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Orbital Fulde–Ferrell–Larkin–Ovchinnikov 
state in an Ising superconductor

Puhua Wan1, Oleksandr Zheliuk1,2, Noah F. Q. Yuan3, Xiaoli Peng1, Le Zhang1, Minpeng Liang1, 
Uli Zeitler2, Steffen Wiedmann2, Nigel E. Hussey2,4, Thomas T. M. Palstra5 & Jianting Ye1 ✉

In superconductors possessing both time and inversion symmetries, the Zeeman 
effect of an external magnetic field can break the time-reversal symmetry, forming a 
conventional Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) state characterized by 
Cooper pairings with finite momentum1,2. In superconductors lacking (local) inversion 
symmetry, the Zeeman effect may still act as the underlying mechanism of FFLO states 
by interacting with spin–orbit coupling (SOC). Specifically, the interplay between the 
Zeeman effect and Rashba SOC can lead to the formation of more accessible Rashba 
FFLO states that cover broader regions in the phase diagram3–5. However, when the 
Zeeman effect is suppressed because of spin locking in the presence of Ising-type SOC, 
the conventional FFLO scenarios are no longer effective. Instead, an unconventional 
FFLO state is formed by coupling the orbital effect of magnetic fields with SOC, 
providing an alternative mechanism in superconductors with broken inversion 
symmetries6–8. Here we report the discovery of such an orbital FFLO state in the 
multilayer Ising superconductor 2H-NbSe2. Transport measurements show that the 
translational and rotational symmetries are broken in the orbital FFLO state, 
providing the hallmark signatures of finite-momentum Cooper pairings. We establish 
the entire orbital FFLO phase diagram, consisting of a normal metal, a uniform Ising 
superconducting phase and a six-fold orbital FFLO state. This study highlights an 
alternative route to achieving finite-momentum superconductivity and provides a 
universal mechanism to preparing orbital FFLO states in similar materials with broken 
inversion symmetries.

In a conventional superconductor, when spatial inversion and 
time-reversal symmetries are respected, electrons form Cooper 
pairs with opposite momenta and spins as described by the Bardeen–
Cooper–Schrieffer (BCS) theory (Fig. 1a). Breaking either of the two 
symmetries can lead to unconventional Cooper pairing with non-trivial 
spin or momentum configurations. The absence of spatial inversion 
symmetry, for example, can result in a Rashba- or Ising-type SOC, which 
enhances the paramagnetic limiting field beyond the Pauli limit BP 
along particular directions9–11. Breaking time-reversal symmetry by the  
Zeeman effect of an external magnetic field, on the other hand, can lead 
to the FFLO state, in which Cooper pairs acquire a non-zero momentum 
q (refs. 1,2) (Fig. 1b). This conventional FFLO state can be stabilized in a 
clean superconductor12,13 through a first-order phase transition from 
the BCS phase at low temperatures, namely, T < TFFLO ≡ 0.56Tc0 and high 
fields, namely, B > BFFLO ≡ 0.75Δ0/μm. Here Tc0 is the critical temperature 
at the zero magnetic (B) field, Δ0 is the pairing potential at zero field 
and zero temperature and μm is the electron magnetic moment14,15.

Simultaneously breaking the inversion and time-reversal symmetries 
is predicted to lead to an even richer manifold of finite-momentum 
pairing states beyond conventional FFLO4–7,16. In a Rashba-type 

superconductor, SOC polarizes the in-plane spin configuration. 
The Zeeman effect from a parallel external field can then deform the 
Fermi surface and stabilize finite-momentum pairing (Fig. 1c). In this 
way, Rashba SOC can extend the FFLO state to higher temperatures 
and lower magnetic-field strengths relative to the conventional FFLO 
limits defined above4,5,16.

Despite the symmetry differences, the Zeeman effect configures 
both conventional and Rashba FFLOs. Considering that the orbital and 
Zeeman effects are simultaneously exerted by an external magnetic 
field, favouring the Zeeman effect requires suppression of the orbital 
effect. Crucially, the Cooper pairs should not be disrupted by orbital 
depairing before the Zeeman effect has driven them through an FFLO 
transition. This explains why FFLO states have been widely reported in 
heavy-fermion superconductors17,18 or low-dimensional superconduc-
tors19–23 in which the orbital effect is weakened.

Contrary to conventional wisdom, we show here that the interlayer 
orbital effect from an external B field can assist FFLO formation in an 
Ising superconductor in which the Zeeman effect is suppressed. In 
transition metal dichalcogenides, local symmetry breaking in individual 
layers induces strong Ising SOC, alternately locking spins at the K/K′ 
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valley of the Brillouin zone. This strong locking effect suppresses the 
change in spin configuration of Cooper pairs under a parallel external 
field10,11, prohibiting the Zeeman effect from driving the system into con-
ventional FFLO states. This broken local symmetry is globally restored 
in a multilayer Ising superconductor with 2H stacking. As shown in 
Fig. 1d, a weak interlayer orbital effect can shift the energy bands and 
stabilize a finite-momentum pairing with opposite momentum q in 
adjacent layers6. Furthermore, this orbital FFLO state has a real-space 
oscillating phase in the order parameter (Fig. 1e). Compared with con-
ventional FFLO, the new mechanism can realize the FFLO state in field 
strengths substantially smaller than BP and at a temperature closer 
to Tc0, thereby covering a much broader proportion of the phase dia-
gram6,7. We noticed that an orbital-field-driven Fulde–Ferrell pairing 
state in a moiré bilayer transition metal dichalcogenide was studied 
in a recent theoretical work (V. K. T. Law, personal communication).

