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ABSTRACT
As the world moves more toward unpredictable renewable energy sources, better energy storage devices are required. Supercapacitors are a
promising technology to meet the demand for short-term, high-power energy storage. Clearly, understanding their charging and discharging
behaviors is essential to improving the technology. Molecular Dynamics (MD) simulations provide microscopic insights into the complex
interplay between the dynamics of the ions in the electrolyte and the evolution of the charge distributions on the electrodes. Traditional
MD simulations of (dis)charging supercapacitors impose a pre-determined evolving voltage difference between the electrodes, using the
Constant Potential Method (CPM). Here, we present an alternative method that explicitly simulates the charge flow to and from the electrodes.
For a disconnected capacitor, i.e., an open circuit, the charges are allowed to redistribute within each electrode while the sum charges on
both electrodes remain constant. We demonstrate, for a model capacitor containing an aqueous salt solution, that this method recovers the
charge–potential curve of CPM simulations. The equilibrium voltage fluctuations are related to the differential capacitance. We next simulate
a closed circuit by introducing equations of motion for the sum charges, by explicitly accounting for the external circuit element(s). Charging
and discharging of the model supercapacitor via a resistance proceed by double exponential processes, supplementing the usual time scale set
by the electrolyte dynamics with a novel time scale set by the external circuit. Finally, we propose a simple equivalent circuit that reproduces
the main characteristics of this supercapacitor.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0177103

I. INTRODUCTION

Supercapacitors have the unique ability to store much more
energy than conventional capacitors and to charge and discharge
much faster than batteries. Supercapacitors also have other impor-
tant benefits over batteries, such as a higher efficiency and a longer
lifetime.1 However, the energy density of supercapacitors is one
order of magnitude lower than that of batteries. As renewable, clean
energies are replacing fossil fuels, the use of long-term and short-
term energy storages is expected to rapidly increase in the near
future. Supercapacitors are already deployed in many applications2,3

and could potentially play an important role in short-term
high-power energy storages. This will only happen if their energy
density can be improved, e.g., by combining optimized porous elec-
trodes with ionic liquid electrolytes.1 However, the application of
ionic liquids comes at the cost of a lower power density due to

the slow ion transport in ionic liquids, especially in the electrodes’
pores.4

Molecular dynamics simulations are a powerful tool to investi-
gate the sluggish dynamics of ionic liquids in electrode pores since
they provide detailed information at the atomic level.5–10 These sim-
ulations require dedicated routines to model the redistribution of the
charges on the electrodes in response to the dynamics of the ions: the
Constant Potential Method (CPM) endows the electrode atoms with
narrow Gaussian charge distributions of evolving strengths;11–16 the
Induced Charge Computation (ICC∗) method treats the electrodes
as media of infinite dielectric permittivity with evolving charge dis-
tributions at their interfaces;17 and in the Lorentz–Drude model, a
light-weight negative charge representing the fluctuating electron
cloud is tethered to a positively charged nucleus.18 We refer the
reader to recent reviews on simulations of electrodes for more details
on these methods and the insights gained by simulations.9,10,19 In
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previous studies, the charging and discharging of supercapacitors
were simulated by subjecting the electrodes to a potential difference
with a pre-determined evolution in time.20–28 In practice, however,
one does not control the potential difference between the electrodes
during discharging. Rather, in the absence of another power source
in a discharging circuit, it is the capacitor itself that determines
the potential difference. This difference causes a current to flow in
the electric circuit external to the capacitor, which in turn reduces
the charges on the electrodes and, thus, co-determines the decay
of the potential difference. Similarly, in a simple charging circuit
with the capacitor connected to a potential source via a resis-
tance, the capacitor co-determines the voltage difference between
its electrodes. As a first step to simulating the (dis)charging pro-
cess, one would like to simulate a supercapacitor with fixed total
charges on its electrodes, i.e., a disconnected supercapacitor or
open-circuit. Dufils et al.29,30 modeled an open circuit by combin-
ing CPM with an appropriately tuned electric displacement, which
they applied to a single electrode surrounded on both sides by the
same periodically continued electrolyte; this setup results in oppos-
ing conserved charges on the two surfaces of the electrode. Two
recent studies on a “galvanostatic mode” by Zeng et al.31 and the
“ConQ ensemble” by Tee and Searles32 simulate two electrodes with
conserved total charges, while the charge distribution within each
electrode is free to evolve in response to the electrolyte dynamics.
These methods result in a fluctuating voltage difference between
the electrodes, with a standard deviation that relates to the dif-
ferential capacitance.32 By slowly varying the total charges on the
electrodes, one gains access to the supercapacitor’s (dis)charging
dynamics.30,31

Here, we introduce a more general Constant Sum Charges
Method (CSCM) that works with any standard electrostatics solver,
whereas the aforementioned methods require dedicated solvers.30–33

We next introduce an equation of motion for the sum charges,
with the voltage difference between the electrodes (co-)determining
the current in a closed circuit. This has a major impact on the
(dis)charging dynamics of a supercapacitor: whereas previous sim-
ulation studies report relaxation time scales set by the dynamics of
the electrolyte20,22,24,25,30,33 we find an additional relaxation process
due to the external circuit. The ratio between internal and exter-
nal time scales determines the energy efficiency of the discharging
process.

From a macroscopic point of view, complex electronic
components—such as supercapacitors—are more conveniently
modeled by equivalent circuits, i.e., combinations of elemen-
tary ideal electronic components that reproduce the electronic
behavior of the complex components.34 Equivalent circuit mod-
els for supercapacitors typically model the energy storage in the
electrode–electrolyte interface as a capacitor and the electrolyte’s
viscous resistance to ion transport as a resistance.35 For porous
electrodes, this model is extended to the transmission line model
by approximating the electrode as a stack of slabs, with each slab
combining a capacitor for storage in double layers, a resistance for
the viscous flow of the electrolyte, and a conductor for the cur-
rent in the solid fraction.20,28 We derive an alternative model in
which the volume between two flat electrodes also acts as a capac-
itor, in parallel to the resistance due to the electrolyte, to account
for electrostatic interactions between the two double layers. The

analytic solution of the model predicts a double-exponential decay
and explains how the relaxation dynamics varies with the value of
the external resistance, which is in good agreement with the CSCM
simulations.

This paper is organized as follows: The theory underlying
the simulation method is presented in Sec. II, along with a phe-
nomenological equivalent circuit. The simulation model, an aqueous
electrolyte between flat graphene-like electrodes, is introduced in
Sec. III. Simulation results on disconnected capacitors, as well as the
evolution of charging and discharging capacitors, are presented in
Sec. IV and compared with the equivalent circuit. We summarize
our main conclusions in Sec. V.

II. THEORY
In this section, we derive a microscopic description of a super-

capacitor subject to charge conservation on both electrodes sep-
arately, derive expressions for the macroscopic properties of this
supercapacitor, and propose a phenomenological equivalent circuit
model describing the charging and discharging processes.

A. Constant sum-charge method (CSCM)
In this section, we introduce our constant sum-charge method

(CSCM) for simulating the charging and discharging dynamics of
systems with electrodes, in particular supercapacitors. Following
common practice in molecular dynamics simulations,36,37 atoms
are endowed with effective charges located at the atoms’ posi-
tions, representing the total charge of the atom due to the positive
charge of the nearly point-like nucleus plus the negative charge
of the surrounding electron cloud. By the laws of electrostatics,
the exact charge distribution within an atom is of minor impor-
tance at the interatomic distances relevant to MD, and one con-
veniently approximates atoms as point charges. We model the
electrodes as N atoms with fixed positions Ri and variable charges
Qi, while the electrolyte contains n atoms with fixed charges qj
and variable positions rj. The electrostatic energy of this system
reads as

Ue =
1
2

⎛
⎜
⎝

Q

q

⎞
⎟
⎠

T
⎛
⎜
⎝

A B

BT C

⎞
⎟
⎠

⎛
⎜
⎝

Q

q

⎞
⎟
⎠

, (1)

where, for notational convenience, the charges of the electrode
atoms and those of the electrolyte atoms have been grouped
into column vectors Q and q, respectively. The elements of the
symmetric N ×N matrix A, the non-symmetric N × n matrix B,
and the symmetric n × n matrix C vary with the positions of
the atoms. Routine electrostatic solvers determine the energy and
forces without evaluating these matrices, using Ewald summation
or the Particle–Particle Particle–Mesh (PPPM) method,38–40 but the
explicit evaluation of A is crucial to constant potential methods.
It is common practice in the CPM field to treat the electrolyte
atoms as point charges, while the charges of the electrode atoms are
assumed to be Gaussian distributed. The net effect of this narrow
point-spread is to endow point-like electrode atoms with chemical
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hardness,41–43 i.e., an intra-atomic energy associated with non-zero
charges,

Up =
1
2

Kp

N

∑
i=1

Q2
i , (2)

where the positive Kp denotes the strength of this energetic “penalty”
on non-zero charges. In the above equation, it has been assumed
that all electrode atoms are of the same type, which renders
Kp a common constant and also eliminates an intra-atomic energy
term linear in the charges accounting for atomic eagerness to
attract or repel electrons, which is known in a chemical context
as electronegativity.41,44,45 The total charge-related energy, UQ = Ue
+Up, can again be expressed in the above vector-matrix form by
introducing the matrix Ap = A + Kp1. Because the electron distri-
bution evolves on a much shorter time scale than the motion of
the ions, one may assume that the electron clouds are continuously
in equilibrium with the momentaneous ion distribution, i.e., the
Born–Oppenheimer approximation. The vector collecting the elec-
trical potentials of the atomic charges on the electrodes—potentials,
for short—is obtained by differentiating the energy with respect to
the charge distribution,

Ψ = ∂UQ

∂Q
= ApQ + Bq. (3)

For conducting electrodes, all atoms on the right (left) electrode
will have the same potential VR (VL). The vector collecting the
potentials of all electrode atoms, therefore, takes the form

Ψ = VRYR + VLYL, (4)

where the elements of the vector YR (YL) are unity for atoms on
the right (left) electrode and zero for atoms on the opposite elec-
trode. The resulting charges on the electrode atoms are then solved
by inverting Eq. (3) and inserting Eq. (4), yielding

Q = A−1
p (VRYR + VLYL − Bq). (5)

In the constant potential method, the potentials of the two electrodes
are set at VR = (V∗ + ΔV/2) and VL = (V∗ − ΔV/2), respectively,
where the potential difference ΔV = VR − VL is selected by the user
and V∗ = (VR + VL)/2 denotes the average potential difference
between the electrodes and the environment. In early implementa-
tions of CPM,12,13 this potential difference was tacitly set to zero,
while in later implementations,15,46 the potential difference is solved
by zeroing the total charge of the simulation box, which for a neutral
electrolyte is realized by eliminating the total charge on the elec-
trodes, ∑i Qi = (YR + YL) ⋅ Q = 0. Due to the perpetual motions of
the ions, the charges on the electrode atoms fluctuate with time.
Even the total charge per electrode fluctuates in time, around a value
dictated by the imposed potential difference.

