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A B S T R A C T

Forest canopies to some extent obscure passive reflectance of soil traits such as pH, as well as be-
low-canopy vegetation, in the optical to middle infrared portions of the electromagnetic spec-
trum (approximately 400–2500 nm) which are typically used in airborne and spaceborne image
spectrometers. In this study, we present, for the first time, an accurate estimation of soil pH across
extensive areas using hyperspectral imaging data obtained from the DLR Earth Sensing Imaging
Spectrometer (DESIS) satellite. Furthermore, we investigate the impact of predicted soil pH varia-
tion on the concentrations of micronutrients in both leaves and soil. Our modelling is based on a
comprehensive in-situ field campaign conducted during the summers of 2020 and 2021. This
campaign collected soil pH data for model calibration and validation from 197 plots located
across three distinct temperate forest sites: Veluwezoom and Hoge Veluwe National Parks in the
Netherlands, as well as the Bavarian Forest National Park in Germany. The soil pH for each test
site was accurately predicted by means of a partial least squares regression (PLSR) model, root
mean square error (RMSEcv) of 0.22 and the cross-validated coefficient of determination (R2

CV) of
0.66. Our findings demonstrate that there are patches of extremely low soil pH possibly due to
ongoing soil acidification processes. We saw a particularly significant decrease in soil pH
(p ≤ 0.05) in the coniferous forests when compared to the deciduous forest. The acidification of
forest soils had a profound impact on the variation of soil and leaf micronutrient content, particu-
larly iron concentration. These results highlight the potential of image spectroscopy data from
the DESIS satellite to monitor and estimate soil pH in forested areas over extensive areas given
sufficient data. Our findings hold significant implications for soil pH monitoring programs, en-
abling forest managers to assess the impact of their management practices and gauge their effec-
tiveness in maintaining soil and forest vitality.

1. Introduction
Soil pH is a crucial factor in determining the composition and health of soil. It serves as a vital indicator of soil quality and has a

significant impact on various aspects of forest health and ecosystem functioning (O'Neill 2005) by influencing different biological and
chemical processes occurring in the soil (Rengel 2011; Neina 2019). For instance, the availability of essential nutrients like nitrogen,
phosphorus, and potassium, are reduced under higher acidity thereby impacting tree growth and vitality (de Jong et al., 2022).
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Distinct tree species have specific soil pH preferences that directly impact nutrient availability for healthy development (Londo et
al., 2006; Roell et al., 2022). Soil pH also plays a crucial role in influencing the activity and diversity of soil bacteria and fungi, which
are essential for organic matter decomposition and nutrient cycling (Black et al., 2003; Tedersoo et al., 2020). Acidic soils present a
considerable challenge in agricultural and forest areas as they hinder nutrient availability, restrict vegetation growth, and cause nu-
trient deficiencies by lowering the soil pH.

A key cause of soil acidification in forested regions is often attributed to the deposition of nitrogenous and acidic compounds aeri-
ally deposited in a dry or wet state (Abrahamsen 1984, de Jong et al., 2022) or by acidification processes in the soil (Huang et al.,
2022). The so-called “acid rain” phenomena emerged as a significant challenge in Europe and North America in the early 1970s, with
the major contributor to this being the atmospheric deposition of industrial nitrogen emissions resulting from power plants, factories,
and vehicles burning fossil fuels (Moomaw 2002; Lajtha and Jones 2013). Regulations implemented in the 2000s, such as smokestack
scrubbers and vehicle catalytic converters mitigated the problem of soil acidification caused by atmospheric deposition from indus-
trial and transport nitrogen emissions (Basu 2007).

Despite the reduction in acid deposition from industrial sources, other factors continue to contribute to soil acidification. Natural
processes such as the decomposition of (acidic) organic matter, including leaves and plant debris from particularly coniferous tree
needles and twigs, can release organic acids that lower soil pH (Adeleke et al., 2017; Krishna and Mohan 2017). In addition, forest ar-
eas located near agricultural farmlands can undergo further acidification, such as excessive use of nitrogen-based fertilizers, including
ammonium-based fertilizers, which release acidic compounds during nitrification, leading to soil acidification (Barak et al., 1997;
Falkengren-Grerup et al., 2006).

