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ABSTRACT
Increasingly, society requires high power, high energy storage devices for applications ranging from electric vehicles to buffers on the electric
grid. Supercapacitors are a promising contribution to meeting these demands, though there still remain unsolved practical problems. Molec-
ular dynamics simulations can shed light on the relevant molecular level processes in electric double layer capacitors, but these simulations
are computationally very demanding. Our focus here is on the algorithmic complexity of the constant potential method (CPM), which uses
dedicated electrostatics solvers to maintain a fixed potential difference between two conducting electrodes. We show how any standard elec-
trostatics solver—capable of calculating the energies and forces on all atoms—can be used to implement CPM with a minimum of coding.
As an example, we compare our generalized implementation of CPM, based on invocations of the particle–particle–particle–mesh routine of
the Large-scale Atomic/Molecular Massively Parallel Simulator, with a traditional implementation based on a dedicated re-implementation
of Ewald summation. Both methods yield comparable results on four test systems, with the former achieving a substantial gain in speed and
improved scalability. The step from dedicated electrostatic solvers to generic routines is made possible by noting that CPM’s traditional narrow
Gaussian point-spread of atomic charges on the electrodes effectively endows point-like atoms with chemical hardness, i.e., an intra-atomic
energy quadratic in the charge.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0171502

I. INTRODUCTION

As the world moves away from fossil fuels toward renewable
energies, there is an increased need for better high energy, high
power storage devices. To meet this demand, several novel technolo-
gies have been proposed.1 One viable technology is supercapacitors,
as they have a higher power density and a longer life cycle than
batteries. Unfortunately, their energy density is typically lower than
that of batteries.2,3 Using ionic liquids as electrolytes increases the
potential window and thereby the energy density, but their poor flow
behavior in the nanoscale pores of the electrodes adversely affects the
power density.

Molecular Dynamics (MD) simulations are a powerful tool to
study the microscopic processes that give rise to a supercapacitor’s
macroscopic performance.4–11 A critical component in these sim-
ulations is the current conducting electrode, which equalizes
the electrostatic potentials of all atoms in an electrode; these

potentials are due to long range electrostatic interactions with
all other charged atoms in the system. Siepmann and Sprik12

introduced a method for simulating constant potential atom-
istic electrodes by treating the charges of the electrode atoms as
additional degrees of freedom in an extended Lagrangian; their
electrode atoms are surrounded by narrow Gaussian charge dis-
tributions, whereas point charges are common practice in MD.
Later, Reed et al.13 revised the Constant Potential Method (CPM)
by introducing an explicit expression for the charges on all elec-
trode atoms, matching the most likely charges in the extended
Lagrangian approach. Nakano and Sato14 modeled the electrode
atoms as point charges; they also endowed the electrode atoms
with electronegativity and “chemical hardness,” i.e., an internal
energy related to the charges of the atoms. Interestingly, they find
that the nett effect of the narrow Gaussian charge distributions is
identical to simulating electrode atoms as point charges endowed
with chemical hardness.14 In alternative simulation models of

J. Chem. Phys. 160, 034107 (2024); doi: 10.1063/5.0171502 160, 034107-1

© Author(s) 2024

 13 February 2024 08:58:50

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0171502
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0171502
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0171502&domain=pdf&date_stamp=2024-January-18
https://doi.org/10.1063/5.0171502
https://orcid.org/0000-0002-3596-6986
https://orcid.org/0000-0001-8199-7014
https://orcid.org/0000-0002-5645-527X
mailto:w.k.denotter@utwente.nl
https://doi.org/10.1063/5.0171502


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

electrodes, Holm and co-workers15,16 introduced an Induced Charge
Calculation (ICC∗) algorithm that considers electrodes as media
of infinitely large dielectric constants, with induced charges lim-
ited to the boundary surfaces. The charge redistribution within an
electrode is more restricted in the Lorentz–Drude model,17 where
a light-weight negative charge representing the fluctuating electron
cloud is tethered to a positively charged nucleus. The interested
reader is referred to recent reviews on microscopic simulations of
supercapacitors.18–20

The computationally most demanding part of CPM simu-
lations is the calculation of long range electrostatic interactions
by Ewald summation.21–23 Several authors have presented MD
simulation codes based on two-dimensional or three-dimensional
(3D) dedicated Ewald summations of the long range electrostatic
interactions,12,13,24–26 where the 3D implementation requires a slab
correction13,27,28 or a careful set-up.29 The computational com-
plexity of 3D Ewald summation varies between 𝒪(N2) and a
theoretical optimum of 𝒪(N3/2), where N denotes the system
size, i.e., the total number of atoms in electrodes and electrolytes
combined.22,23

Alternatively, there are mesh-based electrostatic solvers, like
the Particle–Particle–Particle–Mesh (PPPM or P3M) method by
Hockney and Eastwood,30 which has a lower theoretical complex-
ity of 𝒪(N log N).22,23 This lower complexity is also realized by
ICC∗.15,16 Implementations of these mesh-based methods are avail-
able in standard MD packages. Recently, Ahrens-Iwers et al.31,32

published a PPPM-based constant potential routine ELECTRODE
in the Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS). As already briefly mentioned earlier, in traditional
implementations of CPM, the atoms of the electrodes have nar-
row Gaussian charge distributions, while the atoms of the electrolyte
are treated as point charges. Since molecular dynamics simulations
conventionally treat all charged atoms as point charges, the avail-
able long range electrostatic routines are based on point charges.
Hence, to apply such a routine in traditional CPM, it has to be
adapted to include the non-point charge electrode atoms; dedi-
cated Ewald summation routines have been used by a number of
groups,12,13,24–26,33 while the ELECTRODE routine31,32 is based on a
dedicated implementation of PPPM.

Our aim here is to propose a Generalized Constant Poten-
tial Method (GCPM) that generalizes CPM to work in combination
with any off-the-shelf electrostatic solver. The direct use of existing
efficient electrostatic routines not only makes GCPM faster than tra-
ditional Ewald-based CPM routines but also simplifies the code and
makes it more flexible. This becomes possible by following Nakano
and Sato14 in treating the electrode atoms as point charges and using
chemical hardness as an energetic penalty on the atomic charge
fluctuations, as discussed in detail below. The fact that GCPM can
be implemented without (re)coding dedicated electrostatic solvers
means any existing or future solver will do, provided it is capable
of solving the forces and energies on all atoms. As an illustration of
GCPM, we have implemented the algorithm in LAMMPS,34,35 as this
allowed us to build on and compare with the conventional Ewald-
based implementation of CPM for LAMMPS by Wang et al.25 We
illustrate with numerical examples, by repeatedly doubling the size
of four typical systems, that switching from Ewald summation to
PPPM yields a considerable speedup and reduces the computational
complexity.

This paper is organized as follows: in Sec. II, we describe our
approach and its physical motivation in more detail. An imple-
mentation in LAMMPS is discussed in Sec. III, along with the
descriptions of four model systems. Simulations on these systems
using GCPM and CPM are compared in Sec. IV, where we observe
excellent agreement in numerical results and a significant differ-
ence in time complexity. Run times are also compared with the
highly tuned ELECTRODE routine. We end with a summary of our
observations in Sec. V.

