
Received 11 August 2023, accepted 14 October 2023, date of publication 23 October 2023, date of current version 3 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3327008

Dash Sylvereye: A Python Library for
Dashboard-Driven Visualization
of Large Street Networks
ALBERTO GARCIA-ROBLEDO 1 AND MAHBOOBEH ZANGIABADY 2
1Conahcyt, CentroGeo, Queretaro 76709, Mexico
2Department of Design and Analysis of Communication Systems (DACS), University of Twente, 7522 NB Enschede, The Netherlands

Corresponding author: Alberto Garcia-Robledo (agarcia@centrogeo.edu.mx)

ABSTRACT State-of-the-art open graph visualization tools like Gephi, KeyLines, and Cytoscape are not
suitable for studying street networks with thousands of roads since they do not support simultaneously
polylines for edges, navigable maps, GPU-accelerated rendering, interactivity, and the means for visualizing
multivariate data. To fill this gap, we present Dash Sylvereye: a new Python library to produce interactive
visualizations of primal street networks on top of tiled web maps. Thanks to its integration with the Dash
framework, Dash Sylvereye can be used to develop web dashboards around temporal and multivariate
street data. This is achieved by coordinating the various elements of a Dash Sylvereye visualization with
other plotting and UI components provided by Dash. Additionally, Dash Sylvereye provides convenient
functions to easily import OpenStreetMap street topologies obtained with the OSMnx library. Moreover,
Dash Sylvereye uses WebGL for GPU-accelerated rendering when redrawing the road network. We conduct
experiments to assess the performance of Dash Sylvereye on a commodity computer when exploiting
software acceleration in terms of frames per second, CPU time, and frame duration. We show that Dash
Sylvereye can offer fast panning speeds, close to 60 FPS, and CPU times below 20 ms, for street networks
with thousands of edges, and above 24 FPS, and CPU times below 40 ms, for networks with dozens of
thousands of edges. Additionally, we conduct a performance comparison against two state-of-the-art street
visualization tools. We found Dash Sylvereye to be competitive when compared to the state-of-the-art
visualization libraries Kepler.gl and city-roads. Finally, we describe aweb dashboard application that exploits
Dash Sylvereye for the analysis of a SUMO vehicle traffic simulation.

INDEX TERMS Data visualization, data analysis, software libraries, component architectures, complex
networks, graphical user interfaces, graphics, vehicle dynamics.

I. INTRODUCTION
One of the primary objects of interest of urban researchers
and planners are street networks. They study street networks
for a variety of applications such as traffic engineering,
transportation, and urban planning. Recently, academics from
seemingly unrelated fields, such as Network Science and
Computer Science, have joined to study the complexity of
large street networks. They have also worked to develop
efficient algorithms to process them.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Mei .

With the advent of the OpenStreetMap (OSM) project [11]
the street topology of virtually any city in the world became
publicly available for analysis. Tools like OSMnx [5], [6]
make it easy for any researcher to download OSM street
network data with a simple query. However, the availability
of such networks has also revealed the limitations of current
tools like graph visualization.

Urban researchers need tools to make sense of multivariate
data associated with street networks. These data are hardly
static: vehicle counts, vehicle positions, traffic bottlenecks,
and other urban data change over time. Dashboards have
become a standard visual analytics tool when trying to make

121142

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5202-6366
https://orcid.org/0000-0003-2408-4993
https://orcid.org/0000-0003-0026-5423


A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

sense of multivariate data. Prominent dashboard tools in
the industry include Tableau [3] and Google Data Studio.1

However, these kinds of open tools are too general to
support the practical analytical needs of real-world urban
applications [26].

On the other hand, the street network of large cities is made
of dozens of thousands of nodes and edges. This imposes
the need to push the processing capabilities of graphics
adapters to render such large structures. These complex
visualizations should also allow for user interactivity by
enabling navigation, panning, zooming, and clicking.

The use of web technologies for developing visualization
solutions is currently a tendency among practitioners. Open-
source programming libraries like the Dash framework
enable data analysts to develop their own rich and interactive
web dashboards by exploiting a variety of coordinated
web plotting and UI components. Such dashboards can be
displayed in any modern web browser and be easily deployed
on the web.

State-of-the-art graph visualization tools like Gephi, Key-
Lines, and Cytoscape are not suitable for studying city-scale
street networks since they do not support simultaneously
polyline2 drawing for edges, navigable maps, interactivity,
the means for visualizing multivariate data, and GPU-
accelerated rendering.