Acidic soil with particularly low pH poses the risk of toxicity, particularly the release of heavy metals such as aluminium, which
can be detrimental to tree roots, impairing their growth and overall health (Vrba et al., 2014; Kopačková et al., 2015), by affecting the
functioning of tree roots, nutrient uptake, and overall tree vigour (Finlay 1995). Monitoring and measuring soil pH in forested regions
yields valuable insights into the overall well-being and vigour of the forest ecosystem, aids in the early identification of soil acidifica-
tion, and facilitates the implementation of suitable measures to counteract the issue and prevent further deterioration. Furthermore,
the implementation of a soil pH monitoring program is indispensable during forest restoration and rehabilitation endeavours, for ex-
ample by selecting the most appropriate tree species based on their specific pH requirements (Liu et al., 2011). Lastly, by monitoring
soil pH, forest managers can assess the impact of continuing airborne deposition (especially) of nitrogenous compounds on soil pH.

Traditionally, foresters and park managers have relied on field surveys to assess soil pH in forested areas, using various methods
like handheld pH meters, pH test strips, and laboratory analysis for soil sampling. These surveys are time-consuming, expensive, and
inefficient, especially over large areas, and where there is significant variation in soil pH across large regions; often these approaches
fail to provide accurate measurements at a fine scale and especially to locate pH ‘hotspots’ which can remain unsampled between the
(necessarily) widely spaced in situ field samples.

To address the shortcomings of the traditional approach in measuring soil pH, one potential solution is to leverage remote sensing
data. Remote sensing offers the ability to assess and estimate soil pH across large areas within relatively short timeframes (Ben-Dor
2002). By utilising remotely sensed data, it becomes possible to monitor changes in soil pH over time. Currently, the application of re-
mote sensing for soil pH monitoring has primarily concentrated on agricultural farmlands (Ghazali et al., 2020; Webb et al., 2021).
This focus on fallow agricultural land is because the traditionally available optical data (e.g., broadband satellite sensors with limited
spectral bands) are not obscured by canopy cover – forests with a dense canopy cover (partially) obscure the direct measurement of
soil pH. The forest canopy biochemical properties can be a proxy for soil pH measurements, given the direct and indirect influence of
soil pH on nutrient availability in the soil and plant nutrient uptake processes, (Toro-Manríquez et al., 2019). Utilising image spec-
troscopy potentially provides the necessary spatial resolution as well as spectral resolution (i.e., those parts of the electromagnetic
spectrum sensitive to soil pH), to more accurately map soil pH. For example, the DLR Earth Sensing Imaging Spectrometer (DESIS) hy-
perspectral satellite, launched on April 1, 2022, and operated by the German Aerospace Centre (DLR) has been designed in part to as-
sess soil biochemical and biophysical properties (Chabrillat et al., 2019). This imaging spectrometer directly characterizes and re-
solves forest canopies using hundreds of spectral bands in the range of 400–1000 nm with a high spatial resolution (30 m) and radio-
metric resolution of 12 bits per pixel, allowing for the absorption characteristics associated with soil minerals and water content to be
examined (Krutz et al., 2019).

This research introduces an innovative approach that utilizes imaging spectroscopy data obtained from the DESIS satellite to esti-
mate soil pH in temperate forests situated in two distinct geographical locations, namely Germany and the Netherlands. Additionally,
this study explores the effects of predicted soil pH variations across different forest stands and the levels of in-situ measured micronu-
trients in both soil and leaves, such as iron, phosphorus, calcium, magnesium and potassium. Our hypothesis is that the distinctive ab-
sorption features observed in forest canopy biochemical properties like chlorophyll, nitrogen, water content, and micronutrients, as
well as some signal reflectance from canopy gaps, can yield accurate and robust estimates of forest soil pH over extensive areas.

2. Materials and methods
2.1. Study area

The focus here is on three temperate forests situated in distinct geographical locations within Europe. Specifically, our study sites
are located in the Netherlands (Veluwezoom and the Hoge Veluwe National Park) and Germany (Bavarian Forest National Park). The
Veluwezoom and Hoge Veluwe National Park are two adjacent natural forest reserves located in the central part of the Netherlands
(Fig. 1). The Veluwezoom spans an area of approximately 50 km2 and is situated in the province of Gelderland, near the town of Rhe-
den, between the longitude 2°02′48.84″ and latitude 06°00′43.92″E (Plakman et al., 2020; Mols et al., 2021). The Veluwezoom en-
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Fig. 1. The locations of the three study sites in the Bavarian Forest National Park, Germany, and Hoge Veluwe and Veluwezoom National Parks in the Netherlands.

compasses heathland and a mix of coniferous and deciduous forests, primarily composed of European beech, oak, birch, Scotch pine,
and Norway spruce. The temperate climate of the area is characterized by an average annual temperature of 10.51 °C and precipita-
tion of 850 mm.