II. THEORY
Molecular dynamics simulations of ions near electrodes cru-

cially depend on the evaluation of the charges on the electrode
atoms, which will be the main topic of this section. The time evo-
lution and probability distribution of the capacitor are determined
by its energy function, which will be derived first, followed by its
macroscopic electronic properties. Consider a system of n ions with
fixed charges qi and variable positions ri confined between two elec-
trodes containing a total of N atoms with variable charges Qj and
fixed positions Rj. The charge distributions on the conducting elec-
trodes evolve in response to the motion of the ions, by thermal
fluctuations of the electron clouds, and by charge exchange with an
external voltage source that maintains a constant potential difference
ΔV = VR − VL between the potentials VR and VL on the right and
left electrodes, respectively. For brevity of notation, the charges are
collected in the column vectors q and Q, respectively, while the col-
lective sets of coordinates are denoted by r and R, respectively. The
potentials of the wall particles are then represented by the vector

Ψ = VRER + VLEL = ΔVD + V∗E, (1)

where the elements of vector ER (EL) are +1 for atoms on the right
(left) electrode and zero for atoms on the other electrode, with vector
D = (ER − EL)/2 that takes the form D = ( 1

2 , . . . , 1
2 ,− 1

2 , . . . ,− 1
2) if

the atoms in the right electrode precede those in the left electrode
in these collection vectors, potential offset V∗ = (VR + VL)/2 and
vector E = ER + EL = (1, . . . , 1). Assuming that the atomic charges
obey Boltzmann statistics, the probability distribution function of
the capacitor in equilibrium with a heat bath at absolute temperature
T reads as24

P(r, Q; ΔV , V∗)drdQ = 1
Z

e−β(UQ+U≠Q−Q⋅Ψ)drdQ, (2)

where the configuration integral Z normalizes the distribution and
β = 1/(kBT) with Boltzmann constant kB; in the exponential, the
energy has been split into internal potential energy related to the
charges, UQ, internal potential energy unrelated to the charges, U≠Q,
and work associated with the external potential source, Q ⋅ Ψ. The
charge-related internal potential UQ comprises two contributions,
an inter-atomic Coulombic energy and an intra-atomic excitation
energy, to be discussed next.

The total Coulombic electrostatic energy of all atoms in the
system is quadratic in the charges,

Ue =
1
2

⎛
⎜
⎝

Q

q

⎞
⎟
⎠

T
⎛
⎜
⎝

A B

BT C

⎞
⎟
⎠

⎛
⎜
⎝

Q

q

⎞
⎟
⎠

, (3)
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where the symmetric N ×N matrix A, the non-symmetric N × n
matrix B, and the symmetric n × n matrix C are functions of the
atomic positions, and the superscript T denotes a transposition. The
matrices take into account that the simulation box is periodically
continued in all three Cartesian directions, endowing every atom
with an infinite number of interaction partners. While these matri-
ces are convenient for the current derivation, dedicated routines like
Ewald summation and PPPM calculate the electrostatic energy and
force per atom—treating all atoms as point charges—by more effi-
cient routes that bypass the evaluation of these matrices. The main
step in Ewald summation is to add and subtract Gaussian charge
distributions of width α−1 to every point charge, thereby enabling
splitting the energy and force calculations into real space and recip-
rocal space contributions that both rapidly converge; PPPM uses a
different spreading function, along with a grid for the reciprocal
space contributions.21–23,30,36,37 The resulting energy expression is
briefly discussed in the Appendix. Because an explicit evaluation of
A is required to obtain the charges of all electrode atoms in CPM, an
analytic expression for the matrix elements is provided in Eq. (A3).
Besides these inter-atomic energies related to the charges, there are
also intra-atomic contributions accounting for the energy associ-
ated with the gain or loss of charge by the electrode atoms through
exchange with neighboring atoms.14,33,38 We will approximate this
energy with a quadratic Taylor expansion,

Up = Up
(0) +Up

(1) +Up
(2) =∑

i
(U0

i + κiQi +
1
2

KiQ2
i ), (4)

where the constant energy resulting from the zeroth-order terms,
Up
(0) = ∑i U0

i , is of no consequence and will, therefore, be ignored
henceforth. The coefficients κi and K i originate in the quantum
behavior of electrons in the metallic electrode and have recently
been related to material properties in the Thomas–Fermi model.33

In the chemical context of charge redistribution within a molecule,
κi is known as the electronegativity and K i as the hardness.14,38,39

The current study uses electrodes of one atom type only, hence κi
= κ and K i = K for all i. The sum contribution of the first-order
terms Up

(1) = ∑i κiQi = κE ⋅Q then makes the same impact on the
Boltzmann distribution of Eq. (2) as a shift of V∗ in the external
energy Q ⋅ Ψ; thus, Up

(1) can be absorbed in V∗ and will be omit-
ted henceforth. The sum of the remaining quadratic terms, Up

(2)

= (K/2)∑i Q2
i , effectively acts as a “penalty,” limiting the atomic

charge fluctuations, provided K is positive, as will be assumed hence-
forth. This energy is conveniently combined with the electrostatic
term, UQ = Ue +Up, to obtain a quadratic expression of the form
of Eq. (3) with the modified matrix Ap = A + K1. Simulations of
electrodes combining hardness with CPM are hampered by a hard-
ness surreptitiously introduced by the traditional implementation of
CPM,14,33 as will be discussed next.

In traditional CPM, the electrode atoms are not treated as
point charges but as narrow Gaussian charge distributions of width
η−1, which is not to be confused with the Gaussian distributions
of width α−1 used in Ewald summation to facilitate the calcula-
tion of the electrostatic energy of a collection of point charges. The
internal potential energy related to the charges is then given by UQ
= Ue

CPM, with the full expression provided in the Appendix. As
a result of the narrow Gaussian spreading, contributions to A of
the form erfc(αRi j)/Ri j in regular Ewald summation, with erfc the

complementary error function and Rij the distance between elec-
trode atoms i and j, are supplemented in CPM’s energy-charge
matrix ACPM by terms of the form erfc(ηRi j/

√
2)/Ri j , as detailed

in the Appendix. For the typical value η = 1.979 Å−1 in the
literature,13,25 the carbon–carbon bond length RCC = 1.42 Å in
graphene yields erfc(ηRCC/

√
2) = 5 × 10−3, while the typical value

α = 0.18 Å−1 gives a 145-fold larger erfc(αRCC) = 0.72. This ratio
grows larger with increasing distance between the atoms, as does
its counterpart for electrode–ion interactions, which already reaches
104 for a distance as small as 1.42 Å. Consequently, one may safely
ignore the additional complementary error functions incurred in
ACPM by the narrow spreading of the wall charges, as will also be
borne out by the simulation results presented below. Inspection of
the CPM energy expression in the Appendix reveals that the narrow
spread does also yield a non-negligible energy contribution, namely
the underlined term of Eq. (A5),

4πε0(Ue
CPM −Ue) =

η√
2π

Q ⋅Q, (5)

with ε0 the dielectric permittivity of a vacuum. Upon comparing
this expression with Eq. (4), we conclude that η effectively acts as
the hardness of the electrode atoms. By rewriting the penalty in the
same form, 4πε0Up = (1/2)K′Q ⋅ Q, it follows that traditional CPM
corresponds to

K′ =
√

2
π

η, (6)

as was previously derived via an alternative route by Nakano and
Sato.14 The common value of η = 1.979 Å−1 then introduces a
hardness K′ = 1.579 Å−1. We verified that under this particular con-
dition, CPM and GCPM produce similar charges Q on the electrode
atoms for atomic configurations satisfying the above typical mini-
mum distances between the atoms. For this particular value of K′,
the energy penalty of endowing a neutral atom with a unit charge
±e amounts to ≈ 11.4 eV. This value is similar to the experimen-
tal ionization energies of an isolated atom of 9.2, 7.7, and 11.3 eV
for gold, copper, and carbon, respectively;40 the smallest energy to
release an electron from a bulk material, i.e., the work function, has
been measured as W = 4.3–4.7, 4.5–5.1, and 4.4 eV for the two cor-
responding metals (with the ranges accounting for variations across
crystal surfaces) and few-layer graphene, respectively.41,42 While
these numbers lend some credibility to the default values of η and K′,
it should be noted that the penalty is a simplified classical approxi-
mation of the quantum effects at modest charge fluctuations, while
charge fluctuations of ±e are taking this model to its extreme.