In this context, the research question we aim to address
is: How can we bridge this gap and leverage state-of-the-art
visual analytics techniques, combinedwith web technologies,
to produce interactive visualizations of street networks on
a city scale? Moreover, how can we present its multivariate
data in a way that is easily accessible to both researchers and
practitioners?

To answer the posed question, this paper presents a
new Python library called Dash Sylvereye which produces
interactive visualizations of primal street networks on top
of tiled web maps. Thanks to its integration with the
Dash framework, Dash Sylvereye can be easily exploited to
develop web dashboards around temporal and multivariate
urban data by coordinating the various elements of a
Dash Sylvereye visualization with other Dash plotting and
UI components.

Dash Sylvereye can render large city-scale interactive
street networks as well as thousands of interactive markers
in commodity computers with the help of the system’s GPU
through WebGL.

The core contributions of this paper are as follows:

• A library tool for Python that generates street network
visualizations that can draw atop web tile maps and that
is designed from the ground up to be compatible with the
widely used Dash dashboard visualization framework.

• A library tool that allows for the customization of colors,
sizes, transparency, and visibility of individual street
network elements as well as markers. Visual properties

1https://datastudio.google.com/
2A sequence of connected segments that describe a curve.

can be also automatically scaled based on the values
found in the street network’s data.

• A library tool that provides fast software acceleration
and exploits hardware acceleration for redrawing, show-
ing panning speeds of close to 60 FPS, and CPU times
below 20 ms, for street networks with thousands of
edges.

The rest of this paper is structured as follows. Section II
provides additional background on topics that are relevant
to the proposed solution. Section III offers a review of the
state-of-the-art on street graph visualization. Section IV lists
the requirements we identified were needed to meet and
presents details on the internal design of the Dash Sylvereye
library. Section V offers the reader a quick grasp of how
coding with the Dash Sylvereye library feels. In Section VI
we assess the animation performance of Dash Sylvereye
in terms of frames per second, frame duration, and CPU
time. In Section VII we compare the animation performance
among Dash Sylvereye and two other state-of-the-art road
network visualization libraries. In Section VIII we describe a
non-trivial example of a dashboard that uses Dash Sylvereye
as its central component. Finally, in Section IX we offer final
conclusions and future work.

II. BACKGROUND
A. STREET NETWORKS
This paper is concerned with primal street graphs. A primal
street graph is a non-planar directed multi-graph with
loops allowed where nodes represent street intersections or
junctions, and edges represent street segments [6]. A street
network is a kind of spatial network [1]: a graph that models
natural, sociological, or technological phenomena where the
elements of the graph are mapped to the spatial dimension,
usually to geographical coordinates. Urban networks have
become the focus of many works in recent years. An example
of such works is [14], which uses a new model for
analyzing urban network structures, combining themwith the
information provided by taxi trajectory data.

B. WEB-BASED VISUALIZATION
The wide availability of web browsers has turned them
into an all-pervasive execution platform. Recently, many
web-based visualization applications have been proposed
motivated by the new technologies offered by modern
browsers [19]. The HTML5 standard gives programmers
an array of options to render graphics: the HTML canvas,
SVG graphics, CSS animations, and WebGL. WebGL is a
standardized JavaScript API for rendering GPU-accelerated
graphics in web browsers. A WebGL application consists
of two parts: control code written in JavaScript and shader
code written in the GLSL language. WebGL has particularly
attracted the interest of the data visualization community
since it allows programmers to exploit the GPU processor
regardless of the vendor.

A good example of a work that exploits state-of-the-
art web visualization technologies for graph analysis is

VOLUME 11, 2023 121143



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

ContraNA. ContraNA [8] is a visual analytics framework
that exploits machine learning to compare two networks for
learning the main specifications of one network with respect
to the other. Such comparison is challenging due to the
complex structure of large graphs. The authors developed
ContraNA as a web application. The back-end is developed in
Python whereas the front-end uses a combination of HTML5,
JavaScript, D3.js, and WebGL. WebSockets are used for
back-end and front-end communication. Examples of works
that exploit WebGL to produce visualizations of large graphs
include [7], [12], [17], [22].

JavaScript has become the lingua franca for front-end
web development. There already exists a mature ecosystem
of open-source JavaScript libraries that are being exploited
for data visualization. Prominent examples of such libraries
are D3.js and Three.js. More recently, WebAssembly has
enabled developers to write high-performance code that rivals
in speed with native applications written in C and C++. This
technology opens new possibilities for efficiently running
compute-intensive algorithms in the browser, such as graph
layout algorithms.

C. DASHBOARD VISUALIZATION
Dashboards are one of the most common use cases for data
visualization [21]. Interest in developing web dashboards
has recently increased in governments, universities, research
centers, and health institutions due to the need to share
real-time information about the state of the COVID-19
pandemic in an open and accessible manner.

In urban studies, dashboards are being used to visualize
real-time urban data from a variety of sources to provide an
easy-to-understand tool to decision-makers [9]. Dashboards
can be used to visually assess urban performance to support
the sustainable development of smart cities [15], and for
transparent and accountable decision-making [18]. A good
example of a work that exploits dashboards for city analytics
purposes is [20], which proposes a dashboard-driven visual
tool for analyzing traffic accident and casualty trends.

Python is one of the most-used languages among develop-
ers who identify themselves as data scientists [13]. There is a
relatively new ecosystem of frameworks that are attracting the
attention of data science practitioners in need of developing
web dashboard applications entirely in Python, without the
need to learn front-end web languages like HTML, CSS, and
JavaScript. One such library is the Plotly Dash framework.3

The Dash framework is built around the concept of Dash
component. ADash component is a Python class that provides
an abstraction for a web UI element: from a single HTML tag
to more complex elements such as a slider, a chart, a gauge
meter, or a navigation bar. A Dash component has properties
that can be set, read, and updated. Under the hood, Dash
components are Python wrappers for components written
with the widely-used React.js front-end UI framework.4 This

3https://plotly.com/dash/
4https://reactjs.org/

enables programmers to build their Dash components in
JavaScript.

Dash applications are composed of two parts. The first
part is the layout of the dashboard, which describes the
application’s appearance. It is specified as a tree of Dash
components. The second part is the callbacks, which defines
the interactivity of the application. Dash callbacks are Python
functions that are automatically triggered when the properties
of Dash components change.

A callback receives the values of the changed properties
as input and returns new values for other properties as
output. Every property of a Dash component can be updated
through a callback. A special kind of input is the states: input
parameters that do not trigger a callback, only store the state
of a parameter at the moment the callback is triggered by
another input parameter.

III. RELATED WORK
Many graph visualization tools have been developed over
the last few years to generate graph visualizations. In con-
sequence, the landscape of such tools has become extensive.
We focus our state-of-the-art review on both open tools5 and
academic works that propose practical contributions with any
of the two following features: 1) support for the development
of visualization dashboards around the reported tool, 2) some
sort of geospatial visualization support, such as the ability to
render graphs on top of maps, and 3) rendering of large road
networks. We discuss in detail tools that provide any kind of
dashboard support in Section III-C.

A. TOOLS IN LITERATURE
The following are works in the academic literature that report
graph visualization libraries for a variety of programming
languages. We focus our review on tools that can render large
road networks (through GPU hardware acceleration).

ccNetViz [22] is an open-source WebGL-based JavaScript
library for network visualization. It supports animation fea-
tures (nodes and links). Node colors, size, and transparency
can be manipulated in real-time. Similarly, the animation
of edges can be used to display information transmission.
Animation features can be specified dynamically.

Carina [7] is a visualization tool that helps researchers to
explore and visualize large graphs with millions of nodes.
Carina supports fast graph drawing through WebGL and
supports both desktop (Electron) and mobile platforms.
An outstanding feature of Carina is it does not save the whole
graph in RAM, enabling the tool to handle networks as big as
69 million edges.

Authors in [12] developed a visualization tool for large
graphs called NetV.js. It is a WebGL-based JavaScript library
that supports up to 50 thousand nodes and 1 million edges.
It exploits the GPU to enhance the drawing performance and
create an interface for manipulating graph components.

5Tools that are publicly available as either open-source, free, or commer-
cial products.

121144 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

TABLE 1. Feature comparison of state-of-the-art network visualization tools. To grant support for a given feature, it should be provided out-of-the-box or
via plug-ins/extensions. A N/A in the Language column means that the work is not a library but a web or desktop application. Notes: (1) Support of the
feature is granted only if the tool can draw polylines for edges. (2) OSMnx can generate static Web visualizations with Folium. (3) By using the
TimestampedGeoJson Folium plugin. (4) By using the Cytoscape.js library. (5) By using the Cytoscape.js Dash component. (6) A KeyLines visualization can
be embedded in a Kibi dashboard. (7) There is a Tableau extension for embedding Kepler.gl visualizations. (8) By combining the Dash component with, for
example, a Dash slider component that implements a timeline. (9) Since the tools are built on top of the Leaflet.js library, they may be able to display
non-OSM tilemaps. (10) It supports OpenCL for accelerating compute-intensive tasks such as graph layout calculation. Cytoscape.js is not powered by
WebGL. (11) With Gephi Toolkit. (12) With Cytoscape.js. (13) With PyGraphistry and GraphistryJS. (14) GPU acceleration is used for computing graph
layouts. (15) It supports non-georeferenced polylines. (16) It supports JavaScript if the standalone React component is used. However, dashboard
framework integration (and by extension timeline support) will not be available. (17) With graph-app-kit. (18) Support for GPU acceleration is
mentioned neither in the paper nor webpage. Nonetheless, given that UNA is an extension, GPU acceleration support could be provided
through the base packages (ArcGIS and Rhinoceros 3D) which support OpenGL. (19 Python support is provided through the keplergl module.

Argo Lite [17] is an interactive network visualization
tool for web browsers. Users are enabled to modify the
characteristics of nodes (size, shape, colors), links (colors),
and labels (size and length). It uses WebGL to draw graphs
fast. Users can import graph data from CSV, GEXF, and TSV
files.

Authors in [23] developed a web-based application to
visualize detailed information of transportation networks
for mobility analytics by exploiting reachability maps. It is
powered by GLSL.

Urban Network Analysis (UNA) [24] is a full-fledged
toolbox that can be used to visualize spatial networks, as well
as compute network measurements. It is provided as an
extension for ArcGIS and Rhinoceros 3D. Support for GPU
acceleration is not explicitly mentioned in the paper nor
webpage. Nonetheless, given that UNA is an extension, GPU
acceleration support could be provided through ArcGIS or
Rhinoceros 3D.

B. OPEN TOOLS
The following are tools that are made available openly
through code repositories across the web. We limited our
review on programming libraries that are still active, that
show the aforementioned mentioned features, or with an
associated programming library. For the sake of comparison
with the library reported in this paper, we gave priority to
JavaScript and Python libraries. Still, we also reviewed the
widely-used Gephi tool, which is Java-based.

Folium6 is an open-source Python tool that allows users
to visualize data on an interactive Leaflet.js map. Users can
zoom in or click on the map to analyze the geo-referenced
data.

OSMnx [5], [6] is an open-source Python library to easily
download, visualize, and analyze urban street networks.
It is built upon three widely used Python libraries, namely

6https://github.com/python-visualization/folium

VOLUME 11, 2023 121145



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

GeoPandas, NetworkX, and Matplotlib. It allows the user to
extract street data from OSM for different transport modes
such as walking, cycling, and driving with a single line of
code. OSMnx can also visualize isochrone maps.

Cytoscape [25] is an open-source graph visualization
tool originally developed for biological network analysis.
Cytoscape provides visualization functions that make it
easy for researchers to interactively analyze complex graph
datasets. However, it doesn’t scale to high-volume graphs.
Nonetheless, it supports offloading computationally intensive
processing on a GPU, multi-core CPU, or multi-processor
card by using OpenCL.

Gephi [2] is an open-source visualization tool for users
who seek to generate static visualizations of graphs. It is
a desktop application that supports a wide catalog of plug-
ins. It is simple to use for beginners. Also, it makes it easy
to create CSV files from the network’s data. Graphs can be
exported to a variety of formats. It is powered by OpenGL.
Gephi provides the Gephi Toolkit,7 a standalone Java
library that programmers can use to generate visualizations
programmatically.

Anvaka’s city-roads8 is an open-source visualization web
tool written in JavaScript that extracts data fromOSM to draw
all the streets within a city. It is powered by WebGL.

Sigma.js9 is an open-source JavaScript library that
supports HTML canvas and WebGL renderers for graph
visualization, as well as mouse and touch support. Thanks to
its plug-in architecture, the library is extensible. It can import
Gephi graphs in GEXF format.

VivaGraphJS10 is an open-source JavaScript library that
supports WebGL, Canvas, and SVG renderers for graph
visualization. It is built on top of the ngraph11 graph
algorithms library.

ReGraph12 is a commercialWebGL-powered React library
for graph visualization by Cambridge Intelligence. It imple-
ments two visualization components: a chart and a time bar.
It can render graphs on top of Leaflet.js web maps. Other
geospatial features supported are geo-fencing, overlays, and
multiple coordinate reference systems.

Ogma13 is a commercial graph visualization JavaScript
library by Linkurious. Ogma is powered by WebGL, but it
also supports HTML5, Canvas, and SVG renderers. Inserting
a custom UI on top of Ogma is possible. Geographical mode
allows the programmer to display the graph on top of a web
map from different map providers.

G614 is a graph visualization JavaScript library. It supports
drawing polylines for edges. However, it does not support

7https://gephi.org/toolkit/
8https://github.com/anvaka/city-roads
9http://sigmajs.org/
10https://github.com/anvaka/VivaGraphJS
11https://github.com/anvaka/ngraph
12https://cambridge-intelligence.com/regraph/
13https://doc.linkurio.us/ogma/latest/
14https://g6.antv.vision/en

rendering graphs on top of maps. GPU acceleration is
supported for computing graph layouts.

El Grapho15 is an open-source JavaScript library for
graph visualization that exploits GLSL shaders for quickly
generating graph renderings of large graphs. The rendered
graphs can be zoomed and panned. It supports multiple
graph layout algorithms. Graph renderings in El Grapho are
interactive.

ngraph.pixel16 is an open-source JavaScript library by the
creator of city-roads for visualizing non-road graphs. As city-
roads, ngraph.pixel is powered byWebGL. Unlike city-roads,
ngraph.pixel allows the programmer to listen to graph change
events.

react-force-graph17 is an open-source WebGL-powered
library for graph visualization. react-force-graph is imple-
mented as a React library. Its graph renderer is based on
ShaderMaterial from the Three.js 3D JavaScript library.18

It supports both 2D and 3D graph rendering.

C. TOOLS WITH DASHBOARD SUPPORT
The following are graph visualization tools that provide some
integration with dashboard visualization frameworks.

Cytoscape.js19 is a JavaScript library for visualizing and
interacting with graphs. It provides a rich set of features
and APIs for creating graph visualizations, performing
graph analysis, and implementing custom graph algorithms.
Cytoscape.js allows the creation and manipulation of nodes
and edges, apply various layout algorithms, customiz-
ing visual styles, and the handling of user interactions.
Cytoscape.js can be integrated into Dash dashboards by
exploiting the Dash Cytoscape component.20 It does not
provide WebGL support.

KeyLines21 is a commercial JavaScript toolkit for visualiz-
ing and interacting with network and graph data. It is powered
by WebGL. Since it is neither free nor open-source, users
must purchase a license to use it. It supports events to react to
user actions such as mouse clicks and drag-and-drop. Kibi,
now known as Kibana, is an open-source data exploration
and visualization platform primarily built for Elasticsearch.
Kibana provides its own set of visualization components
and plugins for creating dashboards and exploring data.
KeyLines visualizations can be integrated into a Kibi
dashboard by utilizing custom development and integration
techniques. This may involve embedding KeyLines visu-
alizations within Kibana’s dashboard panels or incorpo-
rating KeyLines as a separate component within a Kibi
dashboard.

Kepler.gl is an open-source geospatial data visualization
library. Kepler.gl has the ability to display millions of data

15https://www.elgrapho.com/
16https://github.com/anvaka/ngraph.pixel
17https://github.com/vasturiano/react-force-graph
18https://threejs.org/
19https://js.cytoscape.org/
20https://dash.plotly.com/cytoscape
21http://www.keylines.com

121146 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

points representing numerous trips and perform real-time
spatial aggregations by exploiting WebGL. By presenting
geospatial data within a unified interface, Kepler.gl enables
users to validate concepts and extract insights from these
visualizations. Users have the flexibility to visualize spatial
datasets with various map layers and explore the data through
filtering, animation, and aggregation. The Kepler.gl Tableau
extension integrates a Kepler.gl map visualization directly
into the Tableau Desktop App, allowing users to interact with
the map using the same user interface found in the Kepler.gl
demo app. Additionally, the map can be configured to interact
with other Tableau charts.

Graphistry is a commercial graph-based analysis tool.
It supportsWebGL acceleration and provides a Python library
called PyGraphistry22 which acts as a client to extract,
transform, and load graphs into Graphistry. An alternative
Graphistry client is the GraphistryJS JavaScript library.23

Graphistry provides the graph-app-kit,24 which is a toolkit
designed to help build custom graph analytics applica-
tions and dashboards. More specifically, the graph-app kit
provides integration with a dashboard environment based
on the Streamlit library that can be deployed on the
cloud. graph-app-kit provides a set of reusable components
and utilities to assist with the integration of Graphistry’s
graph visualization and analysis capabilities into dashboard
applications.

D. DISCUSSION
Table 1 shows a comparison of the discussed network
visualization tools and academic works in terms of the
following features: 1) programming language (for libraries),
2) support for polyline drawing for edