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A B S T R A C T   

This paper for the first time treats the interpretation of electrochemical noise time-frequency spectra as an image 
classification problem. It investigates the application of a convolutional neural network (CNN) for deep learning 
image classification of electrochemical noise time-frequency transient information. Representative slices of these 
spectra were selected by our transient analysis technique and served as input images for the CNN. Corrosion data 
from two types of pitting corrosion processes serve as test cases: AISI304 and AA2024-T3 immersed in a 0.01M 
HCl and 0.1M NaCl solution between 0 and 1ks after immersion, respectively. Continuous wavelet transform 
(CWT) spectra and modulus maxima (MM) are used to train the CNN, either individually or in a combined form. 
The classification accuracy of the CNN trained with the combined dataset is 0.97 and with the two individual 
datasets 0.72 (only CWT spectrum) and 0.84 (only MM). The ability to additionally classify a more progressed 
form of pitting corrosion of AA2024-T3 between 9 and 10ks after immersion indicates that the proposed method 
is sufficiently robust using combined datasets with CWT spectra and MM. The pitting processes can effectively be 
detected and classified by the proposed method. The most important contribution of the present work is to 
introduce a novel procedure that decreases the classical need for large amounts of raw data for training and 
validation purposes, while still achieving a satisfactory classification robustness. A relatively small number of 
individual signals thereby generates a multitude of input images that still contain all relevant kinetic information 
about the underlying chemo-physical process.   

1. Introduction 

Electrochemical noise (EN) is a designation used for the spontaneous 
potential and current variations generated by the charge transfer process 
during corrosion (Cottis, 2000). The study of EN is used in various fields 
of corrosion science; examples are the investigation of the corrosion 
behaviour of aluminium alloys under (semi-) immersed conditions and 
after different heat treatments (Xia et al., 2023; Rivera-cerezo et al., 
2023), of the corrosion inhibition of reinforcement steel in concrete 
(Recio-Hernández et al., 2023), of stress corrosion cracking and its in-
hibition (Carmona-Hernandez et al., 2023) and of the corrosion 
behaviour of dual-phase steels (Montoya-Rangel et al., 2023). EN has the 
potential to detect general and localized corrosion (Hladky and Dawson, 
1981, 1982; Homborg et al., 2014a) and to characterize various aspects 
of localized corrosion and corrosion inhibition (Denissen et al., 2019; 
Homborg et al., 2014b, 2022). It however requires the use of effective 

signal processing tools for this purpose. A very effective class of methods 
to extract kinetic information about the underlying corrosion process 
from the EN signal are time-frequency procedures (Aballe et al., 1999a). 
In selected cases, time-frequency methods have been found to be supe-
rior to other data analysis procedures for the characterisation of corro-
sion (Homborg et al., 2014a). Examples of time-frequency methods are 
continuous wavelet transform (CWT) and Hilbert-Huang transform 
(HHT) (Aballe et al., 1999a, 1999b, 2001; Homborg et al., 2013a). CWT 
and HHT allow the investigation of time-varying frequency components 
in an EN signal (Aballe et al., 1999a, 1999b, 2001; Homborg et al., 
2013a). An example of this is the removal of DC drift from an EN signal, 
which is of great importance since the DC drift dominates the frequency 
content of the signal that forms the basis for further analysis. 
Time-frequency methods have shown the ability to define an exact part 
of the signal as DC drift (Homborg et al., 2012). Time-frequency 
methods can be used to study dynamic corrosion processes that 
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change considerably over time, e.g. the identification of pitting corro-
sion and/or corrosion inhibition of stainless steel and aluminium alloys 
(Homborg et al., 2013b, 2014b), optionally in combination with in-situ 
optical techniques (Denissen et al., 2019, 2022; Homborg et al., 2022). 
Additionally, these can be applied for the identification of microbio-
logically influenced corrosion (Homborg et al., 2014c) and for the 
proper analysis of single and overlapping transients (Homborg et al., 
2016). A transient is a relatively brief feature in the signal and can often 
be associated to the occurrence of localized corrosion such as pitting 
(Homborg et al., 2013b). Typically, transients in an EN signal generate 
local maxima in the energy distribution of a time-frequency spectrum. 
Transients can also be detected automatically, as published by the au-
thors before (Homborg et al., 2013b, 2014b, 2018). The advantage of 
automatic transient detection and analysis is that it yields a faster and 
more objective study of the time-frequency information visible in the 
CWT or HHT spectrum; only the information that is associated with the 
occurrence of transients is analysed, whereas information in between 
these transients is neglected, while keeping the transient criteria con-
stant. A useful method of quantifying local maxima that are associated 
with transients is called Modulus Maxima. MM describe the evolution of 
wavelet maxima over the different timescales. A wavelet is an oscillation 
of a limited time span. The wavelet transform describes the original EN 
signal using a linear combination of wavelets. By scaling and translation 
of these wavelets, the signal can be described at different timescales, or 
frequencies. The CWT spectrum visualizes the energy distribution of the 
signal over these different timescales (frequency axis) and time points 
(time axis). This can be particularly useful in case of process kinetics that 
change over time, or in other words, non-stationary signals (Cottis et al., 
2015). Transients emerging from processes with specific kinetic char-
acteristics generate a corresponding pattern of MM within a specific 
frequency range in the CWT spectrum. Within each transient only the 
dominant frequency information is taken into account (Homborg et al., 
2018). The effectiveness of MM for the (manual) classification of 
corrosion processes was demonstrated by the authors in earlier work 
(Homborg et al., 2018). MM potentially increased the objectivity of the 
EN analysis by means of a well-defined selection of local maxima within 
each transient, which was in turn located by the transient analysis 
procedure. In earlier work, the CWT transient analysis protocol and the 
MM results proved to be sufficiently effective on their own (Homborg 
et al., 2013b, 2014b, 2018). However, these still required human 
interpretation of the dominant frequency components to determine the 
underlying corrosion phenomenon. The next step is to automatically 
verify the extent to which specific local frequency information within a 
transient is associated to a specific type of corrosion. This task can be 
performed by machine learning. 