Because the electron distribution evolves on a much shorter
time scale than the atomic motions, one may assume that the for-
mer is continuously in equilibrium with the configurations sampled
in an MD simulation, i.e., the Born–Oppenheimer approxima-
tion. The charges of the electrode atoms, Q ∗ , are then obtained
by minimizing the total charge-related energy in the Boltzmann
distribution—due to Coulombic interactions in Eq. (3), the penalty
in Eq. (4), and the external potential source—with respect to the
electrode charges,13,25,43

∂(UQ −Q ⋅Ψ)
∂Q

∣
Q∗
= ApQ

∗
+ Bq −Ψ = 0, (7)
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with solution

Q
∗
(r; ΔV , V∗) = Ap

−1(Ψ − Bq). (8)

Electrostatic solvers require the system to be charge neutral, which
is not the case in early implementations of CPM based on the above-
mentioned equation.25 For a neutral electrolyte, ∑j qj = 0, overall
neutrality implies that the combined electrodes must be neutral too.
This is realized by selecting the potential V∗ such that the electrodes’
atomic charges add up to zero,

∑
i

Q∗i ∣
V∗

= E ⋅Ap
−1(ΔVD + V∗E − Bq) = 0, (9)

yielding the potential offset

V∗ = −
E ⋅Ap

−1(ΔVD − Bq)
E ⋅Ap

−1E
. (10)

Insertion of this result in Eq. (8) gives the charges of the electrode
atoms as

Q
∗
= Sp(ΔVD − Bq), (11)

where the constant symmetric N ×N matrix43

Sp = Ap
−1(1 − E

E ⋅Ap
−1

E ⋅Ap
−1E
), (12)

has the projection property SpE = E ⋅ Sp = 0. Hence, Eq. (11) is
equivalent to Q ∗ = Sp(Ψ − Bq), and the charges on the electrodes
are independent of the potential offset V∗ . Because the electrode
charges are now enslaved to the ion coordinates, the probability
density distribution sampled in the simulation reads as

P∗(r; ΔV)dr = 1
Z∗

e−β(UQ+U≠Q−Q∗ ⋅Ψ)dr, (13)

where the configuration integral Z∗ normalizes the distribu-
tion, the energy UQ is evaluated using the charges Q ∗ (r; ΔV),
and where the vanishing total charge on the electrodes implies
Q ∗ ⋅Ψ = ΔVQ ∗ ⋅ D.

Simulations sampling the distribution P ∗ require the charge-
related forces on the electrolyte atoms, which are obtained for
ion i by differentiating the charge-related potential energy in the
exponent of Eq. (13) with respect to its position,

f Q
i = −

∂(UQ −Q
∗
⋅Ψ)

∂ri

= −(∂UQ

∂ri
)

Q∗
+ (∂Q

∗
⋅Ψ

∂ri
)

Q∗
− ∂(UQ −Q ⋅Ψ)

∂Q
∣
Q∗
⋅ ∂Q

∗

∂ri
,

(14)

where the first two derivatives of the last r.h.s. are evaluated at con-
stant electrode atom charges Q ∗ , while the third term takes into
account that these charges vary with the positions of the electrolyte
atoms. Focusing now on these three terms, in the first term, with UQ
= Ue +Up, the penalty does not depend on the position, and we are
left with the usual electrostatic force, f e

i = −(∂Ue/∂ri)Q∗
, calculated

with the instantaneous electrode point charges Q ∗ . In the dot prod-
uct of the third term, the first gradient equals zero, as this gradient
was used to obtain the charges Q ∗ in Eq. (7). In the second term,
upon inserting Eq. (1),

(∂Q
∗
⋅Ψ

∂ri
)

Q∗
= (∂Q

∗
⋅ ΔVD
∂ri

)
Q∗
+ (∂Q

∗
⋅ V∗E

∂ri
)

Q∗
, (15)

we find that the first term on the r.h.s. vanishes because both the
potential difference ΔV and the vector D are independent of the ion
position, while the second term on the r.h.s. vanishes identically for
charge-neutral electrodes, Q ∗ ⋅ E = 0. Under this latter condition,
therefore, once the electrode charges Q ∗ are known, the forces on
the ions are readily calculated using standard electrostatic routines:
f Q

i = f e
i .

From a macroscopic perspective, one is interested in the total
charges on the electrodes and the capacitance relating these charges
to the potential difference. The time average charge on the right
electrode in a thermostatted simulation will match its canonical
ensemble average,

⟨QR⟩MD = ⟨ER ⋅Q∗⟩∗ = ⟨D ⋅Q∗⟩∗, (16)

where the pointed brackets denote averages, with the subscript MD
and asterisk referring to the simulations and Boltzmann distribution
P ∗ , respectively, and where in the last step the charge on the right
electrode is calculated as an average over both electrodes by using
that QL = −QR and hence QR = (QR −QL)/2. A straightforward,
though a bit laborious, differentiation24,43,44 using

∂Q
∗

∂ΔV
= SpD, (17)

and

∂UQ

∂ΔV
= D ⋅ Sp

T(ApQ
∗
+ Bq) = ΔVD ⋅ SpD, (18)

then yields the average charge

⟨QR⟩∗ = kBT
∂ ln Z∗
∂ΔV

+ ΔVD ⋅ SpD, (19)

and the differential capacitance

C∗ =
∂⟨QR⟩∗
∂ΔV

= β(⟨Q2
R⟩∗ − ⟨QR⟩2∗) +D ⋅ SpD. (20)

The first terms on the r.h.s. of the last two equations are identi-
cal, except for the asterisks, to the average charge and capacitance
derived from Eq. (2) for electrode charges that are not enslaved to the
ion positions; the unexpected second terms appearing on the r.h.s.
are consequences of the particular ensemble being sampled. Since
these are the only terms that remain when the ions are removed, it
follows that they represent direct inter-electrode contributions to the
electrode charge and capacitance. Identical expressions were derived
by Scalfi et al.43 using the projected vector DScalfi = D − E(D ⋅ E)/
(E ⋅ E), which reduces to DScalfi = (αR, . . . , αR, αL, . . . , αL) with αR
= NL/(NR +NL) and αL = −NR/(NR +NL) if the NR atoms of the
right electrode precede the NL atoms of the left electrode; one read-
ily verifies that replacing the D-s in the above second terms with their
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projections is of no consequence due to the projection properties of
Sp. Extending the simulated ensemble average in post-processing by
superimposing the previously eliminated fluctuations of Q around
Q ∗ will not affect the mean electrode charge since these fluctuations
are symmetrically distributed around Q ∗ for a quadratic UQ. Hence,
following the first step in Eq. (20), these rapidly fluctuating charges
will not affect the differential capacitance either.43

III. METHODS AND SYSTEMS
A. Methods

We implemented GCPM in LAMMPS45 because its implemen-
tation of a traditional Ewald-based CPM by Wang et al.,25 available
on GitHub,46 offers a convenient testing ground. We had to make
only minimal modifications to LAMMPS for our purposes, which
are available on GitHub.47

In Sec. II, we observed that the forces on the electrolyte atoms
can be calculated using any electrostatics routine once the charges
Q ∗ on the electrodes are known, see Eq. (14). To obtain these
charges [see Eqs. (11) and (12)] one must evaluate the matrices Ap
and Sp and the vector Bq. We opt here for the PPPM method rather
than the Ewald summation traditionally used in CPM because the
former is of lower complexity: whereas Ewald summation scales as
𝒪(N3/2

tot ) at best, PPPM realizes 𝒪(Ntot ln Ntot), where Ntot is the
total number of atoms in the system. The calculation of Ap, and
consequently that of Sp, is much more demanding than that of Bq;
one, therefore, commonly freezes the electrode atoms in CPM sim-
ulations to avoid repeated evaluations of these matrices. One may
choose to occasionally displace the walls as rigid units or pistons
to introduce pressure control, as in the MetalWalls routine,26 at the
expense of recalculating Ap and Sp and the vector V ′0 to be intro-
duced below; for frequent updates of Ap, the solution of Eq. (11)
by (preconditioned) conjugate gradient minimization26 becomes
preferable over the current solution by matrix multiplication. The
configuration-dependent vector Bq requires recalculation in every
step and thereby dominates the time complexity of (G)CPM. We,
therefore, first focus on the calculation of this vector, which phys-
ically represents the electrostatic potentials on the electrode atoms
due to the electrolyte. Suppose one replaces the charges on the elec-
trode atoms by small non-zero test charges on all atoms, Q′, while
retaining neutrality, E ⋅ Q′ = 0; for instance, we used Q′ = Q′D with
Q′ = 2 × 10−3e for systems with two electrodes of N/2 atoms each.
We next invoke an electrostatics solver to determine the resulting
electrostatic energies, U ′, of all electrode atoms. Dividing each of
these energies by half their corresponding atomic charge yields the
potential of atom i as (V ′q)i