In an open circuit, the sum charges on the right and left
electrodes are conserved independently,

YR ⋅Q(t) = QR, (6a)

YL ⋅Q(t) = QL, (6b)

while the potentials of the two electrodes may vary with time. The
challenge now is to find the corresponding electrode potentials,
VR(t) and VL(t).31,32 Combining Eqs. (4) through (6) gives the
charges on the two electrodes as

⎛
⎜
⎝

QR

QL

⎞
⎟
⎠
= D
⎛
⎜
⎝

VR

VL

⎞
⎟
⎠
−
⎛
⎜
⎝

YR ⋅A−1
p Bq

YL ⋅A−1
p Bq

⎞
⎟
⎠

, (7)

where the four elements of D read as Dαβ = Yα ⋅A−1
p Yβ, with

α and β taking the values “R” and “L”. Inversion yields the potentials
VR and VL for the given electrode charges QR and QL at the momen-
taneous ion distribution. The charges of the electrode atoms are then
solved in CSCM from32

Q = A−1
p (GRQR +GLQL −HBq), (8)

where the products of QR and QL with the vectors

GR = ∣D∣−1
(DLLYR −DLRYL), (9a)

GL = ∣D∣−1
(DRRYL −DRLYR) (9b)

represent the potentials of the electrode atoms in the absence of ions
and the projection matrix

H = 1 −GRYR ⋅A−1
p −GLYL ⋅A−1

p (10)

prevents the potential due to the ions, Bq, from altering the sum
charges on the electrodes since

Yα ⋅A−1
p H = 0T. (11)

For immobile electrode atoms, the products A−1
p GR, A−1

p GL, and
A−1

p H are constants and, hence, need to be computed only once.
Note that the potential difference between the electrodes now
fluctuates with time.29–32

The charge-related force on the jth ion follows by differentiat-
ing the potential energy with respect to the ion’s position,

f Q
j = −

∂UQ

∂rj
= −

∂Ue

∂rj
∣

Q
−

∂UQ

∂Q
∣
Q
⋅
∂Q
∂rj

, (12)

where the RHS emphasizes that the usual Coulomb force evaluated
at the charges Q is extended with a force arising from the position-
dependent induced charges of the electrode atoms. The latter term
can be rewritten as

∂UQ

∂Q
∣
Q
⋅
∂Q
∂rj
= −Ψ ⋅A−1

p H
∂B
∂rj

q, (13)

which vanishes identically since Ψ ⋅A−1
p H = 0T, as follows from

combining Eqs. (4) and (11). Hence, after determining the charges
on the electrode atoms, the charge-related forces on the ions are
readily evaluated using standard routines for electrostatics. Upon
coupling this system to a heat bath at temperature T, the result-
ing model samples the canonical Boltzmann distribution at constant
electrode charges,

P(r; QR, QL)dr =
1
Z

e−β(UQ+U≠Q)dr, (14)
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with r denoting the collective coordinates of the electrolyte atoms,
Z denoting the normalizing configuration integral, UQ denot-
ing the charge-related energy evaluated at Q, U≠Q denoting the
charge-independent interactions such as the van der Waals terms
and covalent contributions, and β = 1/(kBT) with Boltzmann’s
constant kB.

The evolving potential difference between the electrodes is
readily solved from Eq. (7) as32

ΔV = gRQR + gLQL + h ⋅ Bq, (15)

with

gR =
DLL +DLR

∣D∣
, (16a)

gL = −
DRL +DRR

∣D∣
, (16b)

and

h = (gRYR + gLYL) ⋅A−1
p . (17)

For immobile electrode atoms, the scalars gR and gL and the vector
h are constants and, hence, need to be computed only once.

In the discussion thus far, the sum charges on both electrodes
are kept constant, with the distribution of these sum charges over
the electrode atoms provided by Eq. (8). The discharging of the
supercapacitor is simulated by allowing charge to flow between the
electrodes through an external resistance Re, say from a positive right
electrode to a negative left electrode. Ohm’s law gives the current,
i.e., the time derivative of the sum charges on the electrodes, as

I = −
dQR

dt
=

dQL

dt
=

ΔV
Re

. (18)

This relation is used to update the sum charges QR(t) and QL(t)
after every simulation step based on the momentaneous voltage dif-
ference between the electrodes, ΔV(t), as calculated by Eq. (15).
Charging is simulated by connecting the supercapacitor in series
with an ideal voltage source Ve and a resistance Re. The cur-
rent flowing in this circuit and, hence, the time derivatives of the
sum charges then follow from the potential over the resistance as
I = (ΔV − Ve)/Re.

B. Capacitance
We will henceforth limit the discussion to capacitors with an

overall neutral electrolyte. For a charge neutral capacitor, the charges
on the two electrodes will then be equal in absolute value but
opposite in sign,

Q = QR = −QL =
QR −QL

2
. (19)

The capacitance C = Q/ΔV of a supercapacitor will, in general,
vary with the potential or charge. Its differential capacitance
Cdiff = dQ/dΔV can be deduced from the tangent to a plot of the
imposed charge Q vs the average resulting potential difference at that
charge, ⟨ΔV⟩Q.

The charge fluctuations in the CPM ensemble—again assum-
ing, an overall neutral electrolyte—provide a direct route to the
capacitance,43,46–48

CCPM
diff = CCPM

diff,0 + β(⟨Q2
⟩ΔV − ⟨Q⟩2ΔV), (20)

where the bracketed difference measures the variance of the elec-
trode charges due to the electrolyte dynamics and where the
capacitance of the empty capacitor reads as

CCPM
diff,0 = Y± ⋅ (SpY±), (21)

with vector Y± = (YR − YL)/2 and the symmetric matrix43,46

Sp = A−1
p −A−1

p Y
Y ⋅A−1

p

Y ⋅A−1
p Y

, (22)

with vector Y = YR + YL. Note that replacing the vector Y± in
Eq. (21) with its projected counterpart,46 Y± − Y(Y ⋅ Y±)/(Y ⋅ Y),
does not affect CCPM

diff,0 because the matrix Sp removes homogeneous
distributions, SpY = YTSp = 0.

We now derive a similar fluctuation formula in the constant
sum charges ensemble, as was also obtained in a recent study by Tee
and Searles,32 by focusing on the derivative of the average potential
difference,

1
CCSCM

diff
=

d⟨ΔV⟩Q
dQ

= gR − gL + h ⋅
∂⟨Bq⟩Q
∂Q

, (23)

where the last step follows from Eq. (15). Differentiation of an
ensemble average with respect to the electrode charge requires an
expression for the corresponding derivative of the average charge-
related energy, which is obtained from the Boltzmann distribution of
Eq. (14) upon inserting the charge vector of Eq. (8) in the expression
for the energy UQ,

∂⟨UQ⟩Q

∂Q
= (GR −GL) ⋅A−1

p [(GR −GL)Q −HBq + Bq]

= h ⋅ [G±Q + Bq], (24)

where in the last step use was made of Eq. (11), of the defini-
tions of Gα, gα, and h, and where G± = GR −GL. Differentiating the
electrode-induced average potentials on the electrode atoms then
gives

∂⟨Bq⟩Q
∂Q

= β⟨Bq⟩Q⟨h ⋅ (G±Q + Bq)⟩Q − β⟨Bqh ⋅ (G±Q + Bq]⟩Q

= β⟨Bq⟩Q⟨h ⋅ Bq⟩Q − β⟨Bqh ⋅ Bq⟩Q, (25)

where in the last step we used that h ⋅ G±Q is a constant. Insertion
in Eq. (23) and noticing that h ⋅ Bq represents the only fluctuating
contribution to the potential difference ΔV in Eq. (15), it follows
that32

1
CCSCM

diff
= gR − gL − β[⟨(ΔV)2

⟩Q − ⟨ΔV⟩2Q], (26)

which is the CSCM equivalent to Eq. (20).
An empty capacitor does not show voltage fluctuations in the

current approach, nor does it show charge fluctuations in CPM. The
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capacitance of the empty capacitor does not depend on the voltage
in CPM or the charge in CSCM. The above derivations, therefore,
offer two expressions for the differential capacitance of an empty
capacitor. It can be proven that they agree32

CCPM
diff,0 = CCSCM

diff,0 =
1

gR − gL
= C0, (27)

by expanding the capacitances in terms of Dαβ = Yα ⋅A−1
p Yβ. Both

methods are obviously closely related: for a given electrolyte config-
uration, the charge distribution by CPM for a potential difference
ΔV , QCPM = Sp(ΔVY± − Bq), matches that in CSCM for electrode
sum charges Qα = Yα ⋅ QCPM. Similarly, the charge distribution for
CSCM for electrode charges ±Q matches that in CPM for a poten-
tial difference derived from these sum charges by Eq. (15). This
equivalence for a given electrolyte configuration notwithstanding,
the ensemble sampled at constant ΔV differs from the ensemble
sampled at constant electrode charges ±Q.

C. Equivalent circuit
Here, we will derive a simple equivalent circuit for this super-

capacitor. We are guided by a simplification of the expected ion
distribution; see Fig. 1. In a macroscopic idealization, a supercapac-
itor consists of two parallel flat electrodes of area A with uniform
surface charges ±Q/A separated by a height H, two counter-ionic
monolayers with uniform surface charges ∓ξ/A at a distance d from
the electrodes, and a uniform ion distribution in the central region of
width w = H − 2d; see Fig. 1. Note that we do not equate ξ with Q, as
these two charges will differ when the system is out of equilibrium
and may even deviate for a system in equilibrium. Upon infinitely

FIG. 1. Illustration of the idealized supercapacitor consisting of two electrodes with
charges ±Q, covered by dense counterion monolayers with charges ∓ξ, and a
dilute distribution of ions in the center. Also indicated are the electric field strengths
resulting from these charges: EQξ within the electric double layers and Eξξ between
the electric double layers, with the arrows indicating the directions of these fields
for 0 < ξ < Q.

extending these four monolayers along the two directions parallel
to the electrodes, the model becomes one-dimensional. The elec-
tric field due to the idealized homogeneous left ionic layer is then
readily evaluated as Eξ,L = ±ξ/(2ε0εrA)êz , where the plus (minus)
sign applies to positions to the right (left) of this ionic layer, ε0 is
the vacuum permittivity, εr is the relative permittivity of the back-
ground solvent—whose molecules are assumed to be much smaller
than the ions—and where the unit vector êz points from left to right.
Similar expressions describe the fields by all four idealized surface
charge densities. By linear combinations of these four expressions,
the field in the region between an electrode and the adjacent ionic
layer is evaluated as EQξ = −Q/(ε0εrA)êz , where the fields due to the
two oppositely charged ionic layers cancel out as both lie to the same
side of the region of interest. Similarly, in the region between the two
ionic layers, the four fields combine into Eξξ = (ξ −Q)/(ε0εrA)êz .
The total potential energy stored in these electric fields reads as

UE =
1
2

ε0εrA[2dE2
Qξ + wE2

ξξ]

=
1

2ε0εrA
[2dQ2

+ w(Q − ξ)2
]. (28)

There is also free energy stored in the non-uniform distribution
of the ions. Using the charge accumulated in the ionic monolay-
ers as a “reaction coordinate” to quantify this non-uniformity, the
corresponding free energy is approximated to the lowest order as a
quadratic in ξ. We, therefore, model the free energy of the capacitor
as

ℱ =
1
2

kQQQ2
+

1
2

kQξ(Q − ξ)2
+

1
2

kξξξ2, (29)

where the three coefficients k will be treated as fit parameters and,
in general, will depend on the details of the ions and the elec-
trodes; their extraction from the simulations is discussed below. For
a non-connected charged capacitor in thermal equilibrium, the ionic
charge accumulated at the electrodes is solved from ∂ℱ/∂ξ = 0 as

ξ =
kQξ

kξξ + kQξ
Q. (30)

Back-substitution gives the free energy as

ℱ =
kQQ(kQξ + kξξ) + kQξkξξ

2(kQξ + kξξ)
Q2. (31)

Hence, the equilibrium capacitance, Ceq, is independent of the
charge,

C−1
eq =

2ℱ
Q2 =

1
k−1

QQ
+

1
k−1

ξξ + k−1
Qξ

, (32)

which corresponds to a capacitor CQQ = 1/kQQ in series with two
parallel capacitors Cξξ = 1/kξξ and CQξ = 1/kQξ ; a symmetrized ver-
sion hereof is shown in Fig. 2. The above relation between the
charges also applies when the supercapacitor is slowly (dis)charged
at a constant temperature. Interesting behavior is expected when the
(dis)charging time scale is decreased and becomes comparable to the
evolution time scale of the ion distribution.
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FIG. 2. Equivalent circuit to the phenomenological discharging model in Eq. (34).
The two outermost capacitors of C′QQ = 2CQQ = 2/kQQ represent the energy
stored between the electrodes and ionic monolayers, the capacitor CQξ = 1/kQξ
accounts for incomplete screening of the electrode charges by the ionic mono-
layers, and the capacitor Cξξ = 1/kξξ represents the free energy stored in
the non-uniform distribution of the ions. The internal resistances R′ξ = Rξ/2
= 1/(2Mξ) oppose the flow of ions within the supercapacitor, and the external
resistance Re opposes the external flow of electric current between the electrodes.
The arrows indicate the directions of flow of positive charge carriers during dis-
charging, from the positive electrode on the right to the negative electrode on
the left, and from the positive ion layer on the left to the negative ion layer on
the right. The charging model has an additional external voltage source. The fits
of the simulations with this circuit (see Table I) indicate that the capacitor Cξξ is of
little consequence; see also Fig. 14.

The free energy model gives the generalized forces on the
charges as

FQ = −
∂ℱ
∂Q
= −kQQQ − kQξ(Q − ξ), (33a)

Fξ = −
∂ℱ
∂ξ
= kQξ(Q − ξ) − kξξξ. (33b)

Note that the generalized force experienced by the electrode
charge reproduces the potential difference between the electrodes,
FQ = −ΔV . If the two electrodes are connected by an external resis-
tance Re, as shown in Fig. 2, and assuming we are in the overdamped
regime, the generalized velocities of the charges are linear in the
forces,

Q̇ = −MQ[(kQQ + kQξ)Q − kQξξ], (34a)

ξ̇ = −Mξ[(kξξ + kQξ)ξ − kQξQ], (34b)

where Ohm’s law gives the charge mobility as MQ = 1/Re and the
ion mobility Mξ relates to the friction experienced by the ions as
they move in the electrolyte. The equivalence of these equations of
motion to the circuit in Fig. 2 is proven in Appendix A. The ana-
lytical solution of this discharge model gives a double-exponential
decay of the charges Q and ξ,

Q = AQ,+e−t/τ+ + AQ,−e−t/τ−, (35a)

ξ = Aξ,+e−t/τ+ + Aξ,−e−t/τ−, (35b)

with expressions for the amplitudes A and relaxation times
τ± derived in Appendix B. It then follows from Eq. (33a) that the

potential difference ΔV of the supercapacitor also decays double-
exponentially, with the same relaxation times. In the limit of a large
external resistance, the ions are continuously in quasi-equilibrium
with the electrode charges [see Eq. (30)], and the relaxation reduces
to a single exponential decay,

Q̇ = −MQ(kQQ +
kQξkξξ

kQξ + kξξ
)Q = −

1
ReCeq

Q. (36)

In the opposite limit of a short-circuit, Re = 0, the electrode charge
quickly drops to a quasi-equilibrium with the ions, solved from
∂ℱ/∂Q = 0 as

Q =
kQξ

kQQ + kQξ
ξ, (37)

where ξ, and hence Q, relaxes by a single exponential process,

ξ̇ = −Mξ(kQξ
kQQ

kQQ + kQξ
+ kξξ)ξ = −

1
RξCint

ξ, (38)

where the last step, by analogy with Eq. (36), combines an internal
resistance Rξ = 1/Mξ and an effective internal capacitance Cint. This
equation reflects that for Re = 0, the equivalent circuit reduces to a
resistor Rξ in series with both a capacitor Cξξ and the parallel pair
of capacitors CQQ and CQξ . This relaxation process is evidently not
affected by the external resistance; this decay law also applies to CPM
simulations where the potential difference between the electrodes is
instantaneously reduced to zero. In general, however, the dynamics
of the current external to the capacitor will affect the relaxation time
scales within the capacitor.

The charging of a capacitor, connected in series with a voltage
source and a resistor, is modeled by adding the source term Ve to
the force FQ in the equations of motion. The resulting potential dif-
ference Ve − ΔV describes the force driving the current through the
external resistor, and multiplication by the charge mobility gives this
current as

Q̇ = −MQ[(kQQ + kQξ)Q − kQξξ − Ve]. (39)

The solution in combination with Eq. (34b) again yields a double
exponential relaxation, but this time to an equilibrium state with
ΔV = Ve; see Appendix B.

III. SIMULATION SETUP
Simulations are performed in the Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS),49

using a slight modification of the CPM routines by Wang et al.13

to calculate the A matrix for point-charge electrode atoms;43 the
CPM and CSCM codes are available on GitHub.50,51 We consider an
aqueous electrolyte with monovalent ions between two fixed parallel
graphene-like layers with a separation of H = 4 nm. Each layer
consists of 960 atoms, covering an area of A = 25.15 nm2 at a bond
length of 0.142 nm. The simulation box is periodically repeated in
the two Cartesian directions parallel to the electrode surfaces; in the
third direction, perpendicular to the slab, periodic copies of the box
alternate with empty spaces of height 2H. The electrolyte consists of
51 or 156 pairs of monovalent ions. Excluded volume interactions
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between all atoms are described by the Weeks–Chandler–Andersen
(WCA) pair potential,

u(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4ε[(
σ
r
)

12
− (

σ
r
)

6
] + ε, r < 21/6σ,

0, r > 21/6σ,
(40)

with strengths ε = kBT at temperature T = 298 K and diameters
σ = 0.5 nm. As explained elsewhere,43 the potentials on the elec-
trode atoms due to the ions, Bq, are readily calculated using stan-
dard electrostatics routines. The charge-related forces on the ions
[see Eq. (12)] can also be calculated by standard electrostatics rou-
tines. We here use the Particle–Particle Particle–Mesh (PPPM)
method,39 with a cutoff of 1.2 nm in real space and a relative tol-
erance of 10−6 for the long-range forces, including a correction for
the slab geometry.52 In the absence of an explicit solvent, the screen-
ing of Coulombic interactions by an aqueous electrolyte must be
included in the model to prevent the ions from crystallizing. A com-
mon expedient is to introduce a water-like relative permittivity of
εr = 78. The resulting scaling of Coulombic energies and forces is
appropriate for ions separated by many water molecules, while at
shorter distances the interaction will depend on the actual configu-
ration of the water molecules; the variable charges on the electrode
atoms very effectively screen Coulombic interactions within the elec-
trodes. This dielectric is implemented here by dividing all charges
by
√

εr , multiplying potentials with
√

εr , and multiplying the exter-
nal resistance by εr ; this scaling is reversed in the simulation values
reported below. In the absence of an explicit solvent exposing the
ions to friction and perpetual Brownian motion, its impact on the
dynamics of the ions is incorporated into the Langevin equation of
motion,

mr̈i = −γṙi + fi + f R
i (t), (41)

with m = 50 a.m.u. being the mass of the ions, the dots denoting time
derivatives, γ = 2.26 a.m.u./fs being the Stokesian drag coefficient for
a sphere of diameter σ in water, f i being the conservative force acting
on the ion, and f R

i being a random force; the latter has zero mean, no
time correlations (Markovian), no correlations between ions, and a
variance that is related by the fluctuation–dissipation theorem to the
drag coefficient and the temperature. The integration time step is set
at 0.5 to 5 fs.

IV. RESULTS AND DISCUSSION
A. Equilibrium

The electrode charge vs voltage curves of the system with 156
ion pairs, as calculated using CPM at various potentials and CSCM
at various electrode sum charges, are shown in Fig. 3. The good
agreement between both curves implies that both methods agree on
the capacitance and differential capacitance of this capacitor, despite
sampling distinct ensembles; we also see excellent agreement with
classical Density Functional Theory (DFT) calculations on a system
closely resembling the current system.53 A CPM simulation at fixed
ΔV = 0.4 V yields an average electrode charge of ⟨Q⟩ΔV = 40.68 e;
a subsequent CSCM simulation fixing the electrode charge at this
value results in an average potential difference of ⟨ΔV⟩Q = 0.401
V, in good agreement with the preceding CPM simulation. The
distribution of the instantaneous potential relative to this average

FIG. 3. Charge vs voltage for the supercapacitor containing 156 ion pairs. In
CSCM, the average voltage difference between the electrodes varies with their
imposed sum charge, while in CPM, the average electrode charge varies with the
imposed potential difference. The solid line represents classical density functional
theory calculations on a nearly identical system.53

FIG. 4. Natural logarithm of the probability density distribution p of the potential dif-
ference between the electrodes ΔV for the system with 156 ion pairs at electrode
charge Q = 40.68 e. The straight line represents a Gaussian distribution with an
average of 0.401 V and a standard deviation of 0.025 V.

follows a Gaussian distribution, as illustrated in Fig. 4. Its stan-
dard deviation is related to the differential capacitance, as derived in
Eq. (26). The ion-free capacitor contributes C0 = 27.32 e/V, which
agrees very well with the idealized value of CH = ε0εrA/H = 27.10
e/V for this system; upon normalization by the area of the electrode,
the former corresponds to C0/A = 17.41 μF/cm2. The resulting dif-
ferential capacitance is plotted in Fig. 5 against the average potential,
as obtained by simulations at several fixed values of the electrode
charge. A good agreement is observed with the differential capaci-
tance deduced from the charge fluctuations at a constant potential
difference;53 see Eq. (20). The line in Fig. 5 shows the numerical
derivative of the charge–voltage characteristic obtained by (DFT)
calculations on a system closely resembling the current system.53