The Hoge Veluwe National Park covers an area of approximately 55 km2 and is situated in the eastern part of the Veluwezoom Na-
tional Park, between the main cities of Arnhem, Ede, and Apeldoorn (Hein 2011). The Hoge Veluwe National Park boasts a diverse
landscape consisting of sand dunes, heathlands, forests, and grasslands. The area shares similar climatic and tree species characteris-
tics as the Veluwezoom.

The Bavarian Forest National Park is located in south-eastern Germany near the border with the Czech Republic and is part of the
larger Bohemian Forest. The BFNP is situated at 13°12′9″ E and 49°3′19″ N and covers an area of approximately 240 km2. The region
has a temperate climate with abundant precipitation throughout the year, averaging around 1200–1800 mm annually. The BFNP is
characterized by a mix of coniferous and deciduous forests. At higher elevations, Norway spruce dominates around 90% of the area,
with the remaining 10% comprising of European beech and other deciduous trees (Abdullah et al., 2018a). In the hills and valley
slopes, European beech covers approximately 83%, while Norway spruce makes up the rest of the forest. Full details regarding the
BFNP can be found in (Lehnert et al., 2013). The BFNP, located in Germany, has experienced the detrimental effects of acid rain in the
past, leading to a multitude of environmental issues within this national park (Beudert and Gietl 2015).

2.2. Data
2.2.1. Field data collection

Two field campaigns in 2020 and 2021 were conducted and a total of 197 soil plots were collected from three designated test sites:
Bavarian Forest National Park, Hoge Veluwe and Veluwezoom (Fig. 1). The plots were distributed across coniferous and deciduous
stands, with a criterion of >75% canopy dominance by a coniferous or deciduous forest type. In addition, sixteen plots consisted of
mixed coniferous and deciduous stands with <75% canopy dominance. Each of the 197 selected plots measured 30 × 30 m to match
the spatial resolution of DESIS data. This allowed for a 30-m radius buffer zone around the central pixel location to account for uncer-
tainty in the spatial registration of image pixels (Abdullah et al., 2018a). The central point of each plot was determined using a Differ-
ential Global Positioning System (DGPS) Leica GPS 1200, which provided an accuracy of better than 1 m after post-processing.

Sampling occurred from June to August 2020 and May to August 2021, specifically when the broadleaved forest was fully mature
and before senescence, thereby minimizing seasonal effects. In each plot, three composite topsoil samples (upper 10 cm) were col-
lected from 3 × 3 m subplots in 2020, while two composite samples were collected in 2021. Each composite sample comprised a ho-
mogenized mixture of nine cores (10 cm height x 5 cm Ø, after removal of litter) collected in a 3 × 3 m grid. Large rocks and stones
were removed from the samples, which were then oven-dried at 105 °C for 24 h and finely ground using a Retsch Planetary Ball Mill
PM 200.

Top canopy leaf samples were collected from multiple tree branches within each plot using a large slingshot (Tree Runner
BigShot) and a modified crossbow with rope (Abdullah et al., 2018b). A minimum of 40 leaves or 30 needle cohorts per tree were col-
lected and directly oven-dried for 72 h at 65 °C, before being finely ground using a household blade coffee grinder.

Finally, soil pH-H2O was determined by dissolving 10 g of ground soil in ultra-pure water at a ratio of 1:2.5 (soil to water). The pH
was then measured using a Metrohm 914 pH and conductivity meter, which has an accuracy of ±0.003 pH (Metrohm AG, Switzer-
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land). The measurement followed the procedure outlined by Reeuwijk (2002). Similarly, soil micronutrients were determined using a
handheld Thermo ScientificTM Niton Portable X-Ray Fluorescence analyzer, following the manufacturer's instructions. For leaf mi-
cronutrients, an Inductively Coupled Plasma - Optical Emission Spectrometry (PerkinElmer 8300DV ICP/OES) was utilized after open
acid digestion of 200 mg of dried leaf material in a 6 ml mixture of 1:1 (vol:vol) hydrogen peroxide (analytical grade, 30%) and nitric
acid (Suprapur, 65%).

2.2.2. Satellite data
The DLR Earth Sensing Imaging Spectrometer (DESIS) satellite data was utilized for the Bavarian Forest National Park test site in

July 2020 and the Veluwezoom and Hoge Veluwe test sites in June 2020. The image data was collected synchronously with the field
data collection. The DESIS satellite is a push-broom imaging spectrometer (hyperspectral imager) that provides hyperspectral images
with 235 spectral bands over the visible and near-infrared regions of 400–1000 nm, with a spectral resolution of 2.55 nm and a spa-
tial resolution of 30 m (Fig. 2). The radiometric resolution for each band is 12 bit with a 1 bit gain (Alonso et al., 2019).

In this study, the DESIS Level-2A product was used. The L2A product was delivered as standardized ortho-corrected as well as ra-
diometrically-corrected reflectance. Furthermore, the L2A product provides the atmospherically corrected, terrain corrected, and in-
cludes several masks including water, cloud shadow, and haze that remove the effects of atmospheric interference from the sensor
measurements, resulting in more accurate and reliable data (Krutz et al., 2019; Aneece et al., 2022).

2.3. Data pre-processing and partial least square regression
In order to prepare and standardize the DESIS L2A images for subsequent analysis, a number of pre-processing steps were taken.

Initially, the spectral profile was evaluated to eliminate low-quality or noisy bands, specifically excluding wavelengths of 402.8 nm,
410.3 nm, and 999.5 nm from the analysis, leaving 232 spectra for analysis. The spectral reflectance values of sample plots were ex-
tracted from the DESIS scenes to facilitate.

To estimate soil pH using DESIS data we utilized a partial least squares regression (PLSR) which is a commonly and widely used
technique to retrieve soil and vegetation properties using remote sensing data (Geladi and Kowalski 1986, Darvishzadeh et al., 2011;
Jiang et al., 2016; Wang et al., 2020). The PLSR is a regression technique that is specifically developed to tackle the issue of multi-
collinearity, which is a common problem in hyperspectral data due to the high correlation among the input variables (spectral bands)
(Geladi and Kowalski 1986, Carrascal et al., 2009). In other words, PLSR performs under circumstances where there is multicollinear-
ity in the independent (explanatory) variables, which is commonly encountered in hyperspectral data (Wang et al., 2020). For more
comprehensive information regarding PLSR, Geladi and Kowalski (1986) provide an excellent overview.

The PLSR technique establishes a linear relationship between a set of independent variables (X) and a group of dependent vari-
ables (Y) (Wold et al., 1993). In order to estimate soil pH using the PLSR model, we initially combined the collected reflectance and
in-situ measurements from three different test sites (Veluwezoom, Hoge Veluwe, and Bavarian Forest National Park). This was done to
create a universal model capable of working in various locations with similar conditions, such as tree species and land cover types.
Consequently, we constructed the PLSR model using reflectance data from 197 plots as independent variables (X) and in-situ mea-
surements of soil pH from 197 soil samples as the dependent variables (Y). To calibrate the model and determine the optimal number
of components required for the PLSR model, we employed leave-one-out cross-validation. This cross-validation approach was utilized
to prevent overfitting, whereby an additional component is added to the model only when the root mean square error of cross-
validation (RMSEcv) decreases by at least 2% (Darvishzadeh et al., 2008). In this study, five components (factors) built the PLSR
model (refer to Fig. S1 in the supplementary materials). Performance assessment of the PLSR model used the coefficient of determina-
tion (R2), root mean square error of predictions (RMSE), and the root mean square error of cross-validation (RMSEcv) by comparing

Fig. 2. Shows the DESIS data acquired on June 23, 2020, over the Veluwezoom and Hoge Veluwe National Park in the Netherlands. The figure includes specifications
of the DESIS data and an example of spectral reflectance data derived from DESIS data over a forested area in the Veluwezoom.
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predicted and measured soil pH values. The significance of each spectral band estimated soil pH by calculating the variable ‘impor-
tance in projection’ (VIP). Furthermore, the impact of soil pH on each spectral band was calculated using the beta coefficient value.
To determine the most informative spectral bands, our criteria involved selecting bands with VIP values greater than 1 while simulta-
neously considering the regression coefficient values, aiming for either the lowest or the highest values (Wold et al., 1993). MATLAB
software (2019a) was used to conduct the PLSR analysis.

2.4. Model validation and mapping soil pH
To validate the performance of the PLSR model and generated soil pH maps, we employed a cross-validation technique known as

leave-one-out (LOOCV). Given our sample size of 197 samples, we considered it inadequate for the conventional approach of splitting
data into training and test sets (Berrar, 2018). Therefore, we have opted for Leave-One-Out Cross-Validation (LOOCV) to validate the
performance of the Partial Least Squares Regression (PLSR) model. Moreover, our dataset comprises field data collected from three
distinct locations. Randomly splitting the data into training and test sets could potentially result in a model that does not sufficiently
represent the pH range across all three sites (Sammut and Webb, 2010). By choosing LOOCV, we ensure that each measured pH sam-
ple contributes to building the model, taking into account the unique characteristics of each site. This approach enhances the robust-
ness of our model by considering the diversity in pH values across the different locations.

In LOOCV, each sample is temporarily excluded from the dataset, and the model is then trained on the remaining samples
(Reunanen 2003). This process is repeated for all samples, amounting to 197 iterations. Subsequently, to evaluate the accuracy of the
model, we computed the cross-validated root mean square error (RMSEcv) and cross-validated coefficient of determination (Rcv)
based on the predicted and measured soil pH data. The model exhibiting the lowest RMSEcv value was chosen for generating the soil
pH map (refer to Fig. S1 in the supplementary materials). Prior to the mapping procedure, we utilized land cover maps provided by
the park administrations of Veluewzoom, Hoge Veluwe and Bavarian Forest National Park to identify forested land cover. For in-
stance, in the case of Veluwezoom and Hoge Veluwe sites, we masked non-forested areas, such as sand dunes and heathlands. Simi-
larly for BFNP, areas affected by bark beetle infestation such as dead wood and recently regenerating areas, were excluded as these ar-
eas were not sampled in our 197 field samples.

To cross-check the robustness of the generated soil pH maps, a comparison was made with existing soil pH data by utilising a soil
pH map provided by the EUROPEAN SOIL DATA CENTRE (ESDAC) 2018, developed as part of the LUCAS project (Land Use and Land
Cover Survey). The LUCAS project collected more than 22,000 soil samples from various member states of the European Union. Sam-
ples were largely from agricultural landscapes with few samples located in national park forests under limited or no human interven-
tion. For more details on the LUCAS datasets and the methodology employed to generate the soil pH map, refer to Ballabio et al.
(2019).

The soil pH map obtained from the LUCAS dataset was provided in a tiff file format, with a spatial resolution of 500 m per pixel. In
order to facilitate the verification process and harmonize data, the LUCAS pH map was resampled to a resolution of 30 m, matching
the spatial resolution of the DESIS data used in this study. Subsequently, to enable a comparison between the soil pH estimated in our
study and the soil pH derived from the LUCAS dataset, 50 random samples were generated within each of the study sites Veluwe-
zoom, Hoge Veluwe and Bavarian Forest National Park as depicted in Fig. 3. We extracted the corresponding soil pH values from both
datasets for these samples. To evaluate the relationship between the two products, we computed the coefficient of determination, as-
sessing their correlation.

Fig. 3. Illustrates the placement and distribution of the randomly selected samples within the Veluwezoom, Hoge Veluwe, and Bavarian Forest National Park study ar-
eas.
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3. Results
3.1. Soil pH mapping and validation

Fig. 4 illustrates the soil pH estimated by the PLSR model in comparison to the soil pH measured during the two field campaigns.
The PLSR model has an R2 value of 0.66 and an RMSEcv value of 0.22. We examined the contribution of each spectral band in the
PLSR model for soil pH prediction by calculating the Variable importance in the projection (VIP) and regression coefficient (beta).
Table 1 and Fig. 5 demonstrate a strong correlation between the spectral bands with VIP values exceeding 1 and the lowest or high-
est ± regression coefficients for the same bands. Generally, the most significant spectral bands for estimating soil pH are spread
across the spectral range of DESIS data, ranging from 400 to 1000 nm. Nevertheless, the highest peaks predominantly occur in the
red-edge region of 698–734 nm and the near-infrared region of 938–978 nm.

Utilising the PLSR model, we generated soil pH maps to visualize the spatial distribution across three prominent areas: the Bavar-
ian Forest National Park, Veluwezoom, and Hoge Veluwe National Parks (Fig. 6a, b, and c). To conduct a more in-depth analysis of

Fig. 4. Measured versus predicted soil pH derived from the PLSR analysis and DESIS Image spectroscopy data.

Table 1
Displays the spectral bands (nm) that were selected based on their Variable Importance in the Projection (VIP) scores and regression coefficient values.

Visible Red edge Near Infrared

VIP 427, 437, 517-520 697–734,760,767 918,930–931,942,949,957,965,981,988
Regression coefficient peak ± 437, 520 697–726, 760 918, 930–931, 949, 957, 965, 976

Note: In Table 1, the spectral bands highlighted in bold indicate the spectral bands that were selected using both the Variable Importance in the Projection (VIP) ap-
proach and the regression coefficient approach.

Fig. 5. The VIP scores and regression coefficients for soil pH generated by the PLSR analysis for the three ecosystems. VIP scores above the red dash line (VIP <1) indi-
cate important band ranges for soil pH estimation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this ar-
ticle.)
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Fig. 6. Spatial distribution of estimated soil pH using DESIS data and the PLSR model over the Bavarian Forest National Park (a), Hoge Veluwe (b), and Veluwezoom
National Park (c).
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the soil pH maps, we employed the tree species maps developed by the park administrations. These tree species maps were utilized to
extract the estimated soil pH value for each tree species, which was then compared to the in-situ measured soil pH data per tree
species (Fig. 6). The results show a strong agreement between the modelled soil pH and the in-situ measured soil pH data, particularly
for deciduous and coniferous trees in all three study sites (Fig. 7). However, it's important to note that a significantly (P < 0.05)
lower soil pH was observed for the modelled soil pH in the Bavarian Forest National Park over the deciduous stands (Fig. 7).

Finally, to cross-check the robustness and verify the generated soil pH maps, a comparison was conducted with existing LUCAS
soil pH data obtained from the European Soil Data Centre (ESDAC). A strong correlation is evident between the soil pH maps pre-
dicted by the PLSR model using our field data and the soil pH map generated with the LUCAS soil data (Fig. 8). The coefficient of de-
termination (R2) was 0.53 (Bavarian Forest National Park), 0.66 (Hoge Veluwe), and 0.69 (Veluwezoom), respectively, indicating a
good match between the generated soil pH maps and the LUCAS pH map.

Fig. 7. Comparison of measured and estimated Soil pH in different tree species (Deciduous and Coniferous) across Bavarian Forest National Park, Hoge Veluwe, and
Veluwezoom National Park.
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Fig. 8. Comparison of estimated soil pH using PLSR model and DESIS data against LUCASE soil pH data provided by EUROPEAN SOIL DATA CENTRE (ESDAC) across
Bavarian Forest National Park (a), Hoge Veluwe (b), and Veluwezoom National Park (c).

3.2. The impact of soil pH on the variation of micronutrient concentrations in leaves and soil
The field-measured concentrations of micronutrients in leaves and soil from deciduous and coniferous stands are detailed in

Tables 2 and 3. In the Bavarian Forest National Park, the average values of all the micronutrients (calcium, magnesium, potassium,
phosphorus, and iron) were higher in deciduous stands compared to coniferous stands. This trend was similarly observed in the Hoge
Veluwe and Veluwezoom national parks, with the exception of leaf Iron content, where both coniferous and deciduous stands exhib-
ited values of 59 and 58 ppm, respectively.

To understand the influence of soil pH on the measured concentrations of micronutrients in both leaves and soil, we employed
multiple linear regression, which revealed a significant (p < 0.05) and positive correlation between soil pH and leaf magnesium con-
centrations in both the Bavarian Forest National Park and the Hoge Veluwe and Veluwezoom National Parks. Similarly, soil pH
demonstrates a notable positive impact (p < 0.05) on leaf and soil iron content. No substantial effects were observed for the other
measured micronutrients (calcium, phosphorus, and potassium) in leaves and soil, except for the case of soil potassium concentration
in the Hoge Veluwe and Veluwezoom National Parks. It is noteworthy that our results show that soil pH exhibits a positive influence
on all measured soil and leaf micronutrient concentrations (refer to Figs. S2, S3, S4 and S5 in the supplementary materials).

4. Discussion
Our findings indicate that forest soil pH can be accurately estimated using image spectroscopy data from the DESIS satellite. De-

spite the challenges posed by the forest canopies of the study areas obstructing direct soil reflectance, we demonstrate it is possible to
estimate soil pH from satellite image spectroscopy in forested areas with (R2 = 0.66) accuracy. Previously, Šestak et al. (2019) and

Table 2
Displays the mean ± SD (standard deviation) of the measured leaf micronutrient concentrations (ppm) in coniferous and deciduous stands. The p-values indicate
the influence of soil pH on leaf micronutrient content, with a (+) sign denoting a positive effect.

Iron Calcium Phosphorus Potassium Magnesium

BFNP Mean SD Mean SD Mean SD Mean SD Mean SD

Deciduous 71 14 4564 1576 1537 507 8716 1475 1274 374
Coniferous 55 15 3424 1519 1302 248 5803 1375 930 352
P- value (+) < 0.001 0.67 0.169 0.20 (+) < 0.001
NL
Deciduous 58 12 2953 912 2149 1170 10,379 5143 1779 731
Coniferous 59 16 2814 1027 1115 241 4983 1145 862 403
P- value (+) < 0.001 0.07 0.32 0.2 (+) < 0.001

Table 3
Displays the mean ± SD (standard deviation) of the measured soil micronutrient concentrations (ppm) in coniferous and deciduous stands. The p-values indicate
the influence of soil pH on soil micronutrient content, with a (+) sign denoting a positive effect.

Iron Phosphorus Potassium

BFNP Mean SD Mean SD Mean SD

Deciduous 16,190 2503 3619 3181 2531 2378
Coniferous 11,012 4502 3213 2826 2666 2421
P- value (+) < .001 .261 .105
NL
Deciduous 2113 1222 602 92 2488 779
Coniferous 1774 1157 580 130 1669 638
P- value (+) .027 0.75 (+) .0025
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Zhang et al. (2018) employed field spectrometers to gather soil spectra, resulting in moderate to good accuracy (with R2 ranging from
0.5 to 0.69) in their soil pH estimations; it should be emphasized that these results are not directly comparable to ours since they fo-
cused on the field-scale level, used field (point-based) spectrometers and did not predict soil pH with an imaging spectrometer as used
here.

Our findings show that the forest sites under investigation were in general extremely acidic with pH values below 4 as illustrated
in Figs. 6 and 7. Some areas of the Dutch forests (Hoge Veluwe and Veluwezoom) had field-measured soil pH as low as 3.1, and our
map predictions using DESIS idenitifed several new hotspots of extremely low soil pH (Fig. 6). One of the main causes of soil acidifica-
tion in the Netherlands is the intensive practice of agriculture and livestock husbandry in the central, eastern, and southern parts of
the country. This has led to an increase in atmospheric deposition of nitrogenous compounds, resulting in soil acidification (van
Straalen et al., 1988; Bobbink 2021). On the other hand, our Bavarian Forest National Park site, affected by industrial (sulphorous
and nitrogenous compound) acid rain particularly in the 1970s–1990s, caused extensive soil acidification (Zechl et al., 1990). Indus-
trial emission controls since the 1980s has resulted in the partial recovery of organic layers and mineral topsoil, though deeper soil
layers in acid-sensitive substrates continue to face further acidification (Meesenburg et al., 2019; Vrba et al., 2014).

Another important finding emerged from our results, namely a significant disparity in soil pH between coniferous and deciduous
stands across all three forest locations. Notably, the observed soil pH range within the coniferous stands was consistently lower and
more acidic compared to the deciduous stands. This finding adds further weight to the importance of understanding the contrasting
soil conditions in these 2 distinct forest types (Fig. 7). Coniferous litter is generally more acidic than deciduous litter due to the accu-
mulation of acidic organic matter from needles and the release of organic acids by coniferous root systems. Consequently, the soil un-
der coniferous stands generally has a lower pH (Chodak et al., 2016; Klimek et al., 2020), as confirmed in Fig. 7c for the northern part
of Veluwezoom National Park as well as for BFNP (Fig. 6a). Which is predominantly occupied by coniferous stands.

The relationship between soil pH and vegetation canopy reflectance is rooted in the influence of soil chemical properties on the
health and physiological processes of plants. For example, in this study some of the spectral bands in DESIS imagery found to be im-
portant for estimating soil pH (Fig. 5 and Table 1) included band 437 nm which is known to be influenced by the biochemical proper-
ties of plants, particularly chlorophyll content (Gitelson et al., 1999). The red edge (697–734 nm) is also associated with chlorophyll
absorption in plants, in addition to being a change indicator for plant stress and leaf nitrogen content (Abdullah et al., 2018b). Recent
studies have investigated the impact of acidic rain on leaf chlorophyll content, revealing that acidic soil can reduce leaf chlorophyll
content by an average of 6.7% per pH unit (Du et al., 2017). This finding highlights the potential of chlorophyll content as a proxy for
estimating soil pH. Moreover, investigations have demonstrated that the spectral band at 519 nm is sensitive to leaf pigments, partic-
ularly chlorophyll content and photosynthetic activity (Gitelson et al., 2003; Hogewoning et al., 2012), as well as corresponding to
the absorption of soil Fe content (Ben-Dor et al., 2008). Given the connection between leaf and soil Fe content (Irmak et al., 2008),
this spectral band can offer insights into variations in Fe content between soil and leaves.

The enhanced resolution of DESIS imagery, when contrasted with previous satellites like MERIS, holds the potential to identify
finer details such as smaller canopy gaps within forests. This heightened capability could facilitate the detection of canopy gaps
linked to lower pH levels in the forest ecosystem. By capturing these intricate features, the higher resolution of next-generation satel-
lite image spectroscopy such as DESIS could provide valuable insights into the ecological health of forests and their response to
changing environmental conditions.