= 2U′i /Q′i, whereas Eq. (3) gives

V ′q = AQ′ + Bq. (21)

Note that the vector V ′0 = AQ′, representing the potentials on the
electrodes induced by the electrodes, remains constant during the
simulation if the atomic positions R and the charges Q′ remain con-
stant; V ′0 is readily evaluated at the start of the simulation by turning
off the electrolyte charges, q = 0. The desired potentials on the elec-
trodes due to the electrolyte are then obtained as Bq = (V ′q −V ′0). In
summary, GCPM requires two invocations of an electrostatic solver
in every time step: once with the charges Q′ to determine the poten-

tials Bq and thence the electrode charges Q ∗ , and once with these
charges Q ∗ to evaluate the forces on the electrolyte that propagate
the system. Both invocations are expected to scale to 𝒪(Ntot ln Ntot)
when using PPPM as the electrostatic solver.

The matrix A was calculated using the CPM routines devel-
oped by Wang et al.25 for LAMMPS, as available on GitHub.46 Care
was taken to remove all calculations relating to the point-spread
of the electrode atoms, thus obtaining the matrix A for a collec-
tion of point charges. In practice, this routine becomes very slow
for large systems. We, therefore, developed an alternative approach
that takes advantage of a lower complexity electrostatic solver. The
diagonal elements are still calculated using regular Ewald summa-
tion, see Eq. (A3), by combining a single summation in reciprocal
space—identical for all diagonal elements—with a trivial atom-
specific term. Suppose we introduce test charges Q′ and −Q′ on
electrode atoms i and j, while all other atoms of the electrode and
electrolyte are neutral. Invoking an electrostatics solver gives the
Coulombic energy of atom i as

U′i =
1
2

Qi(AiiQi + AijQj), (22)

which is readily solved for Aij. The energy of atom j does not pro-
vide additional information, while all other atoms are at non-zero
potential but zero energy. Filling in the entire matrix A then requires
N(N − 1)/2 calls of the electrostatic solver. Suppose now that we
introduce a charge vector, placing a charge (N − 1)Q′ on the kth
electrode atom and opposite charges −Q′ on all remaining N − 1
electrode atoms,

(Q′k)i
= Q′(Nδki − 1), (23)

where δki denotes the Kronecker delta. With the charges of the
electrolyte turned off, q = 0, the resulting potentials on all elec-
trode atoms, V ′k = AQ′k, are readily calculated from the energies
U ′k returned by the electrostatic solver. The difference between two
charge vectors describes a state with only two charged atoms,

(Q′k −Q′l)i
= NQ′(δki − δli), (24)

and potentials

(V ′k −V ′l)j
= NQ′(Akj − Alj). (25)

Hence, for j = l,

Akl =
1

NQ′
(V ′k −V ′l)l

+ All. (26)

It follows that once the diagonal elements are known, all off-diagonal
elements can be calculated by sequentially passing the N charge dis-
tribution vectors Q′k through the electrostatic solver. The evaluation
of A is then expected to scale to 𝒪(N2 ln N) when using PPPM as
the electrostatic solver. With these modifications, the calculation of
Ap is of lower complexity than its subsequent conversion into Sp
by Eq. (12), and the calculation of Bq is of lower complexity than
its subsequent conversion into Q ∗ by Eq. (11). These conversions
will dominate the scaling behavior for large systems, much larger
than the practical examples discussed here, in which case Eq. (11)
is more efficiently solved by (preconditioned) conjugate gradient
minimization.26
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B. Systems
We compare the results and performances of CPM and GCPM

for four model systems (see Fig. 1). The first system is identical to
the reference system in Ref. 48. It has graphene-like electrodes, sep-
arated by H = 4 nm, and a potential difference ΔV = 0.2 V. Each
electrode has an area of A = 25.15 nm2 and consists of one layer of
960 frozen particles with inter-particle bond lengths of 0.142 nm.
The simulation box is periodically repeated in space, with the box
length perpendicular to the electrodes extended to 3H. The system
contains 51 ion pairs, corresponding to a reservoir concentration of
1M (see Ref. 48), with ionic charges qi = ±e; the total number of
particles amounts to Ntot = 2022. Coulombic interactions are cal-
culated using PPPM, using a cut-off distance of 1.2 nm in real
space (pair style coul/long) and a relative accuracy of 10−6

in the long range forces. In the absence of an explicit solvent, the
impact of an aqueous solvent on the electrostatic interactions is
mimicked by introducing a relative permittivity of εr = 78. This scal-
ing of the Coulombic energies and forces is appropriate for ions
separated by many water molecules, while at shorter distances, the
interaction will depend on the actual configuration of the water
molecules; the variable charges on the electrode atoms very effec-
tively screen Coulombic interactions within the electrodes. While
εr can be set in LAMMPS, the current implementation of CPM25

does not utilize this value and always assumes vacuum permit-
tivity. Hence, we account for the relative permittivity by dividing
all ion charges by

√
εr and multiplying the potential difference by√

εr ; the simulation results reported below are corrected for this

expedient. Non-electrostatic interactions between all particle
pairs are described by the Weeks–Chandler–Andersen (WCA)
potential,

u(rij) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4ε
⎡⎢⎢⎢⎢⎣
( σ

rij
)

12

− ( σ
rij
)

6⎤⎥⎥⎥⎥⎦
+ ε, rij < 21/6σ,

0, rij > 21/6σ,

(27)

with diameter σ = 5 Å and strength ε = kBT matching the thermal
energy at the prevalent temperature T = 298 K. The motions of the
ions are simulated using the Langevin equation,

mr̈i = −ξṙi + f i + f R
i (t), (28)

with ions weighing in at m = 50 atomic mass units (a.m.u.), the
dots denoting time derivatives, Stokesian drag coefficient ξ = 2.26
a.m.u./fs for spherical particles of diameter σ in water, conserva-
tive force f i, and zero-mean Markovian random forces f R

i , whose
variance is related to the drag coefficient and the temperature
by the fluctuation-dissipation theorem. The equations of motion
are integrated using the velocity-Verlet scheme with a time step
Δt = 5 fs.

The second system is similar to the first system [see Fig. 1(b)],
so we only describe the differences. Both electrodes consist of three
FCC (111) layers of 90 particles each, with a nearest-neighbor
distance of 1.12σ, covering an area A = 24.55 nm2. The distance
between the two innermost electrode layers is again H = 4 nm, and

FIG. 1. Snapshots of the four systems used to compare CPM with GCPM: (a) ions (green and purple) in implicit solvent between graphene-like electrodes (gray), (b) ions in
implicit solvent between FCC electrodes (yellow), (c) ions in explicit solvent (pink) between porous electrodes, shown here with and without the electrolyte, and (d) the ionic
liquid [BMIM+][BF−4 ] (colors) between copper electrodes (gray).
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the box height equals three times the distance between the two
outermost electrode layers. The system contains 59 ion pairs, cor-
responding to a reservoir concentration of ≈1M; consequently, these
first two systems have approximately matching ion concentrations
in the ion-depleted central region between the two double layers.
The total number of particles in this system is 658.

The third system uses model porous electrodes and explicit sol-
vent [see Fig. 1(c)] to reproduce the enlarged surface area and flow
bottlenecks of supercapacitors. Both electrodes consist of two FCC
(111) layers separated by 1.5 nm, with the two outermost layers iden-
tical to the layers in the previous system. The distance between the
two innermost electrode layers is again 4 nm, and the box height
equals three times the distance between the two outermost electrode
layers. The applied potential difference between the two electrodes is
2 V. The two innermost layers contain circular holes of about 2 nm
in diameter, created by removing 12 atoms from each layer. The
flow restrictions due to these small pores reduce the (dis)charging
rate of this supercapacitor. Since the interactions of the ions with
solvent molecules will further impede the flow in real systems, the
94 ion pairs are supplemented with 752 neutral solvent particles, all
endowed with identical WCA interactions, making a total of 1276
particles. The explicit solvent generates the Brownian motion of its
solutes; hence, the evolution is modeled by regular MD, using veloc-
ity Verlet with a time step of 5 fs and employing a Nosé–Hoover
thermostat with a time constant of 100 fs. Neutral solvent particles
do not shield the electrostatic interactions between the ions; hence,
the relative permittivity of εr = 78 is maintained to prevent the ions
from crystallizing. A related system with both electrodes modeled as
closely spaced fixed stacks of six graphene layers, with all but the out-
ermost layer containing a randomly located 1 nm-radius pore, was
studied by Mendez-Morales et al.8

The fourth system, the room temperature ionic liquid
1-n-butyl-3-methylimidazolium tetrafluoroborate [BMIM+][BF−4 ]
between copper electrodes at ΔV = 0 V, see Fig. 1(d), is also sim-
ulated by regular MD. The system contains 512 ion pairs, modeled
using a reparametrization of the CL & P force field49,50 by Mondal
and Balasubramanian.51 All bonds involving H atoms are con-
strained using the SHAKE algorithm.52 Lennard-Jones parameters
for the copper atoms, εCu = 0.52 eV and σCu = 0.23 nm, are copied
from Filippova et al.53 Both electrodes, separated by 5.73 nm, con-
sist of one FCC (111) layer containing 504 atoms with a nearest-
neighbor distance of 1.11σCu, covering an area of 28.52 nm2. The
total number of atoms amounts to 16 368. Lennard-Jones interac-
tions are cut-off at 1.2 nm. The equations of motion are integrated
using velocity Verlet with a time step of 1 fs, maintaining a tempera-
ture of 300 K by a Nosé–Hoover thermostat with a time constant of
1 ps.

Initial configurations for the first two systems were made by
placing the ions on a lattice, while for the third system, the elec-
trolyte particles were placed in random positions, followed by energy
minimization with neutral walls, Q = 0. These systems were thor-
oughly equilibrated for 20 ns, followed by production runs of
180 ns to determine the ensemble averages presented in Sec. IV.
The fourth system was generated at random using the bulk fluid
density, followed by energy minimization and 5 ns of equilibra-
tion; the subsequent production run covered 10 ns. Simulations
with traditional Ewald-based CPM used the typical point spread
parameter η = 1.979 Å−1, while for the hardness parameter in

GCPM we evaluated the impacts of turning the hardness off, K′ = 0,
setting it equal to traditional CPM, K′ =

√
2/π η = 1.579 Å−1, and

suppressing charge fluctuations more strongly, K′ = 10 Å−1. In
both potentiostat approaches, the charges of the electrode atoms
were updated at every step. Run times trun of simulations using
CPM, GCPM, and ELECTRODE for identical parameter settings
were measured for a default serial compilation of LAMMPS on an
Intel® CoreTM i7-7700 at 3.60 GHz under Ubuntu 16.04.07 LTS.
Identical starting configurations were run for Nstep = 10, 100, and
1000 steps to establish the run time per step tstep by fitting
trun = Nsteptstep + t0, with t0 accounting for the initialization and
closure of the run. This procedure was repeated with systems con-
taining multiple copies of the original unit cell by repeated doubling
the system size while alternating between doubling along the two in-
plane directions. The order of time complexity is obtained by fitting
scaling laws,

tstep = aNb
tot, (29a)

tstep = c(Ntot ln Ntot)d, (29b)

with pre-factors a and c, powers b and d, and the total number of
particles Ntot.

IV. RESULTS AND DISCUSSION
In this section, we present simulation results for four distinct

systems. We compare charge distributions obtained with CPM and
GCPM to verify whether both methods are in agreement. Run times
are compared between CPM, GCPM, and ELECTRODE to establish
the time complexities of the three methods.

A. Aqueous electrolyte between graphene-like
electrodes

The density profiles of the ions of an aqueous electrolyte
between two graphene-like electrodes, as obtained with GCPM using
K′ = 1.579 Å−1 and a potential difference of 0.2 V, are presented in
Fig. 2. With two identical electrodes and ions differing only in the
sign of their charge, the distribution of anions relative to the anode
will be identical to the distribution of cations relative to the cath-
ode; this symmetry is highlighted in the main figure. The inset shows
the difference between these density profiles and their counterparts
obtained by CPM using η = 1.979 Å−1, as studied earlier in Ref. 48.
To quantify the observed good agreement, both production runs are
divided into ten blocks to collect ten measurements of the ion con-
centrations for every bin along the z-direction. For every bin and
both ion types, a pair-sampled t-test (ttest in MATLAB54) is used
to test the null hypothesis that the pairwise difference between two
sets of ten densities has a mean equal to zero. For the anions, the null
hypothesis was rejected at the 5% significance level for only 5.2% of
the bins (16 out of 307 non-empty bins); for the cations, the per-
centage rejected was even lower at 2.3% (7 out of 307 non-empty
bins).

Like the ion distributions, the charge densities on the electrodes
also show a very good agreement between CPM and GCPM at K′

= 1.579 Å−1, see Table I. The difference between the two charge
densities amounts to about 0.002e/nm2, or 0.3% of the average,
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FIG. 2. Density profile of the anions ρ
−
(+z) and mirrored density profile of the

cations ρ
+
(−z), for ions differing only in the signs of their charges, between two

identical graphene-like electrodes at ΔV = 0.2 V, see Fig. 1(a). The main plot
shows simulation results obtained with GCPM, using K = 1.579 Å−1. The differ-
ences between these density profiles and their counterparts obtained with CPM,
ρΔ
±
= ρGCPM
±
− ρCPM
±

, are shown in the inset.

and is far lower than the standard deviation in the charge density
of ≈ 0.045e/nm2. The ionic contributions to the capacitances [see
Eq. (20)] are also in good agreement. At about 6%, the difference
is larger than that between the averages, in line with the common
observation that an average requires less sampling to converge to the
proper ensemble averaged value than a variance. The empty capac-
itances in CPM and GCPM are nearly identical, suggesting that the
matrices Ap and Sp in GCPM are very similar to their counterparts

ACPM and SCPM in CPM. Based on the above-mentioned observa-
tions, we conclude that the two constant potential algorithms are
sampling the same ensemble for η ≳ 2 Å−1 and K′ =

√
2/π η.

Varying the strength of the penalty in GCPM, either by
eliminating it completely or by a sixfold increase relative to the
value used earlier, has a modest impact on the simulation results.
Table I and Fig. 3 show that increasing the penalty to 10 Å−1

reduces the absolute charges on the electrodes and thereby makes
them attract less co-ions and repel less counter-ions. The oppo-
site effects are observed when the penalty is decreased, with the
small deviations between the reference system and the K′ = 0 sys-
tem suggesting a modest impact of the penalty at the reference
value of K′.

B. Aqueous electrolyte between FCC electrodes
The density profiles of the aqueous electrolyte between two

FCC electrodes, as obtained with GCPM using K′ = 1.579 Å−1, and
their differences with their counterparts calculated with CPM using
η = 1.979 Å−1, are presented in Fig. 4. The agreement between both
sets of results is again excellent; the null hypothesis is rejected for
anions in only 1.8% of bins (6 out of 330 non-empty bins) and for
cations in 3.6% of bins (12 out of 329 non-empty bins). In Table I, it
can be seen that the average charge densities on the electrodes differ
by 0.003 e/nm2, or 0.5%, well below the standard deviation of about
0.043 e/nm2. The ionic contributions to the capacitances also agree
well, differing by some 7%, while the empty capacitances are almost
identical.