In view of the above agreement between CPM and CSCM, it is
to be expected that they will also agree on ion distributions between
the electrodes. Figure 6 shows three examples illustrating the excel-
lent agreement, even though, as stated before, the two methods
sample different ensembles. In each case, a CPM simulation at a fixed
potential difference is compared against a CSCM simulation with the
surface charge fixed at the average surface charge in the CPM sim-
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FIG. 5. Differential capacitance for the system in Fig. 3, as deduced from the poten-
tial fluctuations at a constant surface charge in CSCM and the surface charge
fluctuations at constant potential in CPM.53 The solid line represents classical
density functional theory calculations on a nearly identical system.53

ulation. The resulting average potentials in the CSCM are close to
their fixed values in the CPM, at 0.203, 0.401, and 1.999 V vs 0.2, 0.4,
and 2.0 V, respectively. The ion distributions of the first and third
examples also agree with DFT calculations on nearly identical sys-
tems; see Figs. 4 and 5(f) in Ref. 53, respectively. With an increasing
potential difference, the ions form layers of increasing compactness
against the electrodes. For the 156 ion pair system—which will be
the focus of the remainder of this study—at 0.4 V [see Fig. 6(b)],
the layer adjacent to the electrode (as defined by the two minima at
either side of the density peak) contains about 40 counterions, with
the remaining ∼ 110 counterions fairly homogeneously distributed
between the two counterion peaks. Because the counterions next to
the electrodes at 2 V form a closely packed hexagonal layer that does
not fully compensate for the electrode charge, a non-saturated sec-
ond layer of counterions forms; see Fig. 6(c). A small dozen of ion
pairs are free to roam in the interior of the capacitor, although their
non-uniform distribution suggests they are not completely screened
from the electrode charges.

B. Charging and discharging
The capacitor will gradually discharge when the two electrodes

are connected by an external resistance. Figure 7 shows the poten-
tial difference, ΔV , and the charge on the electrodes, Q, as functions
of time for the 156 ion pair system discharging from equilibrated
configurations at initial charges of Q0 = 40.68 and 142.70 e, corre-
sponding to ΔV ≈ 0.4 and ≈2.0 V, respectively. The strength Re of
the external resistor has been varied in the CSCM simulations to
sample several orders of magnitude in external current relaxation
time, estimated as τe = ReC0, with C0 the capacitance of the ion-free
capacitor. A relaxation time of 100 fs is realized with a resistance of
3.66 V fs/e = 22.8 kΩ. The shortest relaxation time is realized using
CPM, where the potential difference is instantaneously reduced to
zero; this elimination of the driving force of the external current by
a short circuit, Re = 0, implies τe = 0. Removing the potential dif-
ference from the charge calculation in Eq. (5), or its charge-neutral
equivalent obtained by replacing A−1

p with Sp,43,46 does not instan-
taneously drop the electrode charges to zero. Rather, the pull by the
electrolyte ions binds a residual QR ≈ (2/3)Q0 at the electrodes; see

FIG. 6. Density profiles for anions and cations, differing only in the sign of their
charge, between two identical electrodes. The cation profiles are mirrored to high-
light this symmetry. The main plots present profiles for simulations conserving sum
charges on both electrodes (CSCM), while the insets show the differences with
simulations maintaining a constant potential difference between the electrodes
(CPM), ρΔ

±
= ρCSCM
±
− ρCPM
±

, for (a) 51 ion pairs at ΔV = 0.2 V vs Q = 16.15 e,
(b) 156 ion pairs at ΔV = 0.4 V vs Q = 40.68 e, and (c) 156 ion pairs at ΔV = 2.0 V
vs Q = 142.70 e.

Figs. 7(c) and 7(d). The capacitor is now in a non-equilibrium sit-
uation where reduced electrode charges allow ions to diffuse out of
the double layer, which in turn allows charge to flow through the
external circuit. The resulting near-exponential decay of the elec-
trode charge is represented by the green lines in Figs. 7(c) and 7(d).
This process continues until the charges on the electrodes merely
fluctuate around zero due to the perpetual thermal motions of the
ions.

When the capacitor discharges through a resistor, as in CSCM,
the initial instantaneous drop of the potential and charge are
replaced by transient decays. Their relaxation times and resid-
ual voltage increase with increasing external resistance, while the
residual charge is much less affected; see Fig. 7. Following these tran-
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FIG. 7. [(a) and (b)] The voltage difference and [(c) and (d)] the electrode charge during discharging of the supercapacitor with 156 ion pairs, from (a) and (c) Q = 40.68 e
and ΔV ≈ 0.4 V or (b) and (d) Q = 142.70 e and ΔV ≈ 2.0 V, through an external resistor. Charges are expressed in terms of elementary charges, and voltages are in volts.
The legend indicates the values of the external relaxation time τe = ReC0, based on the external resistance Re selected in the CSCM simulations and the capacitance of the
ion-free capacitor C0. The instantaneous removal of the potential difference in the CPM simulation is equivalent to a short-circuit, Re = 0. The simulation data (solid lines) are
fitted with a double-exponential decay, yielding the fit parameters in Table I. These parameters are next used to determine the capacitances and resistances in the equivalent
circuit (see Fig. 2) and, finally, to plot the discharge curves of this circuit (dashed lines). The inset shows the same curves on an extended time scale. Voltages are shown
until the first time they cross zero. Each solid line is the average of two independent runs.

sient decreases, the various voltage and charge curves display slow
declines with approximately parallel slopes (ΔV) or nearly overlap-
ping lines (Q). To quantify the relaxation processes, the data are
fitted with a double-exponential decay,

y(t) = Ay,1e−t/τy,1 + Ay,2e−t/τy,2, (42)

where y = Q or ΔV , two amplitudes Ay,1 and Ay,2, and two relaxation
times τy,1 and τy,2. As noted in Sec. II C, this is an analytic solu-
tion to our model circuit. The resulting fit parameters are collected
in Table I, where the ordinal number 1 is assigned to the mode with
the largest relaxation time, τy,1 > τy,2. It can be seen there that the
relaxation time of the second mode strongly resembles the external
relaxation time, τy,2 ≈ τe, while the relaxation time of the first mode
appears to be independent of the external relaxation time, especially
for the fits to the electrode charges (in general, the charge curves
yield better fits than the potential curves because the former is much
less affected by thermal noise than the latter; see Fig. 4). This suggests
that the second mode represents relaxation by the external current,
while the first mode relates to the dynamics of the ions. To validate
the latter attribution, we altered the mobility of the ions at constant
external relaxation time. Upon increasing (decreasing) the friction

parameter γ in the Langevin equation of motion by a factor of 10,
the relaxation times τy,1 decrease (increase) by a factor of ∼ 7.5, while
τy,2 remains essentially constant; see Table II. The modest disagree-
ment between these two scaling factors is due to the conservative
force in the second order Langevin equation not being proportional
to the friction; varying γ changes the relative importance of conser-
vative and solvent forces rather than uniformly rescaling all forces.
The table also shows that the amplitudes are hardly affected by the
friction. We furthermore note that the single exponential relaxation
process simulated by CPM closely resembles the first mode of the
double exponential relaxation process in CSCM, thereby confirming
the attribution of internal and external dynamics.

The slower the capacitor discharges, the closer the evolv-
ing ion distributions will adhere to the equilibrium distributions
at the prevalent potential difference, or sum charge. Hence, by
increasing the external resistance in the simulations to the limit
of very slow discharging, τe ≫ τy,1, the observed relaxation pro-
cess ought to converge to the ideal macroscopic discharge curve
for a capacitor continuously in equilibrium. The latter is obtained
as

Cdiff
dΔV

dt
=

dQ
dt
= −

ΔV
Re

, (43)
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TABLE I. Amplitudes Ay,i and relaxation times τy,i of the double exponential fit to the electrode charges y = Q (in elementary charges e) and potential difference y = ΔV (in
volts) while discharging the capacitor containing 156 ions from two initial charges Q0; see Fig. 7. In CSCM, the value of the external resistance is varied to cover a range of
external relaxation times, τe = ReC0, with C0 being the capacitance of the ion-free capacitor; in CPM, the two electrodes discharge by a short-circuit, τe = Re = 0. Simulation
results, averaged over two independent runs at the same conditions, are fitted over the first 100 ps, i.e., at least ten times the slowest τe. The three energy coefficients k defined
by Eq. (29) and the internal friction Mξ of Eq. (34b) are extracted from these fit parameters by fitting against the theoretical prediction; see Eq. (48) and Appendix B. Their
averaged values over five initial charges Q0 (see Fig. 13) are reported in the bottom line of the table.

Q0 (e) y τe (fs) Ay,1 (y) τy,1 (fs) Ay,2 (y) τy,2 (fs) kQQ (V/e) kQξ (V/e) kξξ (V/e) Mξ [e/(V fs)]

40.68

Q

0 2.98 × 101 2.24 × 105
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

102 2.92 × 101 2.12 × 105 1.13 × 101 1.12 × 102 8.98 × 10−3 2.36 × 10−2 1.06 × 10−4 7.14 × 10−4

103 2.92 × 101 2.33 × 105 1.07 × 101 1.28 × 103 7.60 × 10−3 2.06 × 10−2 1.06 × 10−4 7.70 × 10−4

104 3.24 × 101 2.04 ⋅ 105 8.42 ⋅ 100 8.33 ⋅ 103 1.04 ⋅ 10−2 2.78 ⋅ 10−2 1.06 ⋅ 10−4 7.35 ⋅ 10−4

ΔV
102 6.22 × 10−4 6.87 × 104 6.12 × 10−1 7.95 × 101 2.03 × 10−2 1.36 × 10−2 1.02 × 10−4 1.50 × 10−3

103 4.97 × 10−3 2.09 × 105 3.73 × 10−1 1.04 × 103 9.27 × 10−3 2.51 × 10−2 9.88 × 10−5 6.88 × 10−4

104 5.83 × 10−2 1.81 × 105 3.60 × 10−1 8.54 × 103 1.04 × 10−2 2.61 × 10−2 9.91 × 10−5 8.07 × 10−4

142.70

Q

0 8.54 × 101 1.40 × 105
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

102 8.50 × 101 1.44 × 105 5.51 × 101 1.24 × 102 1.14 × 10−2 1.80 × 10−2 1.07 × 10−4 9.82 × 10−4

103 8.63 × 101 1.44 × 105 5.48 × 101 1.17 × 103 1.22 × 10−2 1.87 × 10−2 1.07 × 10−4 9.39 × 10−4

104 9.52 × 101 1.63 × 105 4.63 × 101 1.06 × 104 1.27 × 10−2 1.81 × 10−2 1.07 × 10−4 9.07 × 10−4

ΔV
102 2.67 × 10−3 8.64 × 104 1.75 × 100 1.08 × 102 1.34 × 10−2 1.76 × 10−2 1.07 × 10−4 1.33 × 10−3

103 2.70 × 10−2 9.02 × 104 1.95 × 100 1.02 × 103 1.48 × 10−2 1.83V10−2 1.07 × 10−4 1.24 × 10−3

104 2.96 × 10−1 9.34 × 104 1.71 × 100 8.77 × 103 1.49 × 10−2 1.90 × 10−2 1.07 × 10−4 1.30 × 10−3

⟨⋅ ⋅ ⋅⟩ Q 1.01 × 10−2 1.98 × 10−2 1.06 × 10−4 8.93 × 10−4

TABLE II. Influence of the ion friction parameter γ [see Eq. (41)] on the double exponential relaxation [see Eq. (42)] of the charge and potential for the capacitor with 156 ion
pairs. Discharge starts at Q0 = 142.70 e, equivalent to ∼ 2.0 V; the external relaxation time is fixed at τe = 103 fs.