The use of machine learning has given important momentum to the 
classification of corrosion using EN (Hou et al., 2017; Alves et al., 2017, 
2019; Ren et al., 2023; Sanchez-Amaya et al., 2005; Jian et al., 2013). 
The common approach is to teach a machine learning algorithm the 
values of specific features that are associated to certain types of corro-
sion, materials or environments. These features are collected in a feature 
vector. Hence, a feature vector consists of a specific selection of features 
that are considered as predictors, or as being indicative for the types of 
corrosion that are of interest (Hou et al., 2017; Alves et al., 2019). Such a 
feature vector may e.g. contain parameters like the noise resistance Rn or 
characteristic charge q or -frequency fn (Ren et al., 2023). The former 
provides information about the barrier properties of a layer that may be 
present at the corroding surface. The latter two indicate the overall type 
of corrosion; localized corrosion e.g. shows a low fn and a high q (San-
chez-Amaya et al., 2005). Additionally, wavelet parameters can be used 
in the feature vector, such as the discrete wavelet transform energy 
distribution over timescales (Alves et al., 2017, 2019; Jian et al., 2013). 
The exact machine learning method that is used in literature varies 
significantly. In some cases neural networks are applied, in others a 
different machine learning approach is used. Examples are so-called 
Back Propagation (BP) (Jian et al., 2013), Support Vector Machine 

(SVM) (Alves et al., 2017, 2019; Jian et al., 2013), Multi-Layer Per-
ceptron (MLP) (Alves et al., 2017, 2019), k-nearest neighbour (KNN) 
(Ren et al., 2023), Decision tree (Ren et al., 2023), Random forest (Hou 
et al., 2017; Ren et al., 2023), Adaboost (Ren et al., 2023) and Linear 
Discriminant Analysis (LDA) (Hou et al., 2017). A different approach 
could be to use a so-called Physics-Informed Neural Network (PINN) 
(Cuomo et al., 2022). This is a type of neural network that takes into 
account the underlying physics of the problem in the form of Partial 
Differential Equations (PDEs), which implies that these are known for 
the chemo-physical process under investigation (Cuomo et al., 2022). 