TABLE I. Average electrode charge ⟨Q̄⟩, electrolyte contribution to the differential capacitance Cions = β(⟨Q̄ 2
⟩ − ⟨Q̄⟩

2
),

and the empty capacitor contribution Cempty = D ⋅ SD for three systems under various conditions. All results are normalized
per unit area parallel to the electrode, A. The simulations with GCPM, for three strengths of the penalty K′, sample neutral
configurations with electrode charges Q̄ = QR = −QL; Cempty is calculated using the matrix Sp defined in Eq. (12). Simulations
with CPM, employing the usual narrow charge spreading η, sample non-neutral configurations with average electrode charge
Q̄ = (QR − QL)/2; Cempty is calculated using the matrix SCPM as obtained by Eq. (12) upon replacing Ap with ACPM. Note the

good agreement between CPM and GCPM at K′ =
√

2/π η = 1.579 Å−1 for the graphene and FCC systems; the modest
agreement for the capacitance of the porous system is due to this system’s slow sampling of phase space.

System Method η or K′ [ 1
Å ]

⟨Q̄⟩
A [

e
nm2 ] Cions

A [ e
V⋅nm2 ] Cempty

A [ e
V⋅nm2 ]

Graphene ΔV = 0.2 V

CPM 1.979 0.640 2.02 1.09

GCPM
0 0.669 2.13 1.10
1.579 0.642 1.90 1.09

10 0.508 1.52 1.00

FCC ΔV = 0.2 V

CPM 1.979 0.577 1.84 1.01

GCPM
0 0.520 1.48 0.97
1.579 0.574 1.71 1.01

10 0.292 0.70 0.75

Porous ΔV = 2 V

CPM 1.979 5.555 0.39 0.97

GCPM
0 6.165 1.63 1.18
1.579 5.566 0.07 0.97

10 3.315 0.87 0.63
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FIG. 3. Density distributions of anions (solid lines) and cations (dashed lines) in an
aqueous electrolyte between two graphene electrodes at ΔV = 0.2 V. Varying the
strength K′ (colors) of the penalty function in GCPM has a minor effect on the ion
distributions.

FIG. 4. Density profile of the anions ρ
−
(+z) and mirrored density profile of the

cations ρ
+
(−z), for ions differing only in the signs of their charges, between

two identical FCC electrodes at ΔV = 0.2 V, see Fig. 1(b). The main plot
shows simulation results obtained with GCPM, using K = 1.579 Å−1. The differ-
ences between these density profiles and their counterparts obtained with CPM,
ρΔ
±
= ρGCPM
±
− ρCPM
±

, are shown in the inset.

The ionic and charge distributions reveal an interesting depen-
dence on the strength of the penalty function in GCPM. Decreasing
the strength K′ from the default value to zero hardly affects the
counter-ion distributions at the electrodes, while more co-ions are
attracted and a local concentration maximum appears adjacent to

FIG. 5. Impact of the penalty parameter K′ in GCPM on the density profiles of
cations (dashed lines) and anions (solid lines) for an ionic solution between FCC
electrodes.

the electrode (see Fig. 5). Table I shows, contrary to expectation, that
releasing the penalty reduces the charge density on the electrodes
by about 10% and decreases the capacitance by a similar fraction. A
possible origin of these decreases may be found in the charge dis-
tribution within the electrode: Table II shows that for K′ = 0, the
charges on the three atomic layers per electrode are alternatingly
positive and negative, with the largest absolute charge not on the
layer facing the electrolyte but on the second layer, while the third
layer also carries more charge than the first layer. Although some
studies report alternating signs of the charges on consecutive layers,
these differ from the non-monotonous decay of the absolute charge
seen here for K′ = 0. For example, in Refs. 55 and 56, the absolute
charges per layer decrease monotonically with the distance from the
electrode surface, with the charge per layer resembling a damped
oscillation. In Ref. 25, the charge only alternates from the first layer
to the second; the charges on the second and third layers are about
−0.1 and −0.01 times the charge on the first electrode, respectively.
For K′ equal to or larger than the default value, as well as for CPM
with the default value of η, the charge distribution decreases approx-
imately exponentially with the depth below the electrolyte–electrode

TABLE II. Average surface charges and their standard deviations for the six atom
layers of the FCC electrodes and the four atom layers of the porous electrodes [see
Figs. 1(b) and 1(c)] as obtained using CPM and GCPM. The area is the same for all
layers, A = 24.55 nm2. The letters L and R in the names of the layers refer to the left
and right electrodes, respectively, with the ordinal numbers increasing in the outward
direction.

⟨Q̄layer⟩/A [e/nm2]

Method η or K′ [1/Å] Layer FCC Porous

CPM 1.979

L3 −0.030 ± 0.003
L2 −0.104 ± 0.008 −2.27 ± 0.04
L1 −0.444 ± 0.034 −3.29 ± 0.04
R1 +0.444 ± 0.034 +3.28 ± 0.04
R2 +0.104 ± 0.008 +2.27 ± 0.04
R3 +0.029 ± 0.003

GCPM

0

L3 +1.507 ± 0.114
L2 −2.726 ± 0.207 −0.63 ± 0.07
L1 +0.699 ± 0.053 −5.53 ± 0.07
R1 −0.695 ± 0.053 +5.56 ± 0.07
R2 +2.716 ± 0.206 +0.60 ± 0.07
R3 −1.501 ± 0.114

1.579

L3 −0.029 ± 0.002
L2 −0.103 ± 0.008 −2.28 ± 0.04
L1 −0.442 ± 0.033 −3.29 ± 0.04
R1 +0.442 ± 0.033 +3.29 ± 0.03
R2 +0.103 ± 0.008 +2.28 ± 0.04
R3 +0.029 ± 0.002

10

L3 −0.074 ± 0.007
L2 −0.090 ± 0.008 −1.69 ± 0.02
L1 −0.128 ± 0.012 −1.62 ± 0.02
R1 +0.128 ± 0.012 +1.62 ± 0.02
R2 +0.090 ± 0.008 +1.69 ± 0.02
R3 +0.074 ± 0.007
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interface; the decay length is 3.4 Å for the default K′ and increases
to 17 Å for K′ = 10 Å−1. This strengthening of the penalty reduces
the build-up of charges on the first layer and thereby reduces the
screening of subsequent layers from the electrolyte, resulting in an
increased decay length. At the same time, the reduced charging leads
to a lower overall charge of the electrode, a reduction in the counter-
ion concentration adjacent to the electrode, and an increase in the
co-ion concentration.

C. Ions in explicit solvent between porous electrodes
Figure 6 shows the density profiles for an electrolyte consist-

ing of ions and neutral particles between model porous electrodes
[see Fig. 1(c)], as obtained with GCPM. All three values of K′ yield
minima and maxima in the density at the same positions, the main
differences being limited to the relative heights at these positions and
the charges on the electrode layers. In the interior of both electrodes,
for 2.0 nm ≤ ∣z∣ ≤ 3.5 nm, two layers are formed by counter-ions
and neutral solvent particles. For K′ = 0, these ions favor the inner
wall, which, following Table II, carries a much larger charge than the
outer wall, whereas for larger K′, the ions shift to the outer wall, and

FIG. 6. Effect of the strength of the penalty in GCPM, for (a) K′ = 0,
(b) K′ =

√

2/π η = 1.579 Å−1, and (c) K′ = 10 Å−1, on the density profiles of
cations (green), cations (blue), and solvent (pink) between two porous electrodes
[see Fig. 1(c)]. The positions of the inner electrode layers are indicated with ver-
tical dashed–dotted lines, and the positions of the outer electrode layers coincide
with the boundaries of the plots.

the charge difference between both walls decreases to nearly van-
ish for K′ = 10 Å−1. The liquid in the wider gap between the two
electrodes, −2.0 nm ≤ z ≤ 2.0 nm, shows the typical decaying oscil-
lations of a high density fluid under confinement. The ions in this
gap are concentrated against the electrodes. The shallow peaks in
the densities at z = ±2.0 nm show that particles can pass through the
pore, though the valleys at both sides of these peaks indicate that
crossing events are relatively rare. The passage of ions through these
pores is also attested to by the accumulation of all anions (cations) on
the right (left) electrode, while the simulations started with homoge-
neous distributions. The mirror-symmetry of the ion distributions,
the agreement between GCPM and CPM in Table II and Fig. 7, and
the time evolution of the charges on the electrodes (data not shown)
all suggest that the simulations have converged to equilibrium. Sam-
pling this equilibrium state proceeds too slowly, however, to extract
a reliable value of the ion-related capacitance from the electrode
charge fluctuations (see Table I). In the quantization of the agree-
ment between CPM and GCPM, the null hypothesis is rejected for
10.7% of bins for the anions and for 0.5% of bins for the cations.