Here we report the experimental realization of the orbital FFLO state 
in a multilayer Ising superconductor (2H-NbSe2). The finite-momentum 
pairing emerges below a tri-critical point at T* = 0.84Tc0 and B* = 0.36BP 
in which the orbital effect of the parallel B field couples superconducting 

layers through the Josephson interaction. Translational and rotational 
symmetries are broken across the tri-critical point, as revealed by 
transitions in the vortex dynamics and in-plane anisotropy, respec-
tively. These broken symmetries provide the hallmark signatures of 
finite-momentum Cooper pairs induced by the formation of an orbital 
FFLO state. After the characteristic symmetry behaviour, we map the 
boundary of the first-order transition and establish the full phase dia-
gram of the states.

Phase transition to an orbital FFLO state
We prepare multilayer NbSe2 flakes covered by hexagonal boron nitride 
flakes to ensure high-quality transport with a large residual resistivity 
ratio (RRR), which is on par with bulk single crystals24. As shown in 
Fig. 1g, the RRR, defined as R(280 K)/R(8 K), reaches 28 for a 17-nm-thick 
flake. A sharp superconducting transition is observed at Tc0 = 6.9 K, after 
the charge density wave (CDW) transition at TCDW ≈ 32 K. The angular 
dependencies of magnetoresistance are measured by orienting the 
external B field to the two-dimensional (2D) crystal planes. Figure 1h 
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Fig. 1 | Superconductivity and possible pairing states in NbSe2 multilayers. 
a, BCS pairing with zero momentum. b, Conventional FFLO pairing with finite 
momentum q. The Zeeman effect of the external B field induces spin imbalance. 
 c, A representative of finite-momentum pairings in Rashba superconductors4,16.  
The Rashba SOC locks spin in the in-plane direction. The finite-momentum 
pairing is then induced by coupling between the Rashba SOC and the Zeeman 
effect of parallel fields. The sphere with an arrow represents an electron and 
spin in b and c. d, Finite-momentum pairing in a 2H-stacked multilayer Ising 
superconductor. A strong Ising SOC locks spin to the out-of-plane directions 
and suppresses the Zeeman effect of an in-plane field. The orbital effect from 
the parallel B field shifts the centre of the Fermi pockets away from the K/K′ 
point of the Brillouin zone. Pairing the k and k′ electrons in the shifted Fermi 
pockets of the lth layer satisfies k – k′ = (–)lq. e, Spatial modulation of the 
superconducting order parameter in the orbital FFLO state of 2H-NbSe2.  

f, Illustration of the Fermi surface of a NbSe2 monolayer. The red and blue 
colours denote two spin states polarized up and down. The superconducting 
gap opens at the Nb-derived K/K′ (trigonal) and Γ (hexagonal) pockets. g, Tem
perature dependence of the resistance of a 17-nm-thick flake showing large 
RRR = 28. The enlarged low-temperature part (inset) shows the CDW transition 
at TCDW = 32 K and superconducting transition at Tc = 6.9 K. h, Temperature 
dependencies of the upper critical field for fields applied parallel (red; Bc2,∥) and 
perpendicular (blue; Bc2,⊥) to the 2D crystal plane. An upturn is observed at (T*, 
B*). The blue line is a fit using the 3D Ginzburg–Landau model for the upper 
critical field. The red line is a fit using the 2D Ginzburg–Landau model at T > T*. 
i, Thickness dependencies on Bc2,⊥/BP as a function of T/Tc0. The abrupt upturn 
is observed in the intermediate-thickness range between 10 and 40 nm. The 
error bars are smaller than the symbol size.
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shows the upper critical fields, namely, Bc2,⊥ and Bc2,∥, measured down 
to 0.3 K. Here Bc2 is determined as the B field for which R = 0.5RN (Sup-
plementary Fig. 6). From Bc2,⊥(T), we estimate the Pippard coherence 
length ξ0 = 11.2 nm, which is smaller than the estimated mean free 
path lm ≈ 30 nm in our device, and comparable with that reported in 
high-quality bulk crystals (lm = 27 nm)25. Satisfying lm > ξ0 locates our 
superconducting states within the clean regime (Supplementary Infor-
mation section 1).

In the B∥ configuration, Bc2,∥(T ) follows a square-root dependence 
near Tc0, consistent with a 2D Ginzburg–Landau description (Fig. 1h) 

for the upper critical field, that is, ( )B = 1 −
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conductor with thickness d (Extended Data Fig. 1). With decreasing T, 
Bc2,∥(T ) shows a conspicuous upturn absent in either bulk26 or few-layer 
thin flakes11,27. Similar upturns can also be observed in other high-qual-
ity flakes with intermediate thicknesses of tens of nanometres (Fig. 1i).

With the increase in NbSe2 thickness from the monolayer to the 
bulk, the extrapolated Bc2,∥(0 K) varies gradually from >6BP to ~BP  
(refs. 11,26,27). This notable decrease in Bc2,∥ is caused by a gradual 
increase in interlayer Josephson coupling J as the flakes get thicker: 

from J = 0 in a monolayer to its maximum in the bulk27. In thicker flakes, 
the increase in J substantially weakens the Ising protection in indi-
vidual layers28. At a thickness of 17 nm (Fig. 1h), Bc2,∥ = 1.5BP is found to 
be intermediate between Bc2,∥ values reported in the bulk26 and bilay-
ers27, indicating a reduced J compared with the bulk crystals. It is worth 
noting that the upturn in Bc2,∥ is absent in bilayer NbSe2 (ref. 27) and our 
12-nm sample with increased disorder (Extended Data Fig. 1), confirm-
ing that high-quality transport is a crucial prerequisite for realizing 
the orbital FFLO state.