In this work, images of time-frequency transient characteristics and 
hence direct pictures of corrosion kinetics rather than a vector of pa-
rameters derived from the raw EN data, serve as training input for a 
convolutional neural network (CNN). No further specification of image 
features is made. A CNN is selected for this analysis, as it is known to be 
particularly suitable for image classification. This adaptive and flexible 
approach is denoted as deep learning, where the CNN autonomously 
finds features or classifiers in the images that are associated to a specific 
class (MathWorks). This transforms the interpretation of EPN transient 
information into an image classification problem, i.e. without a neces-
sary preselection of parameters. Only the learning of classes is super-
vised; the CNN is trained using two sets of images, each set belonging to 
a different class, or type of pitting corrosion in this case. In this work, 
these classes represent the pitting processes of AISI304 or AA2024-T3, 
both immediately after immersion. The approach introduced here ex-
ploits the advantages of an objective image-recognition machine 
learning procedure while bypassing the largest classical disadvantage, 
which is the persistent lack of sufficient training data. A clever selection 
of multiple slices of time-frequency spectra serves as training images. 
Each slice is selected by our transient analysis method. The use of 
time-frequency spectra ensures that each slice, or image, still contains 
the full frequency range. This ensures that each image contains all 
relevant information about the underlying chemo-physical process ki-
netics. By this way, a limited number of measurement signals can pro-
vide a multitude of training images. Moreover, the final classification of 
a new measurement signal is also typically based on multiple transients, 
and hence, images. As a result, a small number of misclassifications of 
individual images is less likely to result in misclassification of the entire 
signal, which increases the robustness of the proposed approach. 
Furthermore, no pre-defined parameters are used. It should also be 
emphasized that contrary to existing work on machine learning for the 
study of EN, here the entire process from raw data to final classification 
is automated, without any intervention of the user. The entire process of 
time-frequency transient analysis, image data selection, production of 
images, deep learning and corrosion classification makes this data 
analysis procedure quite objective. Summarized, the most important 
contribution of the present work is to introduce a novel procedure that 
decreases the classical need for large amounts of raw data for training 
and validation purposes, while still achieving a satisfactory classifica-
tion robustness. A relatively small number of individual signals thereby 
generates a multitude of input images that still contain all relevant ki-
netic information about the underlying chemo-physical process. 

2. Material and methods 

2.1. Experimental details 

The experimental data used for training and classification in this 
work was collected from previous works. EPN data of pitting of AISI304 
immersed in a 0.01M HCl solution was collected from previous work 
introducing Hilbert spectra as a novel time–frequency characterization 
method for EN data (Homborg et al., 2013a). A total of 10 datasets were 
used to obtain 240 individual transients of AISI304. EPN data of pitting 
of AA2024-T3 immersed in a 0.1M NaCl solution was collected from 
work where the authors introduced transient analysis using Hilbert 
spectra of EN data for the identification of corrosion inhibition 
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(Homborg et al., 2014b). In this case, 1 dataset served to provide already 
246 individual transients, of which the last 6 were removed in order to 
obtain a similar number of transients for both materials, or in other 
words, to have equally sized classes. This prevents overfitting of the CNN 
on the largest dataset. From an experimental point of view, EPN is more 
straightforward than electrochemical current noise (ECN), since EPN 
only requires a single working electrode as compared to two working 
electrodes in the case of ECN (Homborg et al., 2014a). This allows the 
correlation between surface features and signal characteristics (Hom-
borg et al., 2022). Moreover, ECN involves the risk of both working 
electrodes not remaining nominally identical over the course of the 
experiment (Lowe et al., 2003; Jamali and Mills, 2016). This can influ-
ence experimental results after long immersion times. EPN signals ob-
tained immediately after immersion served as training and validation 
data. In order to further investigate the robustness of machine learning 
based on the fusion between CWT transient analysis and MM, its effec-
tiveness to characterize the pitting process of AA2024-T3 between 9 and 
10ks after immersion is investigated. This timeframe was considered as a 
suitable balance between a progressed pitting signal on the one hand 
and a still significant EPN signal amplitude for effective transient 
detection on the other hand. As the pitting process progresses over the 
course of the experiment, the working electrode surface slowly degrades 
further and the process kinetics and hence the transient frequency in-
formation also changes gradually. This complicates the automated 
classification for the machine learning procedure, which is only trained 
using the pitting characteristics of both materials up to 1ks after im-
mersion with the formerly mentioned 11 (10 AISI304 and 1 AA2024-T3) 
datasets. For classification purposes, i.e. for testing the classification 
ability of the procedure, the pitting processes immediately after im-
mersion of AISI304 and AA2024-T3 are represented by 3 EPN signals 
each. The remaining 3 EPN signals represent the pitting process of 
AA2024-T3 from 9 to 10ks after immersion. The sampling frequency of 
the AISI304 data was 5 Hz, whereas that of the AA2024-T3 raw data was 
20 Hz. To eliminate any differences between the datasets, the 
AA2024-T3 data were therefore down sampled in MATLAB to 5 Hz. This 
resulted in equal frequency (y-) axes in the CWT spectra of both datasets. 
The EPN data were obtained with a Compactstat from Ivium Technol-
ogies, which was run by a Windows-based PC. The data were processed 
using MATLAB from Mathworks. 

The basis of the transient analysis procedure is described elsewhere 
(Homborg et al., 2013b, 2014b, 2018). The analytic Morlet wavelet was 
applied for calculation of the CWT (Homborg et al., 2016). In essence, 
the transient analysis method applied in this paper identifies the loca-
tions of transients based on maxima present in the CWT spectrum at two 
separate frequencies: 1 Hz and 10− 1 Hz. Local maxima in the CWT 
spectrum at either of both frequencies are designated as corresponding 
to a transient phenomenon occurring in the underlying process kinetics. 
For each transient location in time, the exact transient area in the CWT 
spectrum is defined as ranging from the time point where the absolute 
value of the EN signal becomes larger than the DC drift to where the 
absolute value of the EN signal again drops below the DC drift. In earlier 
work, a moving average smoothing filter was adopted for this task 
(Homborg et al., 2013b). In case no start and/or end point could be 
defined, a default timespan of 2 s is defined as transient duration. Even if 
the actual transient duration would be longer in this case, the 
time-frequency information is still expected to be captured within this 
timeframe of 2 s. However, a shorter timespan increases the risk of false 
double counts that in fact represent the same transient event. All 
time-frequency information in the area in between transient start and 
end in the CWT spectrum, including the MM, is then associated to a 
specific, individual transient phenomenon (Homborg et al., 2018). It 
should be noted here that consistency in the type of transient analysis 
procedure to be used for all datasets is considered to be more important 
than the exact type of transient analysis procedure. The authors consider 
the transient analysis procedure as an evolving element of the proposed 
data analysis procedure. 

2.2. Data imaging and deep learning 

After transient analysis, each area of interest in the CWT spectrum 
containing the time-frequency information of an individual transient is 
transformed into an individual PNG image using MATLAB. This results 
in a set of 240 AISI304 and 240 AA2024-T3 images, i.e. 480 images in 
total. Examples of this procedure are provided in the ‘Results and Dis-
cussion’ section. In order to achieve the deep learning classification of 
pitting corrosion, the CNN is trained using these images. In brief, a CNN 
consists of interconnected nodes or neurons in a layered structure. Each 
neuron is in fact a processing unit and so a CNN consists of layers of 
processing units that are interconnected: each neuron in a specific layer 
is connected to neurons of the next layer. Each layer of processing units 
performs a specific task in the process of image analysis and classifica-
tion. These tasks include in a chronological order: (i) specification of the 
image size, which is 201 (time axis)-by-99 (frequency axis) pixels in this 
work, (ii) specification of the filter characteristics that are used in the 
training function, (iii) optimisation of the training process by normal-
izing gradients that may originate from transients in the data and which 
can propagate undesirably through the CNN, (iv) down-sampling, which 
is a process of reducing the number of data points in order to decrease 
the computation time per layer, (v) connecting the neurons to the neu-
rons in the preceding layer in order to combine all the features learned 
by the previous layers across the image to identify larger patterns and 
(vi) normalization of the output and computation of the loss. The CNN 
used in this work is described in detail in (MathWorks), and among else 
comprises of three convolutional layers with 8, 16 and 32 filters, 
respectively, with a size of 3x3 pixels each. Changing any parameters in 
order to further optimise this CNN was outside the scope of the present 
work. Future work may incorporate a more optimised machine learning 
algorithm with possibly more layers, to capture finer transient details 
and to increase the CNN accuracy even further. Fig. 1 shows a flowchart 
of the process from the EPN measurement to final corrosion 
classification. 