D. Ionic liquid between copper electrodes
The ion density distributions for [BMIM+][BF−4 ] in Fig. 8 are

the result of a 5 ns equilibration run followed by a 10 ns produc-
tion run, together requiring about 8 days on 36 cores using CPM.
The distributions are not symmetric, despite the zero potential dif-
ference between the two identical electrodes. Inspection of movies
of these simulations in visual molecular dynamics (VMD)57 reveals
that the molecules at the copper electrodes form a frozen layer in
both CPM and GCPM. Switching to constant vanishing charges on
the electrode atoms does not notably alter this behavior. Molecules
further removed from the electrodes diffuse at about 2 × 10−7 cm2/s,
comparable to the bulk fluid. The freezing of ionic liquids at inter-
faces and under confinement has been reported by a number of
groups.58–62 Because of the immobile interfacial layer, which was
also observed in simulations using ELECTRODE at elevated temper-
atures of 400 and 500 K, it is not meaningful to compare ensemble
averaged simulation results from GCPM and CPM.

When the penalty in GCPM is turned off, K′ = 0, the ion-
induced charges on the electrode atoms grow to unrealistically high
values, ranging up to ±2 × 103e after 1 fs, requiring a time step of
0.01 fs. The charges adopt regular patterns, as illustrated in Fig. 9(a);

FIG. 7. The differences between the density profiles of anions, cations, and solvent
particles between model porous electrodes [see Fig. 1(c)] as obtained with GCPM
and CPM at their default settings.
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FIG. 8. Number densities of the carbon atom CR of BMIM+ and the boron atom of
BF−4 for this room-temperature ionic liquid between copper electrodes at vanishing
potential difference in CPM.

FIG. 9. Simulations of the ionic liquid [BMIM+][BF−4 ] between copper electrodes
highlight the importance of a penalty function restraining the charge fluctuations
of the electrode atoms. (a) A regular pattern of excessive charges develops within
a femtosecond of turning off the penalty in GCPM, K′ = 0; the electrode atoms
are colored by their charge, with the legend indicating charges in multiples of the
elementary charge. (b) The ions at the interface remain disordered, suggesting
they are not able to follow the rapidly growing charges; only the nitrogen atoms of
BMIM+ (red) and boron atoms of BF−4 (pink) are shown.

the ions in the layer adjacent to the wall do not show the same pat-
tern, see Fig. 9(b), probably due to the short time scale and their
slow dynamics. The charges continue to grow, enabling the corre-
spondingly increased Coulomb forces to pull ions into the electrode
layer in defiance of the Lennard-Jones interactions and causing the
simulation to crash after about 2 fs. Using the default value of
K′ = 1.579 Å−1, or CPM with the default value η = 1.979 Å−1, already
suffices to limit the atomic charge fluctuations to a bandwidth of
about 0.05e around an average value close to zero.

E. Algorithm complexity
The algorithmic complexity of simulations using CPM,25

GCPM, and ELECTRODE32 is tested for the above four example
systems. Simulation boxes are enlarging through repeated doubling
of the extensive system dimensions, alternating between (nearly)
square and rectangular electrode areas. The run times of these sys-
tems increase linearly with the number of simulation steps (data not
shown). Run times per step, tstep, are shown in Fig. 10 on a double
logarithmic scale, using two horizontal axes to facilitate compari-
son with the anticipated scaling laws. The straight lines fit Eq. (29),
yielding the fit parameters collected in Table III. Assuming that the

electrostatic calculation dominates the time complexity, we expect a
power law for the CPM simulations with a power b between 1.5 and
2.0.22,23 The fitted powers, bold-faced in Table III, all lie in this range.
The two highest scaling powers are observed for the two systems

FIG. 10. CPU time per time step as functions of the number of particles in the sim-
ulation box, Ntot, for (a) an ionic solution between graphene-like electrodes, (b) an
ionic solution between FCC electrodes, (c) an ionic solution between porous elec-
trodes, and (d) the ionic liquid [BMIM+][BF−4 ] between copper electrodes. Solid
lines and circular markers relate to the bottom Ntot axis, while dashed lines and
pluses relate to the top Ntot ln Ntot axis. The lines are fits using the scaling laws
of Eq. (29), with fit parameters collected in Table III. The charges of the elec-
trode atoms are calculated by Ewald summation (CPM), via PPPM (GCPM and
ELECTRODE), or kept fixed (FCM).
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TABLE III. Fit parameters for the CPU time per simulation time step tstep, as presented for four systems in Fig. 10, using the
scaling laws of Eq. (29) with Ntot the total number of atoms in the system. The charges of the electrode atoms are calculated
by Ewald summation (CPM), by standard PPPM (GCPM), by an adapted PPPM routine (ELECTRODE), or kept fixed (FCM).
The key values in this table are bold-faced.

System Method a [10−6 s] b [-] c [10−7 s] d [-]

Graphene ΔV = 0.2 V
CPM 0.12 1.67 0.22 1.50

GCPM 0.30 1.46 0.68 1.31
ELECTRODE 0.078 1.57 0.15 1.41

FCC ΔV = 0.2 V
CPM 0.13 1.76 0.25 1.56

GCPM 0.92 1.29 2.8 1.15
ELECTRODE 0.27 1.40 0.74 1.24

Porous ΔV = 2 V
CPM 0.047 1.80 0.076 1.61

GCPM 3.0 1.06 10 0.95
ELECTRODE 2.1 1.06 7.1 0.95

Ionic liquid ΔV = 0 V

CPM 0.018 1.87 0.018 1.70
GCPM 28 0.99 85 0.90

ELECTRODE 19 0.97 59 0.89
FCM 17 0.95 53 0.87

with the highest number density of electrolyte particles. In simu-
lations using GCPM and ELECTRODE, we expect the run times
to follow PPPM’s scaling law, 𝒪(Ntot ln Ntot). Fits with a power-
law variation on this scaling law [see Eq. (29b)] are included in
Fig. 10. Three out of four fitted powers d, bold-faced in Table III,
are sufficiently close to the theoretical value of d = 1 to support the
conclusion that GCPM scales as expected; the one exception is the
system with graphene electrodes, possibly because the high number
density of atoms in the electrodes and the low number density of
ions in the electrolyte tip the balance between real space and recip-
rocal space calculations in PPPM toward the former. For the two
dilute systems, see Figs. 1(a) and 1(b), the fitted powers d obtained
with ELECTRODE are higher by about 0.1 than their counterparts
with GCPM, while ELECTRODE realizes prefactors c amounting to
about 25% of their GCPM counterparts. Hence, GCPM may be faster
than ELECTRODE for very large systems in these cases. For the two
dense systems, see Figs. 1(c) and 1(d), ELECTRODE yields powers
d nearly identical to those for GCPM, while the prefactors are about
30% lower than those for GCPM. Hence, GCPM scales the same as
ELECTRODE, but its current naïve implementation requires around
75% more CPU time per step.