γ (a.m.u./fs) y Ay,1 (y) τy,1 (fs) Ay,2 (y) τy,2 (fs) kQQ (V/e) kQξ (V/e) kξξ (V/e) Mξ [e/(V fs)]

0.226 Q 8.72 × 101 1.02 × 106 5.50 × 101 1.03 × 103 1.36 × 10−2 2.18 × 10−2 1.00 × 10−4 1.16 × 10−4

ΔV 4.03 × 10−3 1.32 × 105 1.83 × 100 1.05 × 103 1.98 × 10−2 2.57 × 10−3 2.32 × 10−4 2.93 × 10−3

2.26 Q 8.63 × 101 1.44 × 105 5.48 × 101 1.17 × 103 1.22 × 10−2 1.87 × 10−2 1.07 × 10−4 9.39 × 10−4

ΔV 2.70 × 10−2 9.02 × 104 1.95 × 100 1.02 × 103 1.48 × 10−2 1.83 × 10−2 1.07 × 10−4 1.24 × 10−3

22.6 Q 9.61 × 101 1.87 × 104 4.62 × 101 9.74 × 102 1.34 × 10−2 2.07 × 10−2 1.08 × 10−4 7.16 × 10−3

ΔV 1.97 × 10−1 1.72 × 104 1.80 × 100 9.24 × 102 1.40 × 10−2 2.15 × 0−2 1.08 × 10−4 7.31 × 10−3

where the first step follows from the definition of differential
capacitance and the second step employs Ohm’s law. This differ-
ential equation for ΔV(t) is numerically solved using MATLAB’s
Runge–Kutta routine ODE45,54 based on a linear interpolation of the
smooth differential capacitance curve calculated by DFT; see Fig. 5.
Integration of this result, using the second equality in the above
equation, then yields the charge evolution, Q(t). Figure 8 shows
that the simulation results indeed converge to this theoretical curve
with increasing external relaxation time. A close agreement between
simulations and the ideal system is realized only when the external
relaxation time well exceeds the capacitor’s intrinsic relaxation time
τy,1, which is reached for τe = 106 fs (green lines). These discharge

curves also allow for a calculation of the total energy delivered up to
time t,

Eout(t) = ∫
t

0
ΔV(t′)I(t′)dt′, (44)

executed here using MATLAB’s CUMTRAPZ routine.54 This energy
increases when the capacitor is discharging through a larger exter-
nal resistance (see Fig. 9), with the upper limit set by the ideal
continuous-equilibrium process. Note that these energy curves
nearly coalesce for short rescaled times, with the common initial
power delivery P(0) ≈ 70 eV/(ReC0). Conventional theory gives the
power as P = (ΔV)2

/Re, which under the present conditions trans-
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FIG. 8. (a) The potential difference and (b) the total electrode charge when dis-
charging the 156 ion pair supercapacitor from Q0 = 142.70 e for several values of
the external resistance as indicated by the external relaxation times τe = ReC0 in
the legend. The dashed lines for τe =∞ apply to the ideal situation of continu-
ous equilibrium, as calculated using Eq. (43) and the equilibrium DFT differential
capacitance in Fig. 5. Note that the equilibrium curves are not straight lines
due to the non-constant differential capacitance of this supercapacitor; the devi-
ations from these curves in the simulations highlight the impact of non-equilibrium
conditions on the discharging behavior.

FIG. 9. Cumulative energy delivered by the supercapacitor discharging from
Q = 142.70 e (ΔV ≈ 2 V) as a function of time. The total delivered energy
increases with increasing external relaxation time, τe = ReC0, as indicated in the
legend. The dashed curve describes the idealized situation for ion distributions in
continuous equilibrium with the electrode charges.

lates into P(0) ≈ 109 eV/(ReC0), in reasonable agreement with the
simulations. The supercapacitor can deliver this power over a period
of about 0.5τe for small external resistances, or about τe for large
external resistances, after which time the capacitor is essentially
drained.

The charging process of the supercapacitor is simulated by con-
necting it in series with a voltage source at a fixed potential difference
of Ve = 0.4 or 2.0 V and a resistance of Re. In CPM, the poten-
tial differences between the electrodes jump instantaneously to their
final values, Ve; see Figs. 10(a) and 10(b). The electrode charges
likewise jump to plateau values [see Figs. 10(c) and 10(d)], which
correspond to about 25% and 40% of their final equilibrium val-
ues at Ve = 0.4 and 2.0 V, respectively, followed by a slow rise on
a timescale τy,1 comparable to its counterpart observed under dis-
charging. In CSCM, the transient jumps are replaced by smooth,
rapidly rising curves converging to similar plateau values, followed
by slow growths with common slopes on the logarithmic scale. The
potential difference and electrode charge are reasonably well fitted
with the double exponential function

y(t) = Ay,1[1 − e−t/τy,1] + Ay,2[1 − e−t/τy,2], (45)

yielding the fit parameters of Table III, where the ordinal number
1 again is assigned to the mode with the largest relaxation time.
The relaxation times for different external resistances are similar to
their counterparts for the discharging process, with the exception
of the fit to the rapidly converging potential for the simulations at
0.4 V. The second mode again follows the external relaxation time,
τy,2 ≈ τe, while the relaxation time of the first mode is fairly con-
stant. In the simulation with an external source at 2.0 V, the fitted
amplitudes for the charge are remarkably close to their counterparts
for the discharging simulations from this potential. This observation
suggests that the discharging dynamics, with peaked ion distribu-
tions collapsing into a homogeneous distribution, and the charging
dynamics, with a homogeneous ion distribution contracting into
sharp peaks, can be described on the macroscopic level by the same
evolution equations. This is a confirmation of the tacit assump-
tion underlying the phenomenological model in Eq. (34), i.e., the
equivalent circuit.

The energy provided by the external potential source during
charging is absorbed by the capacitor and the external resistor. Both
contributions are shown in Fig. 11 for three values of the external
resistor, where the cumulative energy transferred to the capacitor up
to time t decreases with increasing external relaxation time, while
that transferred to the resistor increases with increasing τe. The
power provided by the voltage source is given by Pe(t) = VeI(t),
irrespective of the distribution of this power over the resistor and
capacitance. The total energy provided to reach equilibrium follows
from

Ee = ∫

∞

0
Pe(t)dt = Ve∫

∞

0
I(t)dt = VeQ(Ve), (46)

where Q(Ve) is the equilibrium charge at the imposed potential dif-
ference; see Fig. 3. Interestingly, this energy is a function of Ve only
and does not depend on the external resistor. For a capacitor that has
reached equilibrium at Ve, the maximum energy it can deliver is also
a function of this Ve. It then follows that the energy lost while charg-
ing to equilibrium, i.e., the energy that cannot be retrieved upon
discharging, depends on Ve but not on Re. However, the external
resistor does determine the relative distribution of the loss over the
two circuit components. The loss in the capacitor is clearly visible
in Fig. 11, where the energy absorbed during charging systematically

J. Chem. Phys. 160, 044111 (2024); doi: 10.1063/5.0177103 160, 044111-11

© Author(s) 2024

 13 February 2024 08:55:40

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 10. (a) and (b) The voltage difference and [(c) and (d)] the electrode charge for the system with 156 ion pairs during charging. The initially uncharged capacitor, Q = 0,
is connected in series with an external resistance Re and a potential source of [(a) and (c)] Ve = 0.4 V or [(b) and (d)] 2.0 V. The legend indicates the values of the external
relaxation time τe = ReC0, based on the external resistance Re selected in the CSCM simulations and the capacitance of the ion-free capacitor C0. The instantaneous
imposition of the potential difference in the CPM simulation corresponds to Re = 0. The simulation data (solid lines) are fitted with double-exponential curves, yielding the fit
parameters of Table III. The charging process of the equivalent circuit (dashed lines) is based on the capacitances and resistances extracted from the discharging simulations.
In the potential plots, the thermal fluctuations in ΔV give rise to a non-zero initial voltage for an uncharged capacitor and some irregular behavior that is most pronounced
when the electrode charge and the corresponding potential difference are small, i.e., for short times and under the slowest charging conditions (purple lines).

exceeds the maximum energy of 124 eV returned during discharg-
ing (see Fig. 9); this difference is lost as heat to the environment,
which is modeled in the simulations by the thermostatting property
of the Langevin equation of motion. The loss in the capacitor can
be made to vanish by maintaining equilibrium, i.e., in the limit of
very slow charging. For an ideal conventional capacitor, with Q(Ve)

= CVe, the energy stored in the capacitor reads as Ec(Ve) = CV2
e /2

and it follows from Eq. (46) that an equal amount is lost as heat in the
resistor.55 The energy stored in the supercapacitor can be expressed
as

Ec(Ve) = ∫

Q(Ve)

0
V(Q)dQ = Ee − ∫

Ve

0
Q(V)dV , (47)

where the last step follows from the graphical interpretation of
the two integrals as together describing the area VeQ(Ve) = Ee of
a rectangle in the Q–V plane. Equation (47) highlights that the
unavoidable energy loss during charging in this setup is given by
the integral of Q(V), i.e., the area under the charge–voltage curve
in Fig. 3. For an ideal conventional capacitor, this curve is a straight
line, equally splitting the supplied energy into stored and lost energy.
The concave curve of the present supercapacitor, with a differential

capacity that decreases with increasing voltage, makes the total loss
of 162 eV exceed the storage of 124 eV; a convex shape, with a dif-
ferential capacity that increases with voltage, would be advantageous
in the present charging procedure. If the capacitor is removed from
the charging circuit after a finite time t, the total energy supplied by
the external source, Ee(t), will be less than the limit in Eq. (47). In
the disconnected state, the sum charges Q on the electrodes remain
constant while the ion distributions may still evolve. The final equi-
librium of a thermostatted capacitor will be attained for a voltage
that can be read off in Fig. 3 at that Q, and said curve also enables
a calculation of the stored energy, Ec. Plotting this Ec against Ee(t)
(see Fig. 12) highlights that the energy supplied at the start of the
simulation, i.e., for ΔV ≪ Ve, is largely lost; the energy supplied
at the end of the simulation, i.e., for ΔV ≈ Ve, is efficiently stored.
Interestingly, the curves for three relaxation times nearly overlap,
suggesting that this system is remarkably insensitive to the charg-
ing rate. Note that a capacitor can be charged without energy loss to
a resistor by directly connecting the capacitor to an external source
and smoothly increasing the potential of that source from zero to the
desired final value,55 although this will not eliminate losses caused by
non-equilibrium conditions in the capacitor.
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TABLE III. Fit parameters for charging [see Eq. (45)] the supercapacitor with 156 ion pairs by coupling to an external voltage
source Ve through an external resistance Re.

Ve (V) y τe (fs) Ay,1 (y) τy,1 (fs) Ay,2 (y) τy,2 (fs)

0.4

Q

0 2.22 × 101 1.03 × 105 1.08 × 101 0
102 1.06 × 102 7.46 × 105 1.09 × 101 1.05 × 102

103 1.80 × 101 9.33 × 104 1.01 × 101 9.30 × 102

104 1.61 × 101 4.81 × 104 5.22 × 100 6.96 × 103

ΔV
102 3.89 × 10−1 1.01 × 102 1.09 × 10−2 2.19 × 100

103 6.93 × 10−3 1.89 × 104 3.90 × 10−1 8.83 × 102

104 3.54 × 10−1 9.97 × 103 8.61 × 10−3 3.20 × 10−1

2.0

Q

0 8.88 × 101 8.99 × 104 5.53 × 101 0
102 8.90 × 101 9.51 × 104 5.47 × 101 1.01 × 102

103 8.57 × 101 8.22 × 104 5.27 × 101 9.84 × 102

104 1.08 × 102 1.02 × 105 3.49 × 101 7.91 × 103

ΔV
102 3.55 × 10−3 8.53 × 104 2.00 × 100 9.83 × 101

103 3.93 × 10−2 7.45 × 104 1.96 × 100 9.62 × 102

104 4.01 × 10−1 1.08 × 105 1.61 × 100 7.85 × 103

FIG. 11. Cumulative energies Ein delivered to the supercapacitor (solid lines) and
the external resistor (dashed lines) up to time t during charging of the supercapac-
itor by an external potential source at Ve = 2.0 V. The legend denotes the external
relaxation times.

C. Equivalent circuit
In Sec. IV B, we established that the best fits are obtained from

the charge during the discharging process. We, therefore, simulate
this process for three external relaxation times and five values of
the initial electrode charge, corresponding to increasing the initial
potential difference from 0.4 to 2.0 V in steps of ≈ 0.4 V. Converting
the extracted amplitudes AQ,i and relaxation times τQ,i into the three
energy coefficients k and friction parameter Mξ of the equivalent
circuit [see Eqs. (29) and (34)] is involved: the proposed equiva-
lent circuit is readily solved to express the theoretical amplitudes
AQ,± and relaxation times τ± in terms of the energy coefficients and
friction parameter by using the formal solution in Appendix B, but
inverting these equations into explicit expressions for the k’s and Mξ

FIG. 12. Energy stored in the supercapacitor, Ec , as a function of the total energy
supplied by a Ve = 2.0 V external source, Ee(t), if the charging circuit is broken
at time t and the supercapacitor is next allowed to equilibrate under thermostatted
conditions. The legend denotes the external relaxation times during charging. The
nine markers for τe = 104 fs are equidistant in time, while for the two smaller τe

only the end points after 250 ps are marked. While Ec grows to its limiting value,
the slope of the curve steadily increases from zero to unity.

does not look promising. Therefore, we numerically minimize the
function

f =
2

∑
i=i
(

AQ,i

AQ,±(i)
− 1)

2

+
2

∑
i=i
(

τQ,i

τ±(i)
− 1)

2

(48)

with respect to the four model parameters entering the analytical
expressions for AQ,± and τ±, where the subscripts in the denomi-
nators are to be read as ±(1) = + and ±(2) = −. Minimization in
Microsoft Excel results in two solutions for each data set, depend-
ing on the initial guesses of the k’s and Mξ . The two solutions
differ in the value of kξξ , which converges to either ≈ 1 × 10−4 V/e

J. Chem. Phys. 160, 044111 (2024); doi: 10.1063/5.0177103 160, 044111-13

© Author(s) 2024

 13 February 2024 08:55:40

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

or ≈ 2 × 10−4 V/e, while the values for the other parameters dif-
fer only slightly between the two minima. These fitted values of
kξξ are two orders of magnitude smaller than the fitted values of
kQQ and kQξ , indicating that the ξ2 contribution to the free energy
of Eq. (29) is negligible. Furthermore, the difference in the result-
ing amplitudes and relaxation times upon using either value of
kξξ is negligible, and even inserting kξξ = 0 changes their values by
a few percent at most. We, therefore, conclude that there is lit-
tle to choose between the two fits and that the capacitor Cξξ may
be removed from the equivalent circuit in Fig. 2, thereby arriv-
ing at the simplified equivalent circuit in Fig. 14. Equivalent circuit
parameters extracted from the discharge simulations in Fig. 7 are
collected in Table I; the parameters for the aforementioned wider
collection of discharge simulations are presented in Fig. 13. They all
vary within ∼ 20% of their respective averages, with the trendlines
in the figure suggesting a weak dependence on the initial charge
Q0; there does not appear to be a systematic dependence on the

FIG. 13. Fit parameters for the equivalent circuit model extracted by discharging
the capacitor from five initial charges Q0 for the three external relaxation times
indicated in the legend. The corresponding initial potential differences increase
with Q0 from 0.4 to 2.0 V in steps of 0.4 V. Cubic functions are fitted as guides to
the eye.

FIG. 14. Simplification of the equivalent circuit in Fig. 2, based on fits to the
simulations. The two outermost capacitors of C′QQ = 2CQQ = 2/kQQ represent
the energy stored between the electrodes and ionic monolayers; the capacitor
CQξ = 1/kQξ accounts for incomplete screening of the electrode charges by the
ionic monolayers. The internal resistance Rξ = 1/Mξ opposes the flow of ions
within the supercapacitor, and the external resistance Re opposes the external
flow of electric current between the electrodes. In this reduced model, Ceq = CQQ
= C′QQ/2 and Cint = CQQ + CQξ .

external resistance; see also Table I. The average values extracted
from these data are reported in the bottom line of Table I. For
the components of the equivalent circuit in Fig. 14, we then obtain
C′QQ = 2.0 × 102 e/V = 1.2 × 102 μF/cm2, CQξ = 51 e/V = 32 μF/cm2,
Cξξ = 0, and R′ξ = 5.6 × 102 V fs/e = 3.5 × 105 Ω. The first of these
values agrees remarkably well with the capacitance of Cd = ε0εrA/d
= 2.2 × 102e/V expected for two homogeneous surface charges sep-
arated by a distance d [see Fig. 1 and Eq. (28)] when this distance is
approximated as the radius σ of the WCA potential. The equilibrium
capacitance of the simplified equivalent circuit is then evaluated as
Ceq = C′QQ/2 = 62 μF/cm2, similar to the differential capacitance in
the low-voltage range in Fig. 5. While the simple model of Eq. (28)
predicts CQξ to be equal to

Cw =
ε0εrA

w
≈ CH , (49)

where the last holds under the condition H ≈ w≫ d, the actual value
is almost twice the capacitance of the ion-free capacitor. The macro-
scopic ion mobility Mξ is related to the microscopic mobility of
individual ions, which in turn is related to the ionic self-diffusion
coefficient of Dion = 6.56 × 10−6 cm2/s for the bulk electrolyte, as
discussed in Appendix C. The discharge curves of the equivalent
circuit using these average parameters match reasonably well with
the simulations at three external resistances; see the dashed lines in
Fig. 7. The same parameters also yield a reasonable agreement with
the charging simulations (see the dashed lines in Fig. 10), although
these simulations are not included in the extraction of the circuit
components.

Several arguments may explain the modest discrepancies
between the equivalent circuit and the molecular dynamics simu-
lations. The model predicts a constant differential capacitance [see
Eq. (32)] in contrast to the simulations; see Fig. 5. Evidently, the
phenomenological equations underlying the equivalent circuit are
merely crude approximations, ignoring any details on the actual ion
distributions. The derivation in Appendix C suggests that the ion
mobility Mξ will vary with the ion distribution. The argumentation
behind Eqs. (28) and (29) may constitute a justifiable model for ions
forming a monolayer adjacent to each electrode, but in the simu-
lated capacitor, an incomplete second layer develops at the higher
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FIG. 15. Six discharge simulations at τe = 102 fs, starting from distinct micro-
scopic configurations corresponding to the same macroscopic initial charge
Q0 = 142.70 e. The average over the six simulations (black solid line) is fitted with
a triple exponential function (black dashed line). The inset illustrates the fast initial
decay related to the external resistor; the main figure shows a slow second expo-
nential decay until ∼ 100 ps and a slower third exponential decay for longer times.
Although there is a substantial electrode charge left after 100 ps, the change in the
slope is of little practical relevance because this supercapacitor has completely
released its energy content by t = 5τe = 0.5 ps; see Fig. 9.

electrode charges; see Fig. 6(c). A closer look at the supercapacitor
discharging from the highest initial charge (see Fig. 15) reveals signs
of a triple-exponential decay. Upon fitting the charge relaxation
curve over a longer time span and a larger set of simulations, we
obtain relaxation times of 1.03 × 102, 4.62 × 104, and 2.20 × 105 fs,
with corresponding amplitudes of 55.0, 23.0, and 64.4 e. The first
time again matches the fast external relaxation time of 102 fs,
while the last time lies remarkably close to the slow internal time
τQ,1 = 2.12 × 105 fs when discharging from a low initial charge of
40.68 e (see Table I) with only a partial monolayer adjacent to the
electrodes; see Fig. 6(b). It is, therefore, tempting to speculate that
this largest relaxation time is related to the ionic monolayer near-
est the electrode, while the intermediate relaxation time applies to
the weaker bound next-nearest ionic layer. The τQ,1 = 1.44 × 105 fs
reported in Table I for discharging from 142.70 e, which lies between
the two largest times of the triple fit, would then appear as an effec-
tive relaxation time accounting for these two layers collectively, and
the sum of their amplitudes, 87.4 e, matches with the AQ,1 in Table I.
However, whereas Fig. 15 locates the transition between the second
and third regimes at around 100 ps, visual inspection of instanta-
neous density profiles suggests that the second layer has disappeared
by about 30 ps.

Earlier, we noted that a ten-fold increase (decrease) of the fric-
tion parameter γ in the equation of motion resulted in a ∼ 7.5-fold
decrease (increase) of the relaxation times τy,1, but hardly affected
the other fit parameters. From the analysis in Table II, especially
from the charge relaxation, it is clear that these changes of γ generate
a ≈ 8-fold increase (decrease) in Mξ , with no systematic impact on
the other three circuit parameters. This confirms the identification
of Mξ as related to the mobility of ions in the electrolyte.

An additional set of simulations is undertaken using a distance
between the electrodes tripled to H = 12 nm. For this system, the
number of ion pairs is increased to 520 to recover the previous ion
densities in the center and at the electrodes of the reference system
of 156 ion pairs at Ve = 0.4 V. The fit parameters extracted from the
double exponential discharge curves, for relaxation times from 102

to 104 fs, yield a slow mode that is more pronounced and slowed
down relative to its counterpart in Table I, with AQ,1 ≈ 38 e and
τQ,1 ≈ 5 × 105 fs, while the fast mode has been reduced to AQ,2 ≈ 3 e
with relaxation times about three times shorter than those in Table I.
The extracted CQQ for the equivalent circuit remains unchanged,
indicating that the electric double layers are not affected by the
distance between the electrodes, while the CQξ due to interactions
between the two double layers is reduced by a factor of about four, in
line with the earlier expectation that this capacitance scales inversely

FIG. 16. (a) The relaxation times τy,i of the charge (blue markers) and voltage
(green markers) in the simulations, along with the theoretical relaxation times τ±
of the fitted equivalent circuit (solid lines), plotted against the external relaxation
time τe. Triangles pointing up and left denote the slowest i = 1 and fastest i = 2
modes, respectively, when discharging from Q(0) = 40.7 e or ΔV(0) = 0.4 V;
triangles pointing down and right represent their counterparts when discharging
from Q(0) = 142.7 e or ΔV(0) = 2.0 V. For large τe, a third relaxation mode
grows in importance, i = 3 (asterisks), as discussed in the main text. The solid
lines, black for the slowest τ+ mode and red for the fastest τ− mode, are calcu-
lated using Eq. (B3). The dashed lines are extrapolations of the low τe limit, and
the dashed–dotted lines those of the high τe limit. The normalized amplitudes of (b)
the charge and (c) the voltage plotted against the external relaxation time using the
same marking conventions; the crosses denote the sum of the two slowest modes,
Ay,p = Ay,1 + Ay,3.
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with the distance. The increased distance raises the internal resis-
tance by a factor of 3.5, thereby suggesting that Rξ ∝ H in agreement
with Eq. (C8).

The equivalent circuit enables the extension of the analysis of
relaxation times beyond the range manageable by MD simulations.
In Fig. 16(a), the relaxation times measured in the simulations, τy,i,
are compared with their theoretical counterparts in the equivalent
circuit, τ±. It becomes clear that the simulation data used to fit
the equivalent circuit, with external relaxation times τe ≤ 104 fs (see
Table I and Fig. 13) are in the limit of low external resistance. Here,
the short relaxation time τy,1 is linear with the external resistance,
while the long relaxation time τy,2 is independent of this resistance;
the detailed formulas are collected in Appendix D. The predicted
amplitudes of the charge decay modes, AQ,±, are also independent of
Re in this limit, as are the measured relaxation amplitudes, AQ,i; see
Fig. 16(b). We note that the normalized amplitudes AQ,i/Q(0) for
Q(0) = 40.68 and 142.70 e differ systematically—compare the tri-
angles pointing up (left) with those pointing down (right)—unlike
the prediction by the linear model; it, therefore, appears that the
simulations also contain an additional or non-linear contribution
not captured by the present equivalent circuit model. For low exter-
nal resistance, the voltage amplitudes AΔV ,± predict the existence of
a single voltage decay mode, namely the fast mode; see Fig. 16(c).
The simulations confirm the near-absence of the slow mode, thereby
making it difficult to extract reliable model parameters by fitting the
voltage relaxation, as reported earlier. The amplitude of the slow
mode in the simulations, AΔV ,1, agrees with or modestly exceeds the
theoretical prediction. Here too, the normalized amplitudes hint at a
dependence on the initial electrode charge; the consistency observed
across the fitted amplitudes suggests that the relatively high value of
AΔV ,2 at τe = 102 fs is an outlier.

The analytic solution of the equivalent circuit shows an inter-
esting transition for high external resistances. Figure 16(a) shows
that with increasing external resistance, the fast relaxation time τ−
switches from being linear in Re to being independent of Re, while
the slow relaxation time τ+ switches in the opposite direction; the
relevant expressions are provided in Appendix D. Extracting these
two relaxation times from the simulations requires longer simula-
tions and enlarging the range of the fit, with the latter making the
fit more sensitive to slow processes; at the same time, Figs. 16(b)
and 16(c) indicate that the fastest mode is predicted to have a low
amplitude. Fitting with a double exponential decay did not pick up
the fastest mode; hence, we here resort to triple exponential fits.
We continue to denote the slowest and fastest modes with ordinal
numbers 1 and 2, respectively, and use the number 3 for the inter-
mediate mode. As Fig. 16(a) shows, the relaxation time of the slowest
mode agrees well with theory, while that of the fastest mode shows
a more modest agreement. The relaxation times of the intermediate
mode lie near the extrapolation of τ− from the low τe limit; inter-
estingly, the intermediate mode detected in Fig. 15 lies close to the
extrapolation of τ− from the high τe limit—exploring these observa-
tions in more depth exceeds the objectives of this study. The small
theoretical amplitudes of AQ,− and AΔV ,− in Figs. 16(b) and 16(c),
respectively, highlight that in the equivalent circuit only the slowest
mode exists for large Re, as the resulting slow decay of the electrode
charges causes the electrolyte to be in continuous quasi-equilibrium
with the electrodes. The sum of the amplitudes of the two slow-
est modes, A+y,1 = Ay,1 + Ay,3, recovers the predicted amplitude

FIG. 17. Evolution of the parameter ξ of the equivalent circuit model (dashed lines)
and (minus) the ionic charge qR in the right half of the capacitor in the MD sim-
ulations [solid lines, see Eq. (50)] while discharging from Q0 = 142.70 e. The qR
curves display the results of two independent simulations at the external relaxation
times denoted in the legend.

AQ,+ for the charge, but for the voltage we again observe a modest
overshoot.

In mapping the MD simulations onto an equivalent circuit, we
have equated the sum charges on the electrodes Q in both models.
The mapping does not employ a corresponding one-to-one relation
for the coordinate ξ, initially introduced in Sec. II C as the charge in
the monolayer adjacent to the electrode and subsequently general-
ized to a reaction coordinate quantifying the distribution of the ions.
In the macroscopic model, ξ has effectively been reduced to an aux-
iliary coordinate that co-determines the evolution of the charge Q,
while its exact meaning remains unspecified. By fitting the instanta-
neous counterion distribution with Gaussian functions, we extracted
the evolving sum charges of the ion layers at both electrodes. Com-
paring the sum charge in the first layer with the value of ξ in the
equivalent circuit does not produce a satisfactory agreement (data
not shown), nor does the sum of the two nearest layers yield a match.
An agreement is observed, however, between ξ and (minus) the total
ionic charge in the right halve of the capacitor,

qR =
n

∑
j=1

qjθ(zj) ≈ −ξ, (50)

where θ denotes the Heaviside step function and zj is the posi-
tion of the jth ion relative to the supercapacitor’s midplane. Both
are shown in Fig. 17 to follow a nearly mono-exponential decay,
even though the corresponding charges on the electrodes show a
double-exponential decay in the onset to Fig. 7(d). The circuit model
explains this observation as due to the small amplitude of the fast
relaxation of ξ at the employed external relaxation times. The slow
decay time of qR differs slightly between the simulations at τe = 102 f
and τe = 104 f, in agreement with τ+ being nearly independent of
Re for these τe and matching the corresponding small difference
between the τQ,1 values in Table I.

V. CONCLUSIONS
We presented a general method, the constant sum-charge

method (CSCM), for molecular dynamics simulations of
(dis)connected supercapacitors, accounting for the fluctuating
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charges on the individual electrode atoms induced by the perpet-
ually changing configuration of the ions in the electrolyte, while
the evolution of the sum charge on the electrodes is co-determined
by the electric circuit connected to this supercapacitor. CSCM is
relatively easy to implement in comparison with alternative constant
sum-charge routines30–32 because all calculations of Coulombic
forces and potentials are outsourced to standard electrostatic
solvers.

First, in the simulations of a disconnected supercapacitor with
constant sum charges Q on the electrodes, the potential difference
between the electrodes ΔV samples a Gaussian distribution around
an average ⟨ΔV⟩Q, with a standard deviation that is related to the
differential capacitance. The ensemble averages extracted from these
simulations, such as the ion distribution and differential capacitance,
are a close match to their counterparts obtained by simulations at
the constant potential difference ΔV for which ⟨Q⟩ΔV ≈ Q. Under
the latter condition, the fluctuating potential difference in CSCM
agrees well with the constant potential difference in the constant
potential method (CPM), ⟨ΔV⟩Q ≈ ΔV .

Second, we consider the charging and discharging of a superca-
pacitor in a closed circuit using CSCM. Here, an equation of motion
for the sum charge on the electrode is introduced, allowing current
to flow to or from the electrodes. The charge and potential during
(dis)charging show double-exponential relaxation, with one relax-
ation time related to the dynamics of the ions within the capacitor
and the other to the current dynamics in the external closed cir-
cuit. The slower the latter process, the more energy the capacitor
can deliver while discharging—although slowing down obviously
reduces the delivered power. A higher external relaxation time also
reduces the amount of heat produced in the capacitor while charg-
ing. For a capacitor charged in series with a resistor, however, this
merely shifts the heat loss to the resistor. The modeled system sees its
differential capacitance decrease with potential, causing the energy
loss in this charging setup to exceed the energy stored. In conven-
tional simulations of (dis)charging by CPM, the external potential
source—rather than the capacitor—is in control over the potential
difference between the electrodes; they lack the external relaxation
process and its impact on the internal dynamics of the capacitor.
Our simulations with CSCM show that it can handle both CPM’s
limit of vanishingly short external relaxation times and the continu-
ous equilibrium limit of very long external relaxation times, as well
as the entire intermediate range.