The separation into a training and validation set prior to the training 
process was necessary to verify the training success already at this stage. 
In this work, out of the 2x240 images generated from the 11 signals, 75% 
is used for training and 25% for validation. The classification data pre-
sented in the Results and Discussion section was not part of this data set, 
and was only offered to the CNN for the first time during the classifi-
cation process. 

3. Results and discussion 

This section describes the results of automated corrosion classifica-
tion by deep learning of the time-frequency information of EPN tran-
sients of pitting corrosion of AISI304 and AA2024-T3 based on 9 
separate datasets. Additionally, this section discusses the effect of 
combining data from CWT transient analysis and MM on the classifica-
tion accuracy. In this section, first the data analysis procedure will be 
explained based on one example data set of each material, AISI304 and 
AA2024-T3. Subsequently, training of the CNN is performed, using 
either only the CWT transients, only MM or the combined images of 
both. This resulted in three different trained versions of the same CNN. 
Finally, the classification accuracies of these three CNNs were compared 
for 6 individual datasets of AISI304 and AA2024-T3 immediately after 
immersion, as well as for 3 datasets of AA2024-T3 between 9 and 10ks 
after immersion. 

Fig. 2 shows example micrographs of pitting corrosion of AISI304 
and AA2024-T3 exposed to 0.01M HCl and 0.1M NaCl, respectively. 

Fig. 2a shows an example of a corrosion pit of AISI304 exposed to 
0.01M HCl for a duration of 1 ks, indicated by the white arrow. The pit 
depth is approximately 1 μm. Fig. 2b shows an example of corrosion pits 
of AA2024-T3 exposed to 0.1M NaCl for a duration of 14.5 ks? One of 
the pits is indicated by the white arrow. Pit depths are in the range of 2 
μm. The corrosion attack of AA2024-T3 is notably more severe, as the 
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micrographs were produced after a longer exposure time and the 
intermetallic particles present in this alloy act as local cathodic sites 
from the start or after early stage dealloying (Homborg et al., 2014b; 
Kosari et al., 2020). Nevertheless, localized corrosion in general is very 
hard to detect or predict given its complex dynamic nature and depen-
dence on time and spatially resolved heterogeneity of electrolyte and 
metallurgical characteristics, emphasizing the need for reliable moni-
toring and data classification. 

In order to explain the data analysis protocol depicted in Figs. 1, 
Figs. 3–7 demonstrate the step-by-step procedure based on two example 
EPN signals from AISI304 and AA2024-T3. The first step in the data 
analysis procedure is to subtract the DC drift component from the raw 
EPN data (Homborg et al., 2012). Fig. 3a and b show the example EPN 
raw data sets of AISI304 and AA2024-T3 immersed in a 0.01M HCl and 
0.1M NaCl solution, respectively, in black and their DC drift in grey 
(smooth line). Fig. 3c and d show their detrended signals, obtained by 
subtracting the grey trend from the black signal. 

Fig. 3 indicates that the drift removal process, when executed 
correctly, maintains the transient information while removing the low- 
frequency DC drift. After DC drift removal, the EPN data is trans-
formed into the time-frequency domain using CWT. MM can subse-
quently indicate the local maxima of transients, which can be a useful 

tool for the characterisation of the process kinetics (Homborg et al., 
2018). 

Fig. 4 shows the CWT spectra of the example EPN signals of (a) 
AISI304 and (b) AA2024-T3 that were shown in Fig. 3c and d, respec-
tively. Fig. 4c and d show the MM in black. Fig. 4e and f show the same 
CWT spectra as in Fig. 4a and b with the MM as an overlay in black. In 
these CWT spectra, the x-axis represents time, the y-axis frequency and 
the z-axis (along with the corresponding colour scales) the instantaneous 
amplitude in (V). 

The MM depicted in Fig. 4c and d indicate the locations in the signal 
with the highest singularity. Hence, MM follow the local maxima of the 
spectra shown in Fig. 4a and b from high to low frequency, which is 
visible in the combined information depicted in Fig. 4e and f: for some 
larger transients, the MM extend further down towards lower fre-
quencies in the spectra. This can be useful information for the research 
of corrosion kinetics, however this requires a manual study of time- 
frequency spectra which can be quite time-consuming. The transient 
analysis-based CNN approach presented in this paper aims to provide a 
solution for this, with an automated classification including a quantified 
accuracy as output. 

Fig. 5 shows the EPN signal of the two alloys after DC drift removal 
including their transient locations. These transient locations are 

Fig. 1. Example flowchart of the machine learning process.  

Fig. 2. (a) Micrograph of the surface of AISI304 exposed to 0.01M HCl for a duration of 1 ks and (b) Micrograph of the surface of AA2024-T3 exposed to 0.1M NaCl 
for a duration of 14.5 ks Corrosion pits indicated by the white arrows. 

Fig. 3. Raw electrochemical potential noise data (black) including DC drift (grey, smooth line) of (a) AISI304 and (b) AA2024-T3 immersed in a 0.01M and 0.1M 
solution for a duration of 1 ks, respectively, and the detrended signals of (c) AISI304 and (d) AA2024-T3. 
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indicated by black vertical lines and their durations, in between tran-
sient start and end time, are indicated in grey. 

The next step is to separate the CWT spectrum into smaller individual 
spectra, or ‘slices’, each representing one specific transient, i.e. from 
transient start to end. This is performed for three cases: for the CWT 
spectrum without MM, for only the MM as well as for the CWT spectrum 
including the MM as an overlay. 

Each CWT spectrum is in fact a matrix with the columns representing 
the amplitudes of the frequencies that are composing the EPN signal at a 

specific time sample. Each time sample is therefore associated to one 
column in the matrix. From transient start to end, each individual 
transient is therefore also associated to a collection of columns in the 
matrix. For each transient individually, this leads to a smaller matrix 
that consists of this selection of columns. Subsequently, each of these 
smaller transient matrices is transformed into an image. In order to 
achieve this, the numbers in the matrices are represented as colours in a 
colour map. The range of the colour map corresponds to the total range 
of the numbers in the cells. This is comparable to the use of a colour map 

Fig. 4. (a, b) Continuous wavelet transform (CWT) spectrum, (c, d) only Modulus Maxima (MM) and (e, f) CWT spectrum with the MM as an overlay in black of the 
electrochemical potential noise signal after DC drift removal of AISI304 (Fig. 4 a, c, e) and AA2024-T3 (Fig. 4 b, d, f) immersed in a 0.01M HCl and 0.1M NaCl 
solution, respectively, for a duration of 1ks. 

Fig. 5. Electrochemical potential noise (EPN) data including transient locations (black vertical lines) and estimated durations (grey areas) of the EPN signal after DC 
drift removal of (a) AISI304 and (b) AA2024-T3 immersed in a 0.01M HCl and 0.1M NaCl solution, respectively, for a duration of 1ks. 
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for the visualization of the CWT spectra of Fig. 4. The MM, which are in 
fact matrices of zeros with ones only at the locations of the MM, are 
represented by the colour that corresponds to the maximum of the CWT 
spectrum. The zeros are left transparent in order to make the underlying 
CWT spectrum visible, similar to Fig. 4e and f. For each class (AISI304 
and AA2024-T3) three types of images are produced: 1) only the CWT 
spectrum, 2) only MM or 3) the combined form of the CWT spectrum and 
MM. Fig. 6a–c show an example of these three types of images for 
AISI304 and Fig. 6d–f show an example of these three types of images for 
AA2024-T3. In Fig. 6b, c, e and f, the MM are the dark red squares, since 
dark red corresponds to the maximum of the chosen colourmap. As was 
noted in Fig. 5, the transient widths differ. The CNN however requires 

images of similar size. Therefore, all image sizes are adjusted to the 
width of the largest transient. This generates the dark blue parts at the 
left and at the right of most of the images, since dark blue corresponds to 
the minimum of the chosen colourmap. Moreover, the transient start and 
end point are not necessarily located symmetrically around the esti-
mated transient location, which is always placed at the centre of each 
image. 

The operation described above is performed for both training data-
sets; each of the 480 transients resulted in an image containing either 1) 
only the CWT spectrum, 2) only MM or 3) the CWT spectrum and MM. 
For each of these three options, the training images for each type of 
process, either pitting of AISI304 or AA2024-T3, were stored in two 
folders denoted as AISI304 and AA2024-T3. By this way, the CNN is 
trained using the correct data label (AISI304 or AA2024-T3) for each 
dataset. Firstly, it was trained with the AISI304 and AA2024-T3 folder 
containing images with only the CWT spectrum. This version of the CNN 
was stored. Then the same operation was repeated with the AISI304 and 
AA2024-T3 folders containing images with only MM and with the 
AISI304 and AA2024-T3 folders containing images with the CWT 
spectrum and MM. As a result, three versions of the trained CNN were 
available for classification: 1) CNN based on only the CWT spectrum, 2) 
CNN based on only MM and 3) CNN based on the CWT spectrum and 
MM. 