Curiously, the system with graphene electrodes shows both
the worst scaling behavior in the PPPM-based approaches and
the best scaling behavior in the Ewald summation (see Table III).
Figure 10(a) shows, however, that GCPM is still nearly twice as fast
as CPM for the smallest system size explored here, and this ratio
grows modestly with increasing system size. Conversely, PPPM-
based approaches show their best scaling behavior, and Ewald
summation its worst, for the all-atom ionic liquid system. GCPM
is just over three times faster than CPM at the smallest system
size, growing to more than ten times faster by a fourfold increase
in Ntot [see Fig. 10(d)]. For this system, we also present simula-
tions with the fixed charge method (FCM), mimicking a vanishing

potential difference by setting all electrode charges to zero.
Figure 10(d) and Table III show that FCM simulations—using
PPPM for the electrostatic interactions—and GCPM simulations
share essentially identical time complexities. The CPU time per
step for GCPM equates to ∼ 2.3 steps with FCM. These observa-
tions indicate that our naive implementation of GCPM approaches
the best performance realizable with an off-the-shelf implementa-
tion of PPPM, with the doubling of tstep between FCM and GCPM
largely explained by the one additional invocation of PPPM in every
GCPM step to calculate the Coulombic energies of all electrode
atoms. It is evident that GCPM’s use of a standard PPPM routine
to obtain the potentials on all electrode atoms incurs several super-
fluous calculations: this invocation of PPPM with the test charges
Q′ = Q′D also computes energies and forces on all electrolyte atoms,
as well as forces on all electrode atoms. A dedicated electrostatic
solver—or a generic solver with the ability to skip the aforemen-
tioned superfluous evaluations—would reduce the computational
demands. The ELECTRODE routine, with its dedicated modifica-
tions of PPPM, reduces the CPU time per step to ∼ 1.3 steps with
FCM. The agreement on the power d across all three PPPM-based
simulations indicates that the matrix-vector multiplications to solve
the electrodes’ atomic charges in GCPM and ELECTRODE do not
noticeably raise their time complexity over that of FCM for the
system sizes studied here.

V. CONCLUSION AND OUTLOOK
We presented a generalized approach to simulating conduct-

ing electrodes at a fixed potential difference, GCPM, which we
implemented in LAMMPS45 to work in conjunction with its exist-
ing PPPM routine. Simulation results on four sample systems show
good agreement between GCPM and a traditional Ewald-based
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CPM, while GCPM is computationally considerably cheaper, easier
to implement, and more flexible.

We showed that the narrow Gaussian spreading of the charges
on the electrode atoms, as traditionally employed in constant poten-
tial simulations, makes a negligible impact on the interatomic forces.
Treating these atoms as point charges, like the atoms of the elec-
trolyte, enables constant potential simulations by invocations of any
existing efficient standard electrostatic routine. However, the use
of narrow Gaussians does have an important impact on the elec-
trostatic energy: it effectively endows each electrode atom with an
internal energy quadratic in its charge. From a physical point of
view, an energy penalty of this form offers an appealing route to
account for the atom’s restricted ability to gain or lose electrons.
The same effect is, therefore, realized in GCPM by simply includ-
ing an intra-atomic energy quadratic in the charges. A term linear
in the energy can be added to account for chemical differences in
electron affinities between unlike atoms or environment-induced
differences between atoms at the surface vs atoms in the bulk. In the
absence of a penalty restraining the charge fluctuations, the ions may
induce unrealistic charging patterns on the electrodes with oscilla-
tions either perpendicular or parallel to the surface. A penalty with
strength K′ ≈ 1.6 Å−1, equivalent to the intra-atomic energies in
CPM at the common Gaussian spreading parameter η ≈ 2.0 Å−1, suf-
fices to suppress these spurious oscillations. More research is needed
to establish accurate penalties for electrode materials.

As an example, we compare an existing CPM routine for
LAMMPS, employing a dedicated Ewald routine for the narrow
Gaussian spreading, with a GCPM implementation invoking the
standard PPPM library. Simulations on four sample systems showed
that CPM and GCPM produce equivalent results. The run times
per step are in agreement with textbook scaling laws: 𝒪(N3/2) to

𝒪(N2) for CPM based on Ewald summation and 𝒪(N ln N) for
GCPM based on PPPM, with N the total number of atoms in the
system. The latter scaling law is also found for a recent CPM imple-
mentation in LAMMPS by Ahrens-Iwers and Meißner,31 based on
a dedicated PPPM routine re-coded to fit in with CPM. These
PPPM-based methods enable constant potential simulations of more
elaborate models over longer periods of time and thereby open up
new possibilities to investigate the operations of supercapacitors.
A future routine combining the features of GCPM, ELECTRODE,
MetalWalls, and ICC∗ may result in an even faster and more real-
istic method for the simulation of induced fluctuating charges on
electrodes.
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APPENDIX: THE ELECTROSTATIC ENERGY

Ewald summation allows the calculation of electrostatic ener-
gies and forces for neutral simulation boxes with periodic bound-
ary conditions. All atoms are treated as point charges interact-
ing through long-range Coulomb interactions. To facilitate the
calculation of slowly converging sums over increasingly distant
neighbors, atom-based Gaussian charge distributions of width
α−1 are added and subtracted to split the problem into two
summations—one in real space and one in reciprocal space—that
both converge rapidly. Three-dimensional Ewald summation with
slab correction21–23,27,37 for a neutral simulation box containing N
electrode atoms of charges Qi at positions Ri and n electrolyte
atoms of charges qi at positions ri gives the total electrostatic
energy as

4πε0Ue =
2π
V ∑k≠0

1
k2 ∣S(k)∣

2e−k2
/(4α2

) + 1
2

n

∑
i=1

n

∑
j=1
j≠i

qiqj
erfc(α∣ri − rj ∣)
∣ri − rj ∣

+
N

∑
i=1

n

∑
j=1

Qiqj
erfc(α∣Ri − rj ∣)
∣Ri − rj ∣

+ 1
2

N

∑
i=1

N

∑
j=1
j≠i

QiQj
erfc(α∣Ri − Rj ∣)
∣Ri − Rj ∣

− α√
π
(

N

∑
i=1

Q2
i +

n

∑
i=1

q2
i ) +

2π
V
(

N

∑
i=1

QiZi +
n

∑
i=1

qizi)
2

,

(A1)

with dielectric permittivity of vacuum ε0, volume of the box V ,
reciprocal lattice vectors k commensurate with the dimensions of
the periodic box and length k = ∣k∣, the complementary error func-
tion erfc, the elevations Zi and zi of electrode and electrolyte atoms
relative to the midplane of the slab, and charge-weighted structure
factors

S(k) =
N

∑
j=1

Qjeik⋅Rj +
n

∑
j=1

qjeik⋅rj . (A2)
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The elements of the matrix A in Eq. (3) are extracted from the above-
mentioned expression as

4πε0Aij =
4π
V ∑k≠0

1
k2 cos [k ⋅ (Ri − Rj)]e−k2

/(4α2
)

+ erfc(α∣Ri − Rj ∣)
∣Ri − Rj ∣

(1 − δij) −
α√
π

δij +
2π
V

ZiZj , (A3)

with δij the Kronecker delta. Note that the diagonal elements Aii are
all identical, save for their quadratic dependence on the elevation Zi.

In traditional CPM, the charges of the electrode atoms are
treated as narrow Gaussians of width η−1 and total charge Qi,

Q̄i(x) = Qi(
η2

π
)

3/2

e−η2
(x−Ri)

2

, (A4)

rather than point charges, resulting in the energy12,25,37

4πε0Ue
CPM = 2π

V ∑k≠0

1
k2 ∣S(k)∣

2e−k2
/(4α2

) + 1
2

n

∑
i=1

n

∑
j=1
j≠i

qiqj
erfc(α∣ri − rj ∣)
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+
N

∑
i=1

n

∑
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2
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N
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√

2
)

∣Ri − Rj ∣

+ ( η√
2π
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V
(

N
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n

∑
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qizi)
2

. (A5)

The importance of the underlined contribution is discussed in the
main text [see Eq. (5)].
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