Typically, a negative correlation exists between iron availability and soil pH, as acidic soil enhances the solubility of iron com-
pounds, affecting their availability and mobility (refer to Fig. S6 in the supplementary materials). Consequently, Fe compounds dis-
solve more readily in acidic soil (pH 4–5), releasing Fe ions into the soil solution and making them more accessible for plant uptake
(Hartemink and Barrow 2023). However, our micronutrient measurements of soil and leaf samples yielded unexpected results. As de-
picted in Tables 1 and 2, the iron content was lower in both leaf and soil samples from coniferous stands compared to deciduous
stands. Despite acidic soil conditions potentially impacting iron availability and uptake by plants, changes occur in highly acidic soils
(pH < 4) that reduce the iron's accessibility for plant uptake (Bastianelli, Ali et al. 2017). These changes involve the formation of in-
soluble iron compounds that are less accessible to plants (Truog 1947). Thus, these alterations may explain the findings of our study,
as the soil pH at all study sites was extremely low, below 4.

Furthermore, it is noteworthy that the absorption region around 520 nm was responsive to the calcium, phosphorus, and magne-
sium content in the leaves. When these micronutrients become depleted, the reflectance at 520 nm tends to increase (Ayala-Silva and
Beyl 2005). This phenomenon can be attributed to the critical role that calcium, magnesium, and phosphorus play in the growth and
development of plants (Malhotra et al., 2018). Insufficient levels of any of these micro- and macro-nutrients in plants can lead to phys-
iological and morphological alterations. For example, magnesium is essential for chlorophyll formation (Cakmak and Yazici 2010),
while phosphorus is necessary for energy transmission and storage (Duff et al., 1994). Calcium, on the other hand, is vital for con-
structing cell walls and facilitating membrane function (Demarty et al., 1984). Essentially, a decline in calcium, magnesium, and
phosphorus levels can result in reduced chlorophyll content and overall plant biomass, consequently causing an increase in re-
flectance at 520 nm (Weng et al., 2022). Similarly, when plants experience a decrease in calcium, magnesium, and phosphorus levels,
the reflectance in the near-infrared (NIR) region, 950–980 nm typically decreases (Belgiu et al., 2023). The reduction in reflectance
can be attributed to a decline in leaf water content, as supported by previous studies (Slaton et al., 2001, Abdullah, Skidmore et al.
2019). This decrease in leaf water content often occurs when plant nutrients are scarce. In simpler terms, when the plant's nutritional
levels are low, it may allocate less water to the leaves, resulting in reduced leaf water content. The findings from the analysis of leaf
micronutrient concentrations (Tables 2 and 3) further substantiate this point, as they indicate lower levels of calcium, magnesium,
and phosphorus within the coniferous stands compared to the deciduous stands.
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The results showed a strong agreement between the estimated soil pH in our study and the soil pH data from the LUCAS dataset
(Ballabio et al., 2019). This finding indicates the reliability and accuracy of our pH estimation approach, bolstering the confidence in
the results obtained for the study areas (Fig. 8). However, it is crucial to recognize that the LUCAS dataset lacks soil samples specifi-
cally collected from our three test sites (Hoge Veluwe, Veluwezoom, and Bavarian Forest National Park). Consequently, relying solely
on the LUCAS dataset for soil pH measurements, and not specifically sampling in these specific study sites may lead to potential inac-
curacies due to under-sampling of in-situ soil measurements in the LUCAS dataset not adequately representing the soil conditions for
our study sites. Therefore, our study's independent estimation of soil pH serves as a valuable contribution ensuring a more robust and
site-specific assessment of soil conditions in these ecologically important areas.

5. Conclusion
The findings of this study demonstrate the potential of hyperspectral data derived from image spectroscopy satellites such as DE-

SIS for accurate estimation of soil pH under forest canopies which obstruct direct remote sensing of the ground. We identified specific
spectral bands within the visible spectrum, namely 419 and 519 nm, as well as ranges between 697-734 nm and 918–965 nm in the
red-edge and NIR regions, which displayed the highest VIP and regression coefficient values. These bands proved to be crucial in esti-
mating soil pH. Additionally, we investigated the correlation between leaf and soil micronutrient concentrations, including iron,
phosphorus, magnesium, potassium, and calcium, and the identified spectral bands for estimating soil pH. In conclusion, we present
novel evidence that the DESIS image spectroscopy data holds great promise for estimating soil pH within forested areas. Moreover,
the examination of the relationship between leaf traits, soil pH, and hyperspectral data represents a crucial step towards enhancing
our comprehension of the link between Earth observation data and forest canopy cover as a proxy for estimating soil pH. It is impor-
tant to note that the image spectroscopy data obtained from the DESIS satellite covers a spectral range of 400–1000 nm. Therefore,
further research focusing on different image spectroscopy from the enhanced spectral range (400–2500 nm) available from the
PRISMA and EnMap satellites, may further enhance the utilization of remote sensing data in estimating soil pH in forested areas.
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