A simple phenomenological model with two coupled linear
first order differential equations of motion, one for the charge on
the electrodes and one for a single coordinate description of the
ion distribution, provides a satisfactory agreement with all simu-
lation results reported above. Endowing the volume between the
electric double layers with a capacitance, i.e., the CQξ in Figs. 2
and 14, is crucial to recovering the double exponential relaxation
observed in the simulations. Physically, this capacitance can be
understood as representing interactions between the left and right
electrode–electrolyte double layers—including the shoulders of the
ion distribution extending into the capacitor’s interior—when these
layers are not neutral. This capacitance is, therefore, important in
simulations, where the slit width is typically just one order of mag-
nitude larger than the thickness of the electric double layer, while it
will be less relevant under experimental conditions with much wider
slits. Note that the distances between electric double layers within a

porous electrode can be as small as the simulated slit widths; hence,
the effect observed here will probably also occur within porous elec-
trodes. The equivalent circuit agrees with the molecular dynamics
simulations on the influence of the external resistance on the relax-
ation times and amplitudes of the double exponential decay. This
equivalent circuit approaches its limits when the high charge on the
electrode induces the formation of a second layer of counterions;
this happens in the current MD model for potentials exceeding ∼ 1.0
V. While the contribution of a third relaxation process is still small
in our simulations, it would be interesting to see what extensions to
the model are required when the volume between the flat electrodes
contains higher ion concentrations or ionic liquids.
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APPENDIX A: EQUIVALENT CIRCUIT

We here demonstrate that the equations of motion in Eq. (34)
are reproduced by the equivalent circuit in Fig. 2. The currents run-
ning from left to right through the capacitors C′QQ, QQξ , and Cξξ will
be denoted as I′QQ, IQξ , and Iξξ , respectively. Kirchhoff’s current law
then says I′QQ = IQξ + Iξξ . The charges on the right electrodes of the
four capacitors will be denoted as Q′QQ (twice), QQξ , and Qξξ , with
the opposite charges residing on their left electrodes. Recall that the
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charges on the electrodes “inside” the supercapacitor represent the
ions of the electrolyte, where the numbers of ions are conserved
for a closed capacitor. Equivalently, the total charge on either three-
legged network combining one “interior” electrode of C′QQ with one
electrode of CQξ and one electrode of Cξξ and one resistor R′ξ is
conserved, adding up to zero,

Q′QQ −QQξ −Qξξ = 0. (A1)

Kirchhoff’s voltage law can be applied to two loops, one combining
the external resistor with the internal capacitor CQξ and the other
combining the two internal capacitors, to yield

0 = 2
Q′QQ

C′QQ
+

QQξ

CQξ
− I′QQRe, (A2a)

0 =
Qξξ

Cξξ
− 2IξξR′ξ −

QQξ

CQξ
, (A2b)

respectively; there is a third loop, combining the external resis-
tor with the internal capacitor Cξξ , but it does not provide addi-
tional information. Solving the currents from these equations, using
the conservation laws I′QQ = −Q̇′QQ and Iξξ = −Q̇ξξ and employing
Eq. (A1) to eliminate QQξ ,

Q̇′QQ = −
1
Re
(2

Q′QQ

C′QQ
+

Q′QQ −Qξξ

CQξ
), (A3a)

Q̇ξξ = −
1

2R′ξ
(

Qξξ

Cξξ
−

Q′QQ −Qξξ

CQξ
). (A3b)

One readily recognizes in this pair of equations the structure
of Eq. (34), with Q = Q′QQ and ξ = Qξξ . The remaining identi-
fications are read off as MQ = 1/Re, kQQ = 2/C′QQ, kQξ = 1/CQξ ,
Mξ = 1/(2R′ξ), and kξξ = 1/Cξξ .

For the reduced equivalent circuit in Fig. 14, the above two
Kirchhoff’s voltage laws become

0 = 2
Q′QQ

C′QQ
+

QQξ

CQξ
− I′QQRe, (A4a)

0 = −IξξRξ −
QQξ

CQξ
. (A4b)

Upon defining the difference between capacitor charges, ξ = Q′QQ
−QQξ , differentiation gives

ξ̇ = Q̇′QQ − Q̇Qξ = −I′QQ + IQξ = −Iξξ , (A5)

where Kirchhoff’s current law was used in the last step. Solving cur-
rents from the above two voltage laws and eliminating QQξ by the
definition of ξ yields

Q̇′QQ = −
1
Re
(2

Q′QQ

C′QQ
+

Q′QQ − ξ
CQξ

), (A6a)

ξ̇ =
1

Rξ

Q′QQ − ξ
CQξ

. (A6b)

The identification with the elements of Eq. (34) proceeds as before.

APPENDIX B: ANALYTICAL RELAXATION

To solve the dynamics of the equivalent circuit of Eq. (34)
in a more compact notation, we consider the ordinary differential
equation ẋ =Mx for the two-component vector x, with matrix

M =
⎛
⎜
⎝

a b

c d

⎞
⎟
⎠

, (B1)

with diagonal elements (left) and off-diagonal elements (right)

a = −MQ(kQQ + kQξ),

d = −Mξ(kξξ + kQξ),

b =MQkQξ ,

c =MξkQξ ,
(B2)

and x = (Q, ξ)T. The two relaxation times τ± of this equation are
related to the eigenvalues of the matrix, λ±, by

λ± =
1
2
[(a + d) ±

√

(a − d)2
+ 4bc] = −

1
τ±

. (B3)

For positive k’s and M’s, the eigenvalues are negative, with
λ+ < λ− < 0, and the relaxation times are positive, with 0 < τ− < τ+.
The double-exponential decay of x is then solved by employing
a similarity transformation or by inserting the expected double-
exponential decay function (with unknown amplitudes) in the
differential equation, yielding for the two components of x the
relaxation functions

x1(t) =
1
D
[(D + bc)x1(0) − b(λ+ − d)x2(0)]eλ+t

+
1
D
[−bc x1(0) + b(λ+ − d)x2(0)]eλ−t , (B4a)

x2(t) =
1
D
[c(λ− − a)x1(0) − bc x2(0)]eλ+t

+
1
D
[−c(λ− − a)x1(0) + (D + bc)x2(0)]eλ−t , (B4b)

where

D = (λ+ − d )(λ− − a ) − bc, (B5a)

= (λ+ − λ−)(λ− − a ), (B5b)

= (λ+ − λ−)( d − λ+). (B5c)

Upon using that for an equilibrated charged capacitor the initial val-
ues of Q(0) and ξ(0) are related by Eq. (30), one readily evaluates
the amplitudes of the double exponential decays of Q(t) and ξ(t).
Insertion of this evolution in the linear transformation of Eq. (33a)
produces the corresponding driving force on the electrode charge,
i.e., the voltage difference between the electrodes, ΔV(t), whose
decay is, therefore, characterized by the same pair of relaxation
times.

The charging process described by Eqs. (39) and (34b) reduces
to an ordinary differential equation of the form ẏ =My + e, with vec-
tor y = (Q, ξ)T, matrix M as given above, and vector e = (MQVe, 0)T.
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This equation is readily solved by noting that the transformation
x = y +M−1e recovers an expression of the above form. The resulting
vector y starts from zero at t = 0 and evolves by a double-exponential
converging to y = −M−1e for large times, as in Eq. (45).

APPENDIX C: ION MOBILITY

The objective here will be to relate the macroscopic mobility
Mξ of the ion distribution to the microscopic motions of the con-
stituent ions. Consider the density distributions ρ±(z) of mono-
valent ions between two electrodes, −H/2 ≤ z ≤ H/2, as shown in
Fig. 6. Following Eq. (50) and assuming symmetry around z = 0, the
reaction coordinate follows as

ξ = −eA∫
H/2

0
ρ+ − ρ−dz = eA∫

0

−H/2
ρ+ − ρ−dz, (C1)

where the last step holds true for an overall neutral electrolyte. The
time derivative ξ̇ requires the ion densities in the middle of the
capacitor, ρ±(0), and the mean velocities of the ions crossing that
midplane, v±(0),

ξ̇ = −eA[ρ+(0)v+ − ρ−(0)v−]. (C2)

Assuming that the ions are in the overdamped regime, their mean
velocities follow from the mean forces acting on these ions, F±, as

v±(0) =MionF±(0) = ±eMionE(0), (C3)

where Mion denotes the mobility of an ion and E(0) is the electric
field at the midplane. Assuming that the charge distribution is uni-
form parallel to the electrodes, the electric field in the midplane of
the capacitor is readily obtained by integrating over the charges to
the left and right of the midplane,

E(0) =
1

ε0εr
(

QL

A
+ e∫

H/2

0
ρ+ − ρ−dz

− e∫
0

−H/2
ρ+ − ρ−dz −

QR

A
) (C4)

=
2

ε0εrA
(ξ −Q), (C5)

with QL = −Q and QR = Q being the charges on the left and right
electrodes, respectively, and where Eq. (C1) was used in the last step.
Combining the above expressions yields

ξ̇ = −
2e2

ε0εr
[ρ+(0) + ρ−(0)]Mion(ξ −Q). (C6)

Comparison to Eq. (34b), with kξξ ≈ 0 for the present system, gives
the electrolyte mobility as

Mξ =
2e2

ε0εr
[ρ+(0) + ρ−(0)]

Mion

kQξ
. (C7)

Using the ionic self-diffusion coefficient in the bulk electrolyte
of Dion = 6.6 × 10−6 cm2/s, the ion mobility is obtained as Mion
= Dion/(kBT). The ion density in the midplane is estimated in Fig. 6

as ρ±(0) = 1 nm−3. In combination with the kQξ of the equivalent
circuit, we find Mξ = 1.9 × 10−7 C/(V s) or 1.2 × 10−3 e/(V fs), in
remarkably good agreement with the value of 8.93 × 10−4 e/(V fs)
extracted from the MD simulation. At the same time, the explicit
dependence of the mobility Mξ on ρ±(0) and its implicit dependence
on these densities through Mion highlight that the actual relaxation
process is more complicated than the simplified model of Eq. (34)
and Fig. 14. Inserting the approximation for CQξ in Eq. (49) gives

Mξ = 2e2
[ρ+(0) + ρ−(0)]

A
H

Mion. (C8)

If the ion density in the center of the supercapacitance is kept con-
stant while increasing the distance between the electrodes, as is the
case in Sec. IV C, the internal resistance Rξ = 1/Mξ is proportional
to this distance.

APPENDIX D: ANALYTICAL LIMITS

The limiting behaviors of Eq. (34) for discharging through
small and large external resistances are obtained by Taylor expan-
sion of the solutions in Appendix B. For a small external resistance,
Re → 0 and MQ →∞, the two relaxation times in Eq. (B3) converge
to

τ+ = RξCint, (D1a)

τ− = Re(C−1
QQ + C−1

Qξ)
−1

. (D1b)

This limit applies when

Re ≪ Cint(C−1
QQ + C−1

Qξ)Rξ. (D2)

The amplitudes are solved from Eq. (B4), where for a capacitor in
equilibrium at time t = 0, the values of Q(0) and ξ(0) are related by
Eq. (30), yielding for the electrode charges,

AQ,+ =
k2

Qξ

(kQQ + kQξ)(kξξ + kQξ)
Q(0), (D3a)

AQ,− = Q(0) − AQ,+, (D3b)

and for the internal charge distribution,

Aξ,+ =
kQξ

kQξ + kξξ
Q(0), Aξ,− = 0. (D4)

Hence, Q(t) follows double exponential decay, while ξ(t) reduces to
single exponential decay. For the potential difference then follows,
using Eq. (33a),

AΔV ,+ = 0, AΔV ,− =
kQQkξξ

kξξ + kQξ
Q(0), (D5)

and, therefore, a single exponential decay.
In the limit of large external resistance, Re →∞ and MQ → 0,

the two relaxation times converge to

τ+ = ReCeq, (D6a)
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τ− = Rξ(C
−1
Qξ + C−1

ξξ )
−1

. (D6b)

This limit applies when

Re ≫ C−1
eq (C

−1
Qξ + C−1

ξξ )
−1

Rξ. (D7)

Solving the corresponding amplitudes yields single-exponential
decay for the electrode charges, internal charge distribution, and
potential difference,

AQ,+ = Q(0), AQ,− = 0, (D8a)

Aξ,+ =
kQξ

kQξ + kξξ
Q(0), Aξ,− = 0, (D8b)

AΔV ,+ =
kQQkξξ

kQξ + kξξ
Q(0), AΔV ,− = 0, (D8c)

as expected when ξ is enslaved to Q by Eq. (30).
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