The upturn at T* = 5.8 K (0.84Tc0) and B* = 4.7 T (0.36BP) (Fig. 1h) is 
consistent with the theoretical prediction for the tri-critical point of 
the orbital FFLO state6,7. Note that T* is considerably higher than the 
0.56Tc0 value required for the conventional FFLO state14,15. Moreover, 
B* is much smaller than BP as the Zeeman effect, required for forming 
a conventional FFLO state, is replaced by a new mechanism based on 
interlayer orbital coupling when strong orbital depairing is absent in 
B∥. Guided by T* and B*, we then examine several hallmark signatures 
related to spatial symmetry, including vortex dynamics29,30 and ani-
sotropy transition31,32, to distinguish the FFLO state from the uniform 
phase.
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Fig. 2 | Upper critical fields and vortex dynamics in the orbital FFLO state. 
The direction of the applied current I in the 17-nm flake is kept along the 
direction for the measurements shown in Fig. 3c–i. a,b, The Bc2 value as a 
function of polar angle θ measured at T = 6.3 K > T* (a) and T = 4.8 K < T* (b). The 
insets are enlarged views near θ = 0°. At T = 6.3 K, Bc2 shows one cusp shape that 
can be fitted by a single 2D Tinkham component for the whole θ range. At 
T = 4.8 K, the Bc2 fit requires an extra 2D Tinkham component with a larger Bc2 
value for |θ| < θc = 1°. The increase in Bc2 at |θ| < θc indicates the formation of the 
orbital FFLO phase. The bottom inset in b shows ΔBc2 = Bc2(φ = 65°) – Bc2(φ = 0°) 
as a function of θ. As shown in Fig. 3c–i, φ = 65° and 0° are the two representative 
angles at which the Lorentz forces are weak and strong, respectively. In the 
uniform phase at |θ| > θc, compared with the weak Lorentz force at φ = 65°, the 
stronger Lorentz force at φ = 0° suppresses Bc2 by activating the interlayer 

vortex motion, thereby causing ΔBc2 > 0. The influence of the Lorentz force on 
Bc2 disappears at |θ| < θc for which the vortex motion is pinned after forming the 
FFLO state. c, Schematic for destroying the orbital FFLO state when tilting the B 
field to |θ| > θc. The stripes (top) illustrate the real-space phase variation in the 
order parameters, showing wavelength λFFLO = 2π/q. Here q in the lth layer is 
ql ∝ (–)l(B × z), which is perpendicular to the B field. d,e, The influence of 
Lorentz force, indicated by ΔBc2, is plotted as a function of temperature, 
showing the temperature dependence of the vortex pinning effect for the 
uniform phase at θ = 3° (d) and the orbital FFLO phase at θ = 0° (e). For θ = 3°, the 
ΔBc2 value gradually grows with decreasing temperature below T* due to the 
unpinned vortex motion in the uniform phase. However, for θ = 0°, ΔBc2 ≈ 0 at 
T < T*, indicating vortex pinning in the orbital FFLO phase.
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Translational symmetry breaking in the FFLO state
When the FFLO state is established by interlayer orbital coupling under 
B∥ (ref. 33), tilting B fields away from the parallel direction can cause a 
transition from the FFLO state to the uniform phase, providing a prelimi-
nary identification of the FFLO state. Figure 2a,b shows the distinctive 
polar angle (θ) dependencies of Bc2 across the critical point (T*, B*). At 
T = 6.3 K, above T*, Bc2(θ) exhibits a single cusp centred at θ = 0°, which 
agrees with a 2D Tinkham fit for a uniform superconductor (Fig. 2a). At 
T = 4.8 K, below T*, Bc2(θ) shows a sharper enhancement within a critical 
angle |θc| ≈ 1° (Fig. 2b). Tentatively, the dependence of Bc2(θ) below θc 
can be described by an additional Tinkham fit with a larger Bc2,∥. When 
orbital depairing is suppressed at |θ| < θc, the FFLO state is favourable 

(Fig. 2c) as it lowers the free energy compared with the uniform phase. 
Consequently, the FFLO transition across T* can cause an anomalous 
enhancement of Bc2 (refs. 20,22,34).

Stabilizing the orbital FFLO state breaks the uniform order parameter 
of a multilayer NbSe2 by adding alternating phase modulation in the 
out-of-plane direction (Fig. 1e), which is predicted to leave distinctive 
features in the vortex dynamics29,31. Owing to the local translational sym-
metry breaking of the superconducting order parameter, the interlayer 
vortex motion is pinned in the FFLO state. To probe the vortex dynamics 
in the orbital FFLO state, we measure Bc2,∥ as a function of the Lorentz 
force as F = I × B, which points towards the out-of-plane direction. The 
associated F drives interlayer vortex motion in the uniform phase, 
reducing Bc2 through dissipation35. At the phase boundary between 
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Fig. 3 | Six-fold anisotropy in the orbital FFLO state (measured in the 17-nm 
flake). a, Schematic of a two-axis rotation stage with the device mounted in a 
small canting angle γ that varies in each device installation. b, Polar angle θ 
dependence of magnetoresistance determines the θ = 0° orientation in which 
the measured R value is defined as R∥. c, Magnetoresistance R∥(φ) in parallel B 
fields. d–i, Mapping of R(φ, θ) after the subtraction of canting angle γ = 0.78°, 
showing a two-fold to six-fold anisotropy transition across the tri-critical point 

(T*, B*). The six-fold anisotropy can be observed only at |θ| < θc, which is consistent  
with the critical angle observed in Fig. 2b. j–k, Mapping of R(φ, θ) after the 
rotation of I to the orthogonal direction. The two-fold anisotropy shifts along 
with the direction of I, indicating the extrinsic origin of the two-fold anisotropy.  
By contrast, the six-fold anisotropy is independent of the I directions, which is 
consistent with the intrinsic anisotropy of the orbital FFLO phase.
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the metal and orbital FFLO states, which is of the second order, thermal 
fluctuations destroy the long-range coherence, forming a coexisting 
metal–orbital FFLO state. The vortex pinning can ‘lock’ Bc2 against F 
as a fingerprint of the oscillating order parameter. As shown in Fig. 2b 
(top inset), the vortex pinning effect manifests itself as a change in 
critical field strength ΔBc2 = Bc2(φ = 65°) – Bc2(φ = 0°) for which φ is the 
azimuthal angle within the conducting plane (Extended Data Fig. 4). 
Here F is weaker at φ = 65° compared with φ = 0° (Fig. 3c–f). As shown 
in the Fig. 2b (bottom inset), ΔBc2 ≈ 0 T at θ = 0° and quickly reaches 
almost 0.4 T for |θ| > θc. Within a small tilt angle θ, F can be regarded 
as a constant. Therefore, the result of ΔBc2(θ) = 0 indicates a strong 
vortex pinning effect, surpassing the dominance of the Lorentz force 
due to the oscillating phases in the FFLO state. Such a pinning effect is 
absent in the uniform superconducting phase when |θ| > θc, as indicated 
by a finite ΔBc2.

