respective mean and standard
Table 1
Summary of initial covariates used in this study.

Type Covariates Description

Static Slopel Terrain slope mean
Sloper Terrain slope St. dev.
PLCRl Planar curvature mean
PLCRr Planar curvature St. dev.
PRCRl Profile curvature mean
PRCRr Profile curvature St. dev.
Northnessl Northness mean
Northnessr Northness St.dev.
Eastnessl Eastness mean
Eastnessr Eastness St.dev.
SLST Majority class of slope structure in each
Lithology Majority class in each slope unit
Soil Type
Land use type

Dynamic Daily maximum rainfall Maximum daily rainfall per year in each
Annual sum rainfall Sum rainfall per year in each slope unit
NDVI l Mean NDVI value per year in each slope

4

deviation values. We also computed a static covariate capable of
expressing the structural geology typical of each SU. We did this
by combining terrain characteristics with local measurements of
strata direction and dip angles. To do so, we followed the same
approach shown by Luo et al. (2021). We then categorized the
resulting map categorized the results into 3 structural classes
(dip slope, anti-dip slope, and cross-dip slope) and assigned the
predominant type to each SU. The predominant type criterion
was also used to aggregate the soil type (see, Li et al., 2009) and
land use (see, Gong et al., 2020) 1:250,000 scale information per
SU.

We also aggregated on a SU basis the yearly sum and daily max-
imum rainfall interpolated from the local rain gauge network. To
perform the interpolation, we opted for an Ordinary Kriging
(Cressie, 1988). As for the aggregation method, we assigned the
mean rainfall value per SU.

The normalized difference vegetation index (NDVI) was also
featured in the covariate set by computing the mean value of all
annual mean values across pixels falling in a given SU.

3.3. Rainfall projections

As part of the modeling protocol, we present in this manuscript,
we will train a space–time susceptibility model, from which we
will simulate future landslide occurrence probabilities correspond-
ing to various rainfall projections. Therefore, it was necessary to
introduce a pre-processing step to obtain rainfall scenarios. The
pre-processing method approach first calculates the annual aver-
age, maxima, and standard deviation from the projected climate
change scenarios from Coupled Model Intercomparison Project
CMIP-5 models (Taylor et al., 2012), which has been bias-
corrected by using the method developed by Thrasher et al.
(2012) and distributed under the NASA Earth Exchange Global
Daily Downscaled Projections NEX-GDDP program of National
Aeronautics and Space Administration (NASA). From these bias-
corrected products, we selected the Representative Concentration
Pathways (RCP) �4.5 scenario, which represents the climate pro-
jections showing the level of radiative forcing by greenhouse gas
emissions stabilizing at 4.5 W/m2 by 2100. This is because the pro-
jection of landslide hazard is estimated for the next eight years,
and climate extremes due to much harsher scenarios (such as
RCP-8.5) which are expected by the end of the century, are still
not fully surfaced. With the selected scenario and different models,
we ensembled the precipitation scenarios by averaging the annual
maximum and mean projections obtained from different models.
Source

30�30 m DEM

slope unit Terrain Slope and tendency, Rock formations tendency, and dip
Lithological map, 1:250,000
Soil type map, 1:250,000
Land use type, 1:250,000

slope unit National rain gauge

unit Landsat 7 images from Google engine
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The standard deviation, however, is used as a quality check to
ensure there are very unlikely precipitation scenarios that can
unnecessarily elevate the susceptibility. With the annual ensem-
bled mean, we then computed the expected annual total precipita-
tion by multiplying the ensembled mean by 365. This is because
the daily climate projection products are not very reliable and full
of uncertainties; therefore, their direct summation may increase
bias. Nevertheless, their annual average forecast is much more reli-
able and likely to occur; thus, calculating total annual precipitation
by multiplying the annual mean by 365 provided a rough estimate
of precipitation with higher certainty than the summation of daily
products. This approach is repeated from 2022 to 2030 for each
year to calculate the rainfall projections for the next eight years.
3.4. Generalized additive model

Generalized Additive Models (GAMs) are a class of statistical
models capable of estimating the functional relation existing
between dependent and independent variables accommodating
for both linear and nonlinear cases (Hastie and Tibshirani, 1987).
In short, this allows for estimating single regression coefficients
for covariates that are linearly linked to the response, and an array
of regression coefficients for covariates that are modeled nonlin-
early. The latter is mostly achieved by using splines, whose nature
depends on the nonlinear dependence the user is interested to
model (Hastie, 2017).

GAMs are suitable to model a number of statistical distribu-
tions, welcoming exponential families such as binomial, Poisson,
Gamma, and more. In the context of landslide susceptibility stud-
ies, the response variable expresses two conditions, reflecting
whether a given slope may be stable or unstable (Brenning,
2008). For this reason, we opted for a binomial GAM, whose gen-
eric structure can be denoted as follows Eq. (1):

g pð Þ ¼ logð p
1� p

Þ ¼ b0 þ
X#lin:cov:

n¼0

bnXn þ
X#nonlin:cov:

i¼0

f ixi ð1Þ

where g is the logit function, p is the probability of at least a land-
slide to occur in a given Slope Unit, b0 is the global intercept, bn are
the regression coefficients linearly estimated for each of the covari-
ates Xn in the model, and fi is spline regression functions estimated
for each of the covariates xi in the model.

Notably, a strict definition of a spatial statistical model requires
it to treat observations distributed across the geographic space dif-
ferently. For instance, interpolators treat measurements as a func-
tion of reciprocal distances (Babak and Deutsch, 2009). But, in most
landslide susceptibility examples this is usually not the case, as the
probability assigned to any given mapping unit varies in space
purely as a function of covariate values. In other words, mapping
units that are located close to each other are usually treated in
the same way as those that are located far away. Analogous consid-
erations can be made in relation to the temporal dimension. A
strict definition of a temporal statistical model requires it to treat
instances distributed across time differently. For instance, in
time-series analysis, model estimates computed for a specific
moment also depend on the signal recorded before, and the
strength of such dependence usually decays with time (Beck
et al., 1998). In other words, temporal observations that are close
in time are treated differently as compared to observations that
are recorded much earlier. We recall now that the stable/unstable
labels in this work are assigned to SU on an annual basis.

Therefore, in addition to terrain, geological and meteorological
covariates, we also included a spatial and a temporal effect to
induce proximity dependence in the two respective dimensions.
In turn, this defines our model as a space–time Binomial GAM,
5

which we implemented by using the ‘‘mgcv” package (Wood and
Wood, 2015) in ‘‘R” (Ihaka and Gentleman, 1996).
3.5. Model validation

Our GAM model serves both explanatory and predictive pur-
poses. The explanatory component involves interpreting the func-
tional relations estimated for each selected covariate from a
geomorphological perspective. For instance, if a model would
return a negative influence of the slope steepness over the suscep-
tibility, this would not reflect the physical understanding of the
failure mechanism. This is one of the main strengths of statistical
models because they can be assessed both on the basis of their sci-
entific reasonability as well as the performance they produce. Here,
we achieve these two elements by fitting a model that uses 100 %
of the available spatiotemporal information. As for the perfor-
mance assessment, we recall here that the input of a susceptibility
model consists of a vector of stable/unstable labels, conventionally
represented by zeroes and ones. However, the output of the model
is not discrete but expressed instead as a continuous range of prob-
abilities. Consequently, when evaluating the performance of any
binary classifier, the requirement is always to convert a posteriori
probability spectrum into a sequence of zeroes and ones. These can
then be matched against the original presence/absence observa-
tions, obtaining what is commonly referred to as a confusion
matrix. This is made of four elements namely, True positives
(TP), True negatives (TN), False Positives (FP), and False Negatives
(FN). From these, a number of performance derivatives can be
obtained, both cut-off dependent and cut-off independent. In this
work, we assessed the performance by measuring TP / (FN + TP)
and TN (TN + FP). These fall in the cutoff-dependent category
because a different probability threshold from the one we set here
at the Youden Index (Fluss et al., 2005), would lead to different
accuracy values. Another performance parameter we consider is
the error rate, which corresponds to the average of the misclassi-
fied cases (both FP and FN), normalized with respect to the total
samples.

To estimate cutoff-independent performance, we opted for the
ROC curve. This is obtained by repeatedly classifying the suscepti-
bility at varying thresholds and plotting each pair of TPR and FPR.
Its integral or AUC is commonly used as a model diagnostic with
values around 0.5 considered unsuitable, values of 1.0 to be consid-
ered ideal, and the transition between the two expressing an
increase in classification performance (Hajian-Tilaki, 2013).
3.6. Stepwise GAM

Covariate selection ensures an optimal set of parameters to
build a given data-driven model on. Generally, several approaches
can be taken to perform this task, including for instance, Ridge
(McDonald, 2009) and LASSO (Amato et al., 2019) regressions, or
a number of stepwise procedures (Agostinelli, 2002). In this study,
we used a step-wise GAM approach to remove redundant and non-
informative covariates. We, therefore, fitted a number of 17 indi-
vidual GAMs, starting from the use of a single variable (Table 1).
From them, we selected the covariate that led to the minimum
Akaike Information Criterion (AIC; Sakamoto et al., 1986) value.
The process was sequentially run adding one variable at a time,
solving for all combinations that would lead first to the couple of
covariates with the least AIC, then to the triplet with the least
AIC, and so on. We implemented this procedure in such a way that
would highlight the best model, which corresponds to the situation
after which the AIC has a negligible decrease even after adding new
covariates.



Fig. 2. Panel (a) shows the results of the forward-stepwise covariate selection we implemented. Panel (b) reports the corresponding goodness-of-fit measured in terms of the
ROC curve and its AUC. Panel (c) fragments on a yearly basis the overall performance overview already provided in panel b. This last panel offers a graphical summary of the
estimated susceptibility (shown in log scale for visualization purposes), plotted against the original presence/absence data. White solid lines correspond to the mean value of
the respective distributions, whereas the width between the two white dotted lines corresponds to ± 1r.
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4. Results

4.1. Covariates selection and goodness-of-fit

We use a forward-stepwise procedure to choose the best covari-
ate set. Among all the tests we have run, we featured covariates
used in the linear and nonlinear form and even included a few
cases where we allowed for variable interactions. In Fig. 2a, we
show an overview of some of these tests, already ranked from
the highest to the lowest AIC results, and concerning the last con-
figuration we obtained (with linear and nonlinear cases as well as
interactions already pre-defined). We stress here that a stepwise
selection requires a factorial combination of all the considered
variables even with a single covariate configuration. Therefore,
for conciseness and simplicity reasons, we report the essential
information corresponding to the last test, where the minimum
DAIC from one step to the next is reached at the inclusion of the
Sloper, featuring each covariate as a spline effect, except Northnessl
and Sloper here used linearly. Notably, we also allowed for variable
interaction in the case of the Daily maximum and Annual sum of the
rainfall, and for the x and y locations of the slope units. The first
interaction is chosen to reflect two aspects of the rainfall effect
on the yearly distribution of landslides, where the Daily maximum
conveys the impulsive meteorological signal and the Annual sum
conveys the overall behavior. As for the combination of the x and
y locations, this is meant to ensure that proximal and far away
slope units are treated differently, as prescribed for any spatial
model. We also point out the fact that the minimum DAIC excludes
the Lithology from the model, something we interpreted because of
its similarity to the Soil type and because the dominant landslide
type in the multi-temporal inventory corresponds to shallow fail-
ures. This particular covariate set then leads to a reference
space–time model whose goodness-of-fit is shown in Fig. 2b with
overall accuracies of positive and negative cases of 82.12 % and
75.13 %, respectively. To these measures, the error rate of 0.248
and the AUC of 0.87 attest for the excellent performance of the
model (see, Hosmer and Lemeshow, 2000). However, these
goodness-of-fit considerations are mostly valid for the whole
space–time classification process, and they do not differentiate
between the results obtained across each year constituting the
whole domain. For this reason, we opted to include Fig. 2c. There,
we showcased how the whole space–time domain can be dissected
on a yearly basis, providing an overview of year-specific suscepti-
bilities against the original presence/absence labels. In such a plot a
suitable classifier would produce different probability densities for
slope units hosting landslides or not. Indeed, what we see is that
across each year under consideration the bulk of the two (pres-
6

ence/absence) probability distributions are quite far from each
other. This in turn indicates that our space–time model suitably
discriminates stable and unstable slope units both in space and
time.

4.2. Covariate’s effects

Covariate effects are shown in Figs. 3 and 4. The reason for this
split is meant to highlight some interesting aspects not usually
explored in other landslide susceptibility contributions. In fact,
Fig. 3 offers a unique view of the interaction effect between two
rainfall parameters and how this combined effect contributes to
the probability of landslide occurrence in space and time. What
we would like to highlight are the two extremes of the regression
coefficient range. The minimum regression coefficient is estimated
for large values of annual daily sum and relatively low maximum
daily precipitation. As for the maximum regression coefficients,
these are obtained for large daily maximum values associated with
relatively low yearly cumulative precipitation. The way we inter-
pret this signal is that large total rainfall data associated with aver-
age daily maxima would correspond to meteorological conditions
for which the landscape is exposed to continuous ‘‘drizzle”. Such
prolonged, low-intensity rainfall may not have the capacity to ini-
tiate shallow landslides, which we remind here constitutes the
dominant landslide type in the study area. As for the opposite sit-
uation, we interpret the large effect brought by large daily maxima
associated with relatively low total yearly precipitation as an indi-
cator of impulsive cloudbursts capable of releasing large quantities
of rain (up to 300 mm) in a relatively short amount of time. This
situation may therefore modify the slope equilibrium rapidly forc-
ing a pore-pressure increase and consequently leading to a
decrease in the slope stability.

Moving onto a more common representation of covariate
effects, in Fig. 4a, we notice a spline effect in the Slopel negatively
contributes to the spatiotemporal probability of landslide occur-
rence in the range between 0 and 12 as well as 28 to 53 average
degrees per slope unit. Putting things into perspective, this is a
geomorphologically reasonable result as 0�-12� are slope charac-
teristics typical of near flat to very gentle slopes. As for the 28�-
53� range, this may correspond to slope units too steep to host
any potentially unstable soil column.

In Fig. 4b, the NDVI l effects appear to follow an overall nega-
tive trend, where susceptible slopes are associated with bare con-
ditions, at best covered by sparse vegetation (�0.15 < NDVI l <
0.15). Higher vegetation density indicators are all associated with
negative regression coefficients. Such a pattern also appears to be
geomorphologically sound, for dense vegetation may interfere



Fig. 3. Summary of the variable interaction plot for the two rainfall indicators used in the model.

Fig. 4. Marginal covariate plots: panels (a, b, c) show the effect of ordinal covariates (mean slope steepness, mean vegetation density, and time period) whose effect is passed
to the model through a spline. Panel (d) highlights the linear effect of the standard deviation of the slope in a given slope unit together with the mean exposition to the north.
Panel (e) translates the results of the spatial effect into map form. Similarly, the categorical contribution of the soil type is reported in panel (f) also in its geographic form.
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with the splash effect of the rain as well as increase the soil stabil-
ity through the root system. The last individual spline effect is
depicted in Fig. 4c, where the spikes in the regression coefficients
are associated with years that have also recorded a high number
of landslide occurrences. Two interesting observations need to be
made here, the first one being the fact that the highest spike
(2021) in the regression coefficient does not correspond to the year
with the largest number of failures (2014). This may be because the
rainfall signal is largely capable of explaining the landslides trig-
gered in 2014, therefore limiting the temporal effect. As for the
year 2021, the rainfall does not appear to be extreme, nor in its
daily maximum expression nor its yearly sum. Therefore, the
model may estimate a larger regression coefficient for this period,
to be potentially attributed to unobserved or latent covariate
effects (see Opitz et al., 2022, for further explanations).

Fig. 4d reports the significant linear effects of Slopel and North-
nessl. The former is estimated with a positive contribution, some-
thing interpretable as a function of roughness. In fact, large
variations of slope steepness within a single slope unit are indicative
of rough conditions. This being said, it is also worth mentioning that
the regression coefficient distribution, albeit significant, is not far
away from the zero line, which implies a very limited effect overall.
As for the second covariate, this marks a larger effect by comparison
(the mean regression coefficient is farther away from the zero line).
In turn, this implies that slopes that are facing south are the ones
that are mostly associated with slope failures. Fig. 4e and 4f respec-
tively show the spatial and soil type effects. What stands out the
most is that the spatial effect contributes by promoting unstable
SUs to the very south, and in the northern sector where the pattern
shows a NE-SW direction. Interestingly, this is also the main direc-
tion of the tectonic lineaments present in the area. Conversely, soil
control on slope stability is much more spatially complex. For rea-
sons of conciseness, we only report here the two major pedological
classes contributing to the SU classification. Specifically, gravelly
sands with a loamy component are associated with the largest
regression coefficient (b = 3.02). Conversely, black soils negatively
contribute to the space–time susceptibility (b = � 10.16).

4.3. Space-time predictive performance

Before presenting the results of our space–time random cross-
validation (RCV), we would like to remind the readers of an impor-
tant aspect often neglected in the literature. We initially recall that
a validation procedure should highlight the model’s capacity to
suitably predict data that has not been featured as part of the cal-
ibration phase. However, this is not the only requirement of a
robust performance assessment. Traditionally, one often assumes
that the structure of the data may carry some degree of spatial
autocorrelation and that in turn, this may optimistically bias the
final performance. This is why Brenning (2012) prescribes spatial
cross-validation routines, and Roberts et al. (2017) recommend
space–time cross-validation routines, because, through these tech-
niques, one can ensure any dependence structure in the data to be
broken down, allowing for an unbiased predictive performance
assessment. However, Wadoux et al. (2021) recently challenged
such statements, demonstrating that random cross-validation pro-
duces negligible differences as compared to spatial cross-
validation routines. Considering these two radically opposite posi-
tions, in this work we opted for an RCV that we progressively
pushed towards more significant sample removals. In such a
way, we would both equip our model with an RCV but also ensure
that any spatiotemporal autocorrelation would be progressively
weakened, allowing for a suitable assessment.

These results are shown in Fig. 5, where each row represents a
different percentage split in the RCV. Each column, represents a
different aspect of the performance assessment, starting from
8

reporting the cutoff independent assessment summarized via the
ROC curves obtained for each of the 100 iterations. The subsequent
two columns correspond to the accuracy (or confusion) plot for the
positives and negatives, as well as the error rate box plots. Both
metrics are obtained using a probability cutoff corresponding to
the Youden index, reported in the fourth column. What stands
out the most is that the performance is extremely stable. Irrespec-
tive of the portion of the data that we randomly extract for valida-
tion, the model performance essentially stays the same. The AUC
values maintain an average very close to 0.84. The accuracy of
the model in predicting absence cases essentially stays between
79 % and 80 %, whereas the same for the present instances is con-
fined between 72 % and 74 %. This is also reflected in the error rate,
being stable at around 0.21. These are important considerations
that support our model not only as an explanatory tool but also
as a robust predictive one.

4.4. Susceptibility mapping

Having demonstrated the predictive capacity of our space–time
susceptibility model, in this section, we translate the model results
into maps. However, susceptibility maps need to undergo a further
processing step where the continuous spectrum of probability val-
ues is binned in a number of classes. Therefore, finding suitable
breaks corresponding to each class limit is required. Here we pre-
sent this step in Fig. 6, where all the space–time probability
domain is classified according to five classes following the Jenks
method (North, 2009). We recall here that this method starts from
a pre-defined number of classes and finds the cutoffs that mini-
mize the intra-class variances.

The very same probability cutoffs have been used to plot the
nine separate susceptibility maps shown in Fig. 7. There one can
appreciate the flexibility of our space–time model in mimicking
the overall yearly landslide frequency (see nested bar plots) in
the level associated with each susceptibility map.

This is particularly evident for the second map where 2142 out
of 2978 occurred just in the year 2014. This level of consistency
justifies the use of our space–time model for cartographic purposes
and the next section will be dedicated to the generation of future
scenarios using a simulation approach.

4.5. Future risk forecasting

Generalizing data-driven susceptibility models is almost done
exclusively in the spatial dimension, through a procedure com-
monly referred to as model transferability (Petschko et al., 2014;
Wang et al., 2022b). Conversely, here we transfer our model in
time using a plug-in simulation approach (see Lombardo and
Tanyas, 2020). In other words: 1) we solve the predictive equation
we obtained, 2) we keep all the covariates as they are except the
two rainfall parameters, 3) we remove the rainfall data estimated
for the years 2013–2021, and 4) introduce the rainfall projected
for the years 2022–2030. But, as interesting as such a procedure
may be, it still does not convey any information on the expected
risk local communities may be exposed to. For this reason, not only
we simulated future landslide susceptibility scenarios, but we also
collected two more exposure parameters in the form of future
built-up areal extent (m2) and the future number of inhabitants.
A description of both parameters can be found in Lepetit et al.
(2023) and they can be accessed at https://ghsl.jrc.ec.europa.
eu/download.php?ds=pop.

The combination of estimated susceptibility, together with the
two exposure parameters is shown in Figs. 8 and 9. In the first case,
one cannot assume the information to fully reflect the risk because
it is not possible to assign a specific vulnerability curve to a generic
layer reporting the expected built-up area distribution. However, if

https://ghsl.jrc.ec.europa.eu/download.php?ds=pop
https://ghsl.jrc.ec.europa.eu/download.php?ds=pop


Fig. 5. Random cross-validation performance summary of ROC, confusion, error ratio, and average Youden index distribution in the 90/10, 80/20, 70/30, 60/40, and 50/50
selection ratios.

T. Wang, A. Dahal, Z. Fang et al. Geoscience Frontiers 15 (2024) 101765

9



Fig. 6. Jenks classification of the spatiotemporal distribution of fitted susceptibility values from 2013 to 2021. We opted to plot the probability values in logarithmic scale
because the original scale is very heavy-tailed, making it difficult to graphically represent it.
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one would assume the vulnerability = 1, then the combination of
the two layers would indeed depict the risk to the building and
infrastructure. We recall here that the reference natural hazard
corresponds to rapid landslides, and therefore, hypothesizing that
a given built-up area would be hit by a fast-moving mass should
not be an unreasonable assumption. Conversely, this issue does
not affect the exposure data of the local population, which indeed
would incur losses if they would find themselves in the path of a
theoretical debris flow.

Going back to the individual figures’ content, the two landslide
risk maps highlight slightly different areas potentially requiring
further attention. Built-up areas under the most threat from land-
slides are mostly located in the central sector of the northeast of
Chongqing, irrespective of the year under consideration. As for
the population, the same densely inhabited area appears to be
likely exposed to landslide occurrences. However, right eastward
of it, some interesting spatiotemporal patterns can be seen with
the combination of highly likely landslide occurrence probabilities
and expected inhabitants generating high-risk patches in the
zoomed-in part of the maps.

We can also see that the worst-case risk scenarios determined
by the susceptibility (lowest right panels in Figs. 8 and 9) pro-
duce two slightly different patterns with the built-up area being
more subjected to landslide risk as compared to the local
expected population. One would expect the two exposure
parameters to be mostly correlated. Therefore, such differences
may be mostly interpreted with part of the built-up area being
allocated to industrial activities and hence, to a lesser population
density.

To confirm this interpretation, further analyzed the two expo-
sure parameters and showed their spatiotemporal characteristics
in Fig. 10. There, one can notice that panel (a) projects an increase
10
in expected built-up with time (from �150 km2 between 2022 and
2024 to �200 km2 between 2025 and 2029, and up to �240 km2).
Conversely, the population is projected to slightly decay, starting
from around 8.2 million inhabitants in 2022 and reaching around
7.8 million in 2030. The same plots can be used to assess the good-
ness of local master plans. In fact, the proportion of built-up areas
and populations in 2022 falls in both cases within a low suscepti-
bility class much smaller as compared to the combination of med-
ium and high classes. However, most of the built-up areas and
inhabitants would be associated with the low susceptibility class
in 2030.
5. Discussion

This section is dedicated to scrutinizing our modeling protocol
and its results, highlighting potential strengths and weaknesses.
For this reason, below we dedicate two separate sections to the
respective considerations.
5.1. Supporting arguments

Space-time susceptibility modeling is still largely unexplored
(Reichenbach et al., 2018). Most of the current literature still uses
landslide inventories where the temporal information is missing or
left unused. For this reason, our modeling protocol already pre-
sents an example of state-of-the-art data-driven solutions for land-
slide spatiotemporal prediction. And even in the framework of an
already limited literature, in this work, we further nested a number
of sub-experiments that by themselves offer ‘‘food for thought” for
landslide practitioners. For instance, we introduced a first attempt
to explore the rainfall effect in the form of a variable interaction



Fig. 7. Landslide susceptibility map for the year from 2013 to 2021. Continuous susceptibility values are grouped into five classes with Jenks classification.
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term (Fig. 3). This allowed us to dive into how the combination of
yearly rainfall parameters influences the likelihood of landslide
occurrences in space and time. Currently, the use of variable inter-
action terms in the landslide literature is mostly confined to cases
where one of the two covariates is continuous and the second one
is categorical. For instance, Brenning et al. (2015) used this idea to
investigate the effect of road distances per lithological class in
Ecuador. The only examples where a two-variable interaction has
been previously used to explore precipitation effects can be found
in Goetz et al. (2015), where the authors explore how precipitation
intensities contribute to landslide occurrence probabilities at vary-
ing levels of forest cover. The same idea has been recently featured
in Johnston et al. (2021) by allowing precipitation to interact with
three different land use types. Here, we present an alternative
where two aspects of the same meteorological process can interact
and be brought into the model as a unique effect. This could be
interesting beyond the context of landslide susceptibility. Specifi-
11
cally, we envision this idea as a useful tool in landslide early warn-
ing systems, where the modeling target is usually determined by
intensity-duration relationships (e.g., Rossi et al., 2012).

Another nested experiment corresponds to the use of an RCV
routine where a larger proportion of the space–time data are pro-
gressively taken away from the calibration phase and merged into
the prediction subset. The common practice mostly corresponds to
a single fixed data split (e.g., Rossi et al., 2010) and the model sen-
sitivity to the proportion of data allocated to the fitting and testing
phases is hardly acknowledged. Here, we touch on this subject by
exploring the results produced by 100 RCVs obtained from five
separate schemes, moving from a 90/10 to a 50/50 split. Interest-
ingly, the last data split takes away a significant amount of data
without being followed by a proportional loss in predictive perfor-
mance. This attests to a robust model, whose stability is reached
even when potential space–time autocorrelation effects are neces-
sarily broken at this level of data-removal. Another strength we



Fig. 8. Impact-based scenarios obtained by combining landslide occurrence probability and built-up area projections. The first nine panels depict the yearly variation of
landslide susceptibility, whereas the built-up area scenarios vary on a 5-yearly basis. The last panel corresponds to the worst combined scenario (max susceptibility and
associated building distribution) out of the 9 projected years.

Fig. 9. Impact-based scenarios obtained by combining landslide occurrence probability and the number of inhabitants projections. The first nine panels depict the yearly
variation of landslide susceptibility, whereas the population scenarios vary on a 5-yearly basis. The last panel corresponds to the worst combined scenario (max susceptibility
and associated population distribution) out of the 9 projected years.
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recognize is using a space–time model for scenario-making pur-
poses. In landslide susceptibility studies, this has been explored
in a limited number of contributions. For instance, Steger et al.
(2023) take a similar stance for predicting landslides on a daily
time step. Recently, Knevels et al. (2023) make use of an analogous
12
simulations framework by fitting a binomial GAM and generating
landslide scenarios for a complex combination of future environ-
mental (climate, and land use projections) conditions in Austria.
Here, we take a simpler approach by simulating only the rainfall
projections. However, we extend the research to combine exposure



Fig. 10. Distribution of projected built-up areas (a) and populations associated with specific susceptibility classes over the 9 projected years. The last stacked bar plot reports
the two parameters for the respective cases where the space–time susceptibility has reached its maximum value per slope unit.
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information to generate risk scenarios. This is also an area where
the landslide literature is explored to a lesser extent as compared
to the amount of pure landslide susceptibility studies. Valuable
contributions on landslide risk do exist, and a number of mile-
stones can be found in the work laid out by (Guzzetti, 2000;
Corominas et al., 2014). However, they are mostly confined to cur-
rent risk assessments and rarely feature elements of predictive
modeling (Malek et al., 2015; Rossi et al., 2019).

5.2. Opposing arguments

The main limitation in the modeling protocol we tested has to
do with respecting the standard landslide risk definition. In fact,
for it to be fully satisfied, we should have also somehow brought
in projections of vulnerability estimates. However, it is virtually
impossible to collect vulnerability curves for each object under
consideration across an area as large as our study area. And even
if this would be possible, obtaining temporal variations of such
information is even more difficult. This is to say that we did our
best with the information available, but it is also important to
acknowledge that our risk estimates come with the assumption
that vulnerability is always equal to one, both in space and time.

Another element to be stressed lies in the dimensionality of the
space–time structure of the model. An average SU partition of
approximately 1.3 km2 implies that the model is fine enough to
be used both at the regional and catchment scale. However, for
the susceptibility and risk assessment of individual properties,
the model is relatively coarse and further dedicated analyses
may be required. Interestingly, for such detailed cases, our model
could be used to guide or prioritize the selection of sites for which
administrations are interested. Similarly, our model is defined on a
yearly basis. As a result, its use is mainly suitable for long-term
planning, and it does not support fine temporal scales typical of
early warning systems (Fang et al., 2023).

A number of additional limitations should be listed. The most
evident is in the way we generate landslide occurrence probability
projections. In fact, we simulate by changing only the rainfall pat-
terns. This implies that all the other predictors are kept constant
even in future years. This assumption may be reasonable for
13
covariates that typically exhibit a low rate of temporal change such
as the DEM derivatives. However, it may be considered a limitation
in the case of the NDVI. However, we did not have access to vege-
tation density projections. This being said, the rate at which the
NDVI changed through time across the study area appears to be
minor and therefore, we also assume this to produce a negligible
bias. Also, what we are proposing here is an approach to model
space–time risk, and future work can be further extended to
account for the issues we noted during the present experiment.
Another potential source of bias may reside in the difference in
spatial resolution between different rainfall products. In fact, if
the native rainfall information is expressed daily both at the level
of the local rain gauge network and in the climate projections, the
same cannot be said in the spatial dimension. The rain gauges net-
work in the northeast sector of Chongqing is particularly dense,
with the maximum distance between two neighboring stations
being approximately 20 km whereas the average distance is
7.2 km. However, the raw rainfall projections have a native resolu-
tion of approximately 26 km � 26 km. This is to stress that the
capacity at which the precipitation signal is represented in the fit-
ted model (although interpolated) is higher than the rainfall coun-
terpart used for the simulation phase (although downscaled). This
may potentially represent an issue in the uncertainty propagation
from one modeling step to the next and future research direction
may involve an intermediate phase where a bias-reduction step
will be required to minimize the difference between observed
and predicted rainfall.

Moving toward the risk component of the present research,
some limitations also apply to the exposure data. In fact, the raw
projections are based on a five-year time step. As a result, our
yearly susceptibility scenarios vary at a higher frequency com-
pared to the built-up area and population layers. This being said,
it is reasonable for this to be the case because landslide-prone con-
ditions may be indeed quite different from one year to the next,
whereas the urban fabric and its inhabitants vary at a lower rate.
Nevertheless, an ideal situation would correspond to a one-to-
one correspondence, and future efforts may be dedicated to pro-
ducing in-house exposure projections at a higher temporal
resolution.
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6. Concluding remarks

This contribution presents an analytical protocol where the
landslide risk projections are obtained as a combination of simu-
lated susceptibility estimates and two separate exposure parame-
ters (built-up areas and local population). This experimental
design may serve as the foundation for urban planners to base their
decisions on because it integrates two fundamental aspects in risk
assessments: spatial and temporal probabilities together with
exposure data. It should be noted that the model presented here
is a prototype, and further improvements are necessary to fulfill
the risk definition. To complete the landslide hazard assessment,
it is necessary to associate the spatiotemporal probabilities with
the expected landslide intensities. To address this, we are currently
exploring a class of models that can jointly predict landslide areas
in space and time, along with the susceptibility. Another challeng-
ing requirement for such a large area is obtaining access to vulner-
ability curves, at least for the major infrastructure and building of
interest. In this case, we are collaborating with local institutes to
generate vulnerability data and explore their potential variations
in space and time.

Overall, we believe this modeling framework holds great poten-
tial for landslide prediction on a broader scale. In fact, its structure
can be flexibly adapted to local spatial and daily temporal domains
offering solutions in line with early warning systems. If adapted to
regional spatial and yearly temporal domains, it can provide solu-
tions aligned with scenario projections. The inclusion of the expo-
sure components enables the extension of the probabilistic results
into an integrated risk modeling approach. Its full potential can be
realized when urban-finance data is collected and analyzed for loss
quantification.
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