The extraction of image features is unsupervised. As such, there is no 
pre-direction from the user to the CNN here, and the training process 
occurs fully flexible. After the training phase, the same operation is 
performed for the classification datasets. All transient images are stored 
in a classification folder and the trained CNN should classify the images 
using the previously trained features. This implies that each image, or 
transient, is classified as representing pitting of either AISI304 or 
AA2024-T3. This procedure decreases the risk of misclassification of an 
entire EPN signal, since an EPN signal often contains multiple transients 
that are all classified individually. Moreover, at a later stage this 

Fig. 6. Example of transient images of AISI304 including (a) only the continuous wavelet transform (CWT) spectrum, (b) only Modulus Maxima (MM) and (c) the 
CWT spectrum and MM, immersed in a 0.01M HCl solution for a duration of 1ks. Example of transient images of AA2024-T3 including (d) only the CWT spectrum, (e) 
only MM and (f) the CWT spectrum and MM, immersed in a 0.1M NaCl solution for a duration of 1ks. 

Fig. 7. Electrochemical potential noise data of AISI304 immersed in a 0.01M 
HCl solution (a) and of AA2024-T3 immersed in a 0.1M NaCl solution (b) for a 
duration of 1 ks, including transient locations and classification in colour code. 
Blue = correct classification (AISI304 in Fig. 7a and AA2024-T3 in Fig. 7b), red 
= incorrect classification. 
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procedure could provide a way to automatically detect changing 
corrosion parameters over time, by training different stages of a process 
as separate classes. The classification of the detrended EPN signals from 
Fig. 3c and d using the combination of the CWT spectrum and MM is 
visualized in Fig. 7. Fig. 7 is similar to Fig. 5, with the transient areas 
now coloured corresponding to the classification of each transient: blue 
= correct classification (AISI304 in Fig. 7a and AA2024-T3 in Fig. 7b), 
red = incorrect classification. 

In Fig. 7 it is visible that although the classification process is not 
perfect, in this case all AISI304 transients are correctly classified as 
representing pitting of AISI304. The large majority of the transients of 
AA2024-T3 are classified correctly as well, as being pitting of AA2024- 
T3. Table 1 provides the number of counts per class for the AA2024-T3 
signal of Fig. 7b, with a total of 228 transients in the entire signal. 

Hence, the corrosion processes are correctly classified as pitting of 
AISI304 (Fig. 7a) and AA2024-T3 (Fig. 7b), with a classification accu-
racy of 224/228 = 0,98. This operation is performed for all 9 individual 
EPN datasets: 3 EPN signals from pitting of AISI304 from 0 to 1ks after 
immersion and 3 EPN signals from pitting of AA2024-T3 from both 0-1ks 
and 9-10ks after immersion. Table 2 provides the classification results. 
Classification accuracies below 0.75 are marked in bold face as being 
notably low. The average classification accuracies, together with their 
standard deviations, are displayed at the bottom of the table, also in bold 
face. 

The classification accuracy of the proposed machine learning pro-
tocol of treating time-frequency transient information as an image- 
classification problem, is quite satisfactory at 0.97 when using CWT 
combined with MM. The classification accuracy of the CNN based on the 
two individual types of data is lower than that, with 0.72 (only CWT 
spectrum) and 0.84 (only MM). Hence, for the examples provided in this 
paper, the proposed method adds value for an accurate corrosion clas-
sification. However, it is necessary here to combine the CWT spectrum 
with MM. Additionally, the use of only MM results in a higher classifi-
cation accuracy than the use of only the CWT spectrum. The authors 
hypothesize that this could be explained by the more discrete character 
of MM: either 1 or 0. The CWT spectrum is expected to exhibit a larger 
discrimination ability between local amplitudes, using the entire reso-
lution of the applied colour map. Although this enables a greater ability 
to distinguish between the time-frequency characteristics of different 
transients, this could result in less pronounced differences between the 
two classes of transients. However, this may also be explained the other 
way around, with a larger discrimination ability between local ampli-
tudes leading to an easier distinction between different classes of 
corrosion. Therefore, this remains merely an observation in the present 
work, that requires further study. Another observation in this respect is 
that for the AISI304 dataset #3 investigated here, exactly the opposite 
order of classification accuracy is the case, although with a small 
margin: the most accurate result is obtained by using only the CWT 
spectrum, after this only MM and the CWT spectrum combined with MM 
performs the worst. The differences are however very small. In fact, all 
three methods perform quite satisfactory with a minimum accuracy of 
0.85. Therefore, no further conclusions are drawn here based on these 
subtle differences. More research on these aspects should provide more 
insight in this respect. In addition, it is interesting to observe that not 
only the average value of the classification accuracy based on the 
combined data is notably higher, but also no outliers in the classification 
accuracy below 0.75 exist. The number of outliers below 0.75 decreases 
from using only the CWT spectrum (4) to only MM (3, of which 0.73 is 

close to 0.75) to the combined data (0). This is in turn reflected in the 
standard deviation values, that decrease from only the CWT spectrum 
(0.28) to only MM (0.16) to the combined data (0.05). It should also be 
noted that a classification accuracy below 0.5 implies that the entire 
corrosion signal is misclassified. In the case of only the CWT spectrum, 
this is the case for 3 signals, all of which correspond to AA2024-T3. This 
leads to the final remark: in case of the use of only the CWT spectrum or 
MM, the CNN struggles with the classification of pitting of AA2024-T3 
from 9 to 10ks after immersion. As the CNN is trained using datasets 
between 0 and 1ks after immersion, the more progressed form of this 
pitting process after 9ks of immersion is probably characterized by 
process kinetics that produce notable differences in the CWT spectrum 
and MM. This is particularly interesting, and would validate further 
research to quantify these differences in process kinetics. These should 
be investigated side by side with surface analysis data. However, after 
combining the CWT spectrum and MM, the CNN becomes more robust in 
its classification of also this more progressed form of pitting of AA2024- 
T3. 

4. Conclusions 

In this work, for the first time the time-frequency transient analysis 
of electrochemical potential noise (EPN) is treated as an image classi-
fication problem. Time-frequency spectral transient information of EPN 
signals obtained by continuous wavelet transform (CWT) could effec-
tively be separated from the main spectrum and serve as input images 
for machine learning by a convolutional neural network (CNN). A small 
number of individual EPN signals thereby generated a multitude of input 
images, reducing the need for large amounts of input data while still 
obtaining satisfactory classification results. A layer of modulus maxima 
(MM) over the CWT spectra further increased the classification accu-
racy. Localised corrosion of AISI304 and AA2024-T3 immersed in a 
0.01M HCl and 0.1M NaCl solution, respectively, could effectively be 
detected and classified. The average classification accuracy of the CNN 
based on the combined dataset of the CWT spectra with MM is higher 
(0.97, standard deviation 0.05) than based on the two individual types 
of data (0.72 for only the CWT spectra and 0.84 for only the MM, with 
standard deviations of 0.28 and 0.16, respectively). The more pro-
gressed form of pitting of AA2024-T3 after 9ks of immersion was also 
satisfactory classified by the machine learning procedure based on the 
combined dataset. 

The procedure introduced in this work involves the creation of im-
ages that still contain all relevant kinetic information about the under-
lying chemo-physical process, while being derived from only a limited 
amount of raw data. By this, the classical need for large amounts of raw 
data is reduced with a still acceptable classification accuracy. 

This paper serves as a proof of principle for the proposed method of 
image classification of time-frequency electrochemical potential noise 
transient information. Further research should indicate to what extent 
the amount of training data and type of CNN is important for the clas-
sification accuracy. This could entail a more optimised machine learning 
algorithm with possibly different filtering characteristics and more 
layers, to capture finer transient details and to increase the CNN accu-
racy even further. Additionally, future work should involve the char-
acterisation of different localised corrosion processes. Examples of this 
would be the distinction of pitting and crevice corrosion of the same 
system, different stages of pitting, microbiologically influenced corro-
sion or the inhibition of, or re-activation of an inhibited corrosion 
process. 
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