Figure 2d,e shows ΔBc2(T ) along the normal–superconducting phase 
boundary, measured at θ = 3° > θc and θ = 0° < θc, respectively. As Bc2 
increases with a decrease in temperature, at constant I, F also increases 
at lower temperatures. At θ = 3° for which the order parameter is uni-
form, ΔBc2 shows a clear activation behaviour due to the increase in F 
at lower temperatures. When θ = 0°, ΔBc2 coincides with that measured 
at θ = 3° for T > T*. Comparing the data in Fig. 2d,e, the deviation in 
ΔBc2 becomes visible for T ≤ T* because of the pinning effect. These 
contrasting behaviours confirm T* as the critical temperature to enter 
the orbital FFLO state.

The abrupt vortex pinning below θc at T < T* is consistent with the 
alternating phase vector q formed in the FFLO order parameter, switch-
ing polarities within a single unit cell (Fig. 2e). This phase configuration 
is analogous to the ground state of a Josephson π junction in which the 
net tunnelling of a supercurrent through the junction is zero. Effec-
tively, the FFLO order parameter prohibits vortex motion driven by F 
in the out-of-plane direction36. As a result, on entering the FFLO phase 
below T*, we observe that the pinning effect increases as T decreases 
(Fig. 2e).

Rotational symmetry breaking in an orbital FFLO state
The orbital FFLO state also breaks rotational symmetry in the basal 
plane—another hallmark signature to be measured by electrical trans-
port30. In this work, the anisotropy manifests itself in the azimuthal 
angular dependence of the magnetoresistance R(φ). To resolve this 
anisotropy, which is later identified as only approximately 1% of the 

gap size, we must eliminate the effect of the canting angle γ (Methods). 
Figure 3c shows the azimuthal angle (φ) dependence of R∥ in parallel 
magnetic fields along the phase boundary (T, Bc2,∥) after correcting for γ 
(Methods and Extended Data Fig. 3). As shown in Fig. 3d–i, the anisot-
ropy of R∥ for different phases across T* shows a two-fold to six-fold 
transition. For 2D angular mapping above T*, R(φ, θ) oscillates at 180° 
with two-fold anisotropy, exhibiting the maxima and minima for the 
B ⟂ I and B ∥ I configurations, respectively (Fig. 3d–f). This directional 
dependence in I is further characterized in Fig. 3j when I is rotated 
by approximately 90° using orthogonal pairs of electrodes. Rotating 
I by approximately 90° causes a shift in the two-fold anisotropy by 
approximately 95° with a small deviation of 5° caused by the electrodes 
(Extended Data Fig. 4). This substantial shift indicates that the two-fold 
anisotropy has an extrinsic origin. The Lorentz force F becomes zero for 
B ∥ I and reaches a maximum for B ⟂ I. The anisotropy of F affects the 
dissipative motion of vortices, causing two-fold anisotropy (Fig. 3d–f,j), 
which is consistent with the report on bulk crystals24 but different from 
another report on ultrathin NbSe2 (ref. 37).

As shown in Fig. 3g–i, the emergence of six-fold anisotropy coincides 
with T* (Fig. 3h) for which R(φ, θ) reaches its minima when the B field 
is applied along the crystalline direction of NbSe2 at φ = −60°, 0° and 
60°. In contrast to the two-fold anisotropy due to F, which shifts as 
I is rotated, applying an orthogonal I causes no shift in the six-fold 
anisotropy (Fig. 3i,k), indicating its intrinsic origin. From the R∥(φ) 
variation (Fig. 3c), we quantify the anisotropy as 0.8% of the largest 
superconducting gap at the K/K′ pockets of NbSe2 (Supplementary 
Information section 3). We also confirm the universal existence of 
six-fold anisotropy in another comparable high-quality sample with 
intermediate thickness, showing an upturn in Bc2 (Extended Data 
Fig. 5). By contrast, similar controlled measurements carried out on 
ionic-gated MoS2 exhibit uniform superconductivity, consistent with 
the picture of monolayer Ising superconductivity without interlayer 
interaction (Supplementary Information section 4).

Phase diagram of the orbital FFLO state
To resolve the first-order phase boundary between the FFLO state 
and the normal Ising superconducting phase, we measure the critical 
current density Jc as a function of T and B∥ (Fig. 4a). Taking the meas-
urement at 2.5 K as an example, we find that as Jc decreases with B∥, 
a clear upturn appears at B∥ = 5.5 T. The kink smoothes out when the 
temperature increases to 6 K. By contrast, these kinks are not observed 
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Fig. 4 | Phase diagram of the orbital FFLO state under parallel magnetic 
fields. a, Magnetic-field dependence of critical current density Jc at different 
temperatures. The upturns observed at lower temperatures broaden with 
increasing temperatures. At T ≥ 6 K, the upturn vanishes. b, Phase diagram of the 
orbital FFLO state. The metal–superconductor phase boundary (red and yellow 
dots) is determined by measuring the temperature dependence of Bc2,∥ (Fig. 1h). 
The superconducting phase is divided into uniform Ising superconductivity and 

orbital FFLO state. The kinks observed in the Jc(B) dependencies (a) determine 
the boundary of the first-order phase transition from the uniform Ising 
superconductivity to the orbital FFLO states (blue dots). The Ising 
superconductivity is isotropic with a two-fold symmetry caused by the 
Lorentz-force-induced vortex motion. The orbital FFLO phase exhibits an 
intrinsic six-fold anisotropy. The error bars are smaller than the symbol size.
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in the temperature dependence of Jc when B∥ = 0, which rules out the 
multigap scenario as the cause of the upturn (Methods). Similar to 
the abrupt increase in Bc2 (Fig. 2b) observed at the phase boundary, 
entering the orbital FFLO phase at a fixed temperature from the uni-
form phase also lowers the free energy31,38, enhancing Jc. Therefore, we 
determine the phase boundary as the B field at which the upturn in Jc 
occurs (Fig. 4b). The extrapolation from the measured phase bound-
ary aligns well with the tri-critical point (Fig. 4b, yellow dot), which 
is differently determined from the phase boundary by the upturn  
in Bc2(T) (Fig. 1h).

Figure 4b shows the entire phase diagram consisting of a normal 
metal, a uniform Ising superconductor and the six-fold orbital FFLO 
phase. Based on symmetry considerations for multilayer NbSe2 under 
B∥, the distinctive change from isotropic to six-fold basal-plane anisot-
ropy (Fig. 3d–i) around the tri-critical points (T*, B*) can be described 
by the Ginzburg–Landau free energy (Methods). We found that the 
critical field B∗, separating the zero-momentum uniform phase and 
the orbital FFLO phase, is nearly temperature independent, as consist-
ently shown in the phase diagram (Fig. 4b). At high fields above the 
tri-critical point, Cooper pairs in the lth layer acquire alternating finite 
momentum (−1)lq for which q ∝ B × z, to minimize the free energy. 
Owing to the constraints of crystal rotation symmetries, the non-zero 
momentum q couples anisotropically to the B field, manifesting itself 
in higher-order terms (Methods). For B < B* and q = 0, Tc is isotropic. 
When B > B* and q ≠ 0, the anisotropic part of the critical temperature 
is ΔTc ∝ cos(6φ). This six-fold anisotropy of Tc is precisely captured by 
measuring R(φ) in the coexisting state (Fig. 3g–i).

Our work demonstrates the existence of an orbital FFLO phase 
within an interlayer-coupled Ising superconductor. Similar orbital 
FFLO phases are expected after this general mechanism in many other 
multilayer Ising superconductors.
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Methods

Device fabrication and measurement
We mechanically exfoliate NbSe2 thin flakes from a bulk single crystal. 
The devices were made on a silicon substrate with an approximately 
285-nm-thick oxide layer. Hexagonal boron nitride flakes were first 
exfoliated onto a polydimethylsiloxane substrate and dropped 
onto the NbSe2 flake as the capping layer at room temperature. Both 
exfoliation and transfer processes were performed in an inert Ar 
atmosphere to prevent possible sample degradation. The electrodes 
(50 nm Au on 1 nm Ti) were deposited by electron-beam evaporation 
after etching through the hexagonal boron nitride capping layer in 
CF4 plasma. The thicknesses of the NbSe2 flakes were determined by 
atomic force microscopy. The devices were mounted on a two-axis 
rotating stage (atto3DR). The angles were determined by potential 
meters, which have an accuracy better than 0.1°. Three SR830 DSP 
lock-in amplifiers measured the electrical transport. Two Keithley 
meters, a 2450 source measurement unit and a 182 voltmeter, were 
used for the d.c. current–voltage measurements. If not specified, the 
data were measured on a 17-nm-thick flake with a constant current 
density of 0.003 MA cm–2.

Nullifying the canting angles due to device installations
For a 2D superconductor, the angular dependence of the upper critical 
field Bc2(θ) is described by the 2D Tinkham formula39:

B θ θ
B

B θ θ
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Here θ is the angle between the B field and 2D plane; and Bc2,⊥ and 
Bc2,∥ are the upper critical fields when the field is perpendicular and 
parallel to the 2D plane, respectively.

For superconductors with strong anisotropy, such as in our orbital 
FFLO system, even a tiny canting from the precise in-plane alignment 
can substantially decrease Bc2 because of the large Bc2,∥/Bc2,⊥ ratio. It is 
worth emphasizing that even if we can tune the instrumental alignment 
almost perfectly, each device installation onto the measurement sys-
tem can inevitably cause misalignment. In reality, there always exists 
a canting angle γ, contributed by both instrumental and installation 
misalignment.

In our angular measurements, this unavoidable γ is eliminated by 
two-axis rotational mapping. As shown in Extended Data Fig. 2, we 
mount a 2D superconductor (yellow 2D plane) on a rotating stage 
(grey plane) with rotation axes 1 and 2. During sample installation, 
a canting angle γ is introduced between the sample and rotation 
plane. The γ value can be cancelled out by rotating axis 1 to align the 
sample plane with the B fields. Nevertheless, once the 2D sample is 
parallel to the field (θ = 0), rotating axis 2 will again induce an angle 
between the sample plane and B field (θ ≠ 0) (Extended Data Fig. 2),  
which varies as

θ φ θ γ φ θ( , ) = arctan[tan cos( + Φ )] − ( + Φ ), (2)0 2 0 1

with Φ1 and Φ2 being the phases of the readings from axes 1 and 2, 
respectively. The γ, Φ1 and Φ1 values become constants after the device 
installation. During the measurement, to keep the B field parallel to 
the crystal plane at different φ, one must continuously tune θ0. As 
a result, the canting angle γ can be subtracted from the mapping of  
R(φ, θ0) (Extended Data Fig. 3). The misalignment of the B field can shift 
the tri-critical point T* to higher fields above the Pauli limit, which might 
have hindered the identification of the orbital FFLO40.

Ginzburg–Landau model for the six-fold orbital FFLO state
To understand the origin of the six-fold anisotropy under an in-plane 
B field, we propose the following Ginzburg–Landau free energy of a 

multilayer NbSe2 in the presence of an in-plane magnetic field B based 
on symmetries:
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 is the superconducting order parameter 
of layer l = 1, 2… in real space, q = –i∇ is the in-plane momentum oper-
ator, J > 0 is the Josephson coupling and β > 0 is the quartic coefficient 
of the order parameter.

The second-order coefficient α is a function of momentum q and 
magnetic field B, and the layer-dependent alternating sign (–)l is due 
to the global inversion symmetry:

I ψ ψ: → − , → , → ,l N l+1−q q B B

where N is the total number of layers. Together with the time-reversal 
symmetry, in-plane mirror symmetry and in-plane rotation symmetry, 
we can determine the general form of α as
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where a, c > 0 for stability, q+ = qx + iqy and B+ = Bx + iBy. The parameters a, 
b, c,d and λ1,2 are determined by microscopic details of the system, such 
as the density of states, Fermi velocity, SOC, Fermi surface anisotropy 
and interlayer coupling. The dimensionless quantity Jc/(bB)2 controls 
the phase transition in equation (4).

It is demanding to analytically solve the complete problem with N 
layers. Therefore, without losing the essential physics, we examine 
the most straightforward multilayer system containing N = 2, form-
ing the Bloch configuration. For this bilayer case, equation (4) can be 
perturbatively solved by treating λ1,2 as perturbations. For general N 
layers, the order parameter can be obtained from the bilayer states, 
as discussed below.

When λ1,2 = 0, by minimizing the free energy, we can find two kinds 
of superconducting phase near the superconducting–normal phase 
transition. The different Cooper-pair momentum q characterizes these 
two phases and hence different upper critical fields, or equivalently, 
the B-field dependence of the critical temperature Tc.
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The tri-critical point (T*, B*) is
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The location of the tri-critical point (T*, B*) is mainly determined by 
the interlayer Josephson coupling J. When the interlayer Josephson 
coupling is turned off, that is, let J = 0, we find T* = Tc0. This means  
that at any finite field, each layer has Cooper pairs with alternating 
finite momentum (–)lq, which is consistent with our previous argument. 
Also, we can determine the numerical constant relating B* and  

Jc b/ , consistent with our dimensional analysis discussed in the main 
text.

Next, we turn on the weak anisotropy by letting λ1,2 ≠ 0, which are the 
perturbations. All these anisotropic terms are q dependent and vanish 
at zero momentum; hence, we find that the BCS phase at q = 0 is always 



isotropic. By contrast, the orbital FFLO phase with finite Cooper-pair 
momentum shows six-fold anisotropy under an in-plane B field.
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where λ(B) depends only on the magnitude of the field, and 
φ = atan(By/Bx) is the polar angle denoting the direction of the in-plane 
B field.

For the general case of an N-layer system, we expect the order parame-
ter to form a Bloch-like configuration based on the bilayer states above, 
having the two-component order parameter as
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Then, we obtain the free energy of the multilayers as
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As the free energy above has the translation symmetry Ψl → Ψl+1, 
according to the Bloch theorem, we expect our solution to satisfy 
Ψl+1 = eiθΨl, or equivalently,

Ψ = e Ψ .l
lθi

0

Here θ ∈ (–π, π] is the Bloch-phase modulation parameter to be 
determined soon. With this ansatz of the order parameter, the free 
energy above becomes

r








∫∑ (9)F A J σ σ θ β σ σ= d Ψ Ψ − 2 Ψ ( e + e )Ψ cos +
1
2

|Ψ Ψ | , = .
l

θ θ2
0
†

0 0
†

+
i

−
i

0 0
†

0
2

+ −
†

When minimizing the free energy, we obtain θ = 0. In other words, 
Ψl = Ψ0 and every bilayer shares the same order-parameter configura-
tion. Therefore, the superconducting phases worked out from the 
bilayer NbSe2 model can be extended to the multilayers.

Excluding other possible scenarios for the upturn in Bc2(T)
The upturn in Bc2(T) is associated with out-of-plane translational and 
in-plane rotational symmetries breaking, which is consistent with 
the orbital FFLO model. Several other scenarios can also support the 
upturn in Bc2(T), such as intrinsic two-gap superconductivity, the 
Takahashi–Tachiki effect, spin-triplet pairing and three-dimensional 
(3D)–2D crossover. In this section, these scenarios are discussed and 
eventually ruled out.

Two-gap superconductivity
The superconducting gaps of NbSe2 open at both K and Γ points for 
both hole- and electron-like pockets, as shown in the angle-resolved 
photoemission spectroscopy results41,42. The superconductivity of 
the Se-derived (Fig. 1f, grey circle) Γ pocket has a tiny gap43 or is gap-
less41,42. The multiple gaps of different gap sizes may lead to kinks in both 

Bc2(T ) (ref. 44) and Jc(T) (ref. 45). On the other hand, in dirty two-gap 
superconductors, the upturn in Bc2(T) is also expected due to interband 
scattering44.

First, we can rule out the possibility of having the dirty two-gap 
scenario as our device shows superconductivity in the clean regime. 
Furthermore, the kink observed in |θ| < 1° (Bc2(θ); Fig. 2b) cannot be 
described by the dirty two-gap model44. Second, within the two-gap 
scenario, one would expect the temperature dependence of Jc to show 
a kink when the second gap opens at T < Tc0 under the zero B field45. 
As shown in Extended Data Fig. 7, the Jc(T ) value measured at B = 0 T 
has a smooth dependence without showing a kink as a function of 
temperature. Instead, the kinks in Jc appear when the B field is applied 
crossing the uniform superconductor–orbital FFLO phase boundary 
(Fig. 4a). The phase boundary thus determined by Jc(B) agrees well 
with the tri-critical point that is determined by Bc2(T ) measurements. 
Hence, we can also safely rule out the two-gap scenario as the cause of 
the kinks observed in our devices.

Takahashi–Tachiki effect
The Takahashi–Tachiki effect describes a superconducting superla-
ttice consisting of stacked superconducting bilayers. Two types of 
superconductor in the bilayers, the N and S layers, have the same Tc0 
but different diffusion constants46. Both N and S superconductors are 
in the dirty limit. Therefore, the large and small diffusion constants 
(denoted as DN and DS, respectively) lead to low and high Bc2 values, 
respectively. A new superconducting phase appears—when the DN/DS 
ratio exceeds a critical value—as an upturn in the temperature depend-
ence of Bc2. The Bc2 upturn is associated with the preferential nuclea-
tion of superconductivity in one of the two layers. Order parameters 
beyond the upturn are concentrated in the S layers with higher Bc2 and 
hence are more robust at higher fields. As the physical picture of the 
Takahashi–Tachiki effect is fundamentally different from our orbital 
FFLO state, they apply to very different regimes.

First, the Takahashi–Tachiki effect is explicitly developed for dirty 
superconductors, when both types of superconductor are in the dirty 
limit for which the competition and selective nucleation depend on DS 
and DN. By contrast, our sample is in the clean regime (Supplementary 
Information section 1), which is consistent with the high RRR value 
(Fig. 1g). Furthermore, our system’s large Ising SOC pins the spin in 
the out-of-plane direction, protecting the electron spins from being 
scattered by impurities. Therefore, the assumption of a dirty regime 
used in the Takahashi–Tachiki model for which scattering determines 
the diffusion length46 may not apply to our system.

According to the Takahashi–Tachiki model, Bc2,S/Bc2,N = 15 merely 
brings the upturn to T* ≈ 0.5Tc0 (ref. 46). To achieve T* = 0.84Tc0 (Fig. 4), 
an unrealistically large Bc2,N/Bc2,S is required. In NbSe2, the highest 
in-plane Bc2 reported so far is almost 7BP for which the lowest Bc2 is 
found in pristine bulk for almost 1BP. Therefore, the largest Bc2 ratio 
accessible in the NbSe2 systems only reaches 7, which is less than half 
of Bc2,S/Bc2,N = 15. As the Bc2,S/Bc2,N ratio increases, increasingly sharper 
upturns are expected. By contrast, experimentally, we observed a 
smooth upturn in Bc2(T). In short, the relatively soft upturn and high 
T* observed in our uniform single-crystal sample cannot be recon-
ciled with the Takahashi–Tachiki theory. It is worth noting that the  
Takahashi–Tachiki model has one more characteristic temperature 
close to Tc0, corresponding to a 2D–3D crossover46. By contrast, our 
17-nm flake (Fig. 1h) shows no linear Bc2(T) dependence, which is incon-
sistent with the Takahashi–Tachiki theory.

The first-order transition described by the Takahashi–Tachiki effect 
involves a competition between the coherence length ξ and the mag-
netic length l eB= 1/ 2B , which vary with temperature and B field, 
respectively. Such competition leads to a first-order phase transition 
relying on both temperature and field, which appears as a diagonal in 
the phase diagram46. In our orbital FFLO picture, this first-order phase 
transition line is expected to have a weak temperature dependence. 
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As shown in equation (4), the transition from uniform to orbital FFLO 
state is determined by Jc/(bB)2 for which a weak temperature depend-
ence is expected for J. Indeed, experimentally, the first-order phase 
transition line weakly depends on temperature (Fig. 4b), which is incon-
sistent with the Takahashi–Tachiki model.

Spin-triplet pairing
Due to the non-centrosymmetric crystal structure of monolayer tran-
sition metal dichalcogenides, the spin splitting induced by Ising SOC 
may lead to mixed singlet and triplet pairing47, which also enhances Bc2 
(ref. 48). Experimentally, the Bc2 value of spin-triplet superconductiv-
ity characterizes a non-saturating temperature dependence due to 
the diverging paramagnetic limit. The non-saturating Bc2 value has 
been reported in bulk spin-triplet superconductor UTe2, violating the 
limits set by the orbital depairing effect and Pauli paramagnetism49. In 
transition metal dichalcogenides, the spin-triplet superconductivity 
was not experimentally observed in monolayer MoS2 (refs. 10,50) or 
in NbSe2 (ref. 27). In our work, Bc2 increases moderately and saturates 
at low temperatures, which is inconsistent with the spin-triplet sce-
nario. Furthermore, the spin-triplet pairing cannot explain the vortex 
pinning (Fig. 2). Therefore, we can rule out spin-triplet pairing as the 
candidate mechanism.

Dimensional crossover from three dimensions to two dimensions
An upturn in Bc2 has been widely observed in layered superconductors 
as a 3D–2D crossover. Close to Tc, the Bc2 value is described by the 3D 
Ginzburg–Landau model. Similar to the Takahashi–Tachiki model, the 
phenomenological model valid in the scale of the coherence length 
relies on the temperature dependence of the coherence length. The 
fingerprint of such a crossover is a linear Bc2 dependence on tempera-
ture near Tc0. The upturn due to dimensional crossover is well described 
by the Klemm–Luther–Beasley model51. For double-side gated bilayer 
MoS2, a dimensional-crossover-related upturn is present due to inter-
layer Josephson coupling52.

In our data, the 3D–2D crossover scenario seems to capture the 
upturns of Bc2 in our 34- and 39-nm-thick samples, which have linear 
Bc2 dependencies on temperature (Fig. 1i). However, in 12–22 nm NbSe2, 
the Bc2 value shows a square-root temperature dependence after the 2D 
Ginzburg–Landau model, suggesting 2D superconductivity at higher 
temperatures close to Tc0. As the 3D state is unavailable in the first place, 
the 3D–2D crossover cannot exist.

Furthermore, in our 17-nm flake, the 2D nature of superconductivity 
is confirmed (Fig. 2a,b), featuring a cusp-shaped 2D angular depend-
ence of Bc2 for the whole temperature range below Tc0. Therefore, the 
3D–2D crossover cannot describe the observed Bc2 upturn.

Excluding nodal superconductivity and intrinsic gap anisotropy 
scenario for six-fold anisotropy
When the magnetic field is applied along the Γ–M lines at which the 
Ising SOC vanishes, the Zeeman effect can align the spins to the in-plane 
direction, and thus, the gap is closed. The Cooper pairing away from the 
Γ–M lines is still protected by Ising SOC and leads to a finite supercon-
ducting gap. Therefore, the nodal superconducting phase is suggested 
to exist above the Pauli limit53, and exhibits six-fold anisotropy54. Recent 
work in monolayer NbSe2 (ref. 55) reported six-fold anisotropy in parallel 
magnetic fields at T = 0.9Tc0, which transforms into two-fold anisotropy 
at T = 0.5Tc0. The six-fold anisotropy is suggested to be nodal super-
conductivity when the B field is applied along the Γ–M lines, whereas 
the two-fold anisotropy is interpreted as nematic superconductivity.

Our results on multilayer NbSe2 are very different compared with 
theoretical53 and experimental reports55. First, the six-fold supercon-
ducting phase appears well below the Pauli limit, which is not consistent 
with the theoretical prediction of nodal superconductivity53. As the 
uniform–orbital FFLO phase boundary is determined by Josephson 
coupling, the boundary can be well below the Pauli limit6.

On the other hand, the anisotropy transition in monolayer NbSe2 
(ref. 55) is essentially different from our results. In the monolayer 
case, the anisotropy transition is driven by temperature. The six-fold 
nodal superconductivity is observed at T = 0.9Tc0, and the two-fold 
nematic phase is observed at T = 0.5Tc0. By contrast, the anisotropy 
transition in the orbital FFLO state is driven by magnetic fields. As 
indicated in Fig. 4b, the normal–orbital FFLO phase boundary has a 
weak temperature dependence. Furthermore, the two-fold anisotropy 
is extrinsically induced by the Lorentz force. Therefore, the anisot-
ropy transition is from isotropic to six-fold in our work, which is dif-
ferent from the report of nodal superconductivity55. With the above 
discussion, the scenario of nodal superconductivity can be ruled out  
in our work.

The intrinsic superconducting gap anisotropy of NbSe2 has six-fold 
symmetry, as shown by angle-resolved photoemission spectroscopy 
and scanning tunnelling microscopy measurements41,42. Nevertheless, 
our observation is a symmetry transition close to T* and B*. Therefore, 
for B < B* for which the intrinsic gap anisotropy is intact, we can resolve 
only the extrinsic two-fold symmetry due to the Lorentz force, exclud-
ing the intrinsic gap anisotropy as the origin of the six-fold symmetry 
found for B > B*.

Possible phase transition at lower temperatures
We noticed that pair density wave (PDW) superconductivity, which 
competes with the orbital FFLO phase, is an alternative candidate at 
lower temperatures and higher magnetic fields7. If it exists, one can 
expect another upturn in Bc2(T) at low temperatures at which the tran-
sition from orbital FFLO to the PDW phase occurs. Meanwhile, after 
the theoretical prediction for conventional FFLO, a complex orbital 
FFLO state with multiple q phases may be energetically favoured at 
low temperatures56–58. However, the present measurement shows 
that Bc2(T) smoothly saturates at T = 0.35 K (Fig. 1h) without any 
additional signature of PDW or multiple q phases. Our result, how-
ever, does not rule out the possibility that the PDW and multiple-q 
orbital FFLO states may exist at an even lower temperature for 
which alternative configurations of broken translational symmetry  
may also be valid.

Data availability
All relevant data shown are provided with this paper. Additional data 
that support the plots and other analyses in this work are available 
from the corresponding author upon request.
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Extended Data Fig. 1 | Absence of the upturn in upper critical fields in a 
downgraded device. a, The temperature dependence of sheet resistances for 
two flakes showing RRR = 12.6 and 28 for 11 and 17 nm thick flakes, respectively. 
b, The Bc2,|| measured for the 11 and 17 nm thick flakes. The 2D Ginzburg-Landau 
fittings, that is, the solid black curves, yield thickness dfit = 8 and 12 nm, 
respectively. Overall, the reduced thicknesses obtained from the GL fittings 
are due to the protection from the Ising SOC, which becomes more robust in 
thinner flakes59–61. Close to Tc0, the 11 nm flake shows a steeper temperature 

dependence of Bc2, consistent with its reduced thickness. Nevertheless, for the 
17 nm flake with a larger RRR, an upturn in the Bc2 can be observed at B = 0.36BP, 
indicating the orbital FFLO state, which eventually enhances Bc2 to exceed that 
measured in the 11 nm flake. As a larger RRR indicates better sample quality, the 
contrasting behaviour in the temperature dependence of Bc2 suggests that the 
absence of the orbital FFLO phase in the thin flake might be caused by the 
downgraded quality, which suppresses the finite-momentum pairing via 
scattering13,62.
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external magnetic field with an installation canting angle γ. A 2D sample is 
mounted on a 2-axis rotational stage. The 2D surface of the sample (yellow 
plane) makes a canting angle γ with respect to one of the rotation planes of the 
stage (grey plane). To simplify the discussion and isolate the effect of canting 

angle γ, we assume that the stage can make precise rotations so that, as shown 
in Fig. 3b, we can always align the sample plane precisely parallel to the external 
B field. When this exact parallelism is aligned at a given φ, due to the canting 
angle γ, further rotation along the stage axis 1 or 2 can cause a correlation 
between θ and φ, which are labelled as different θ(φ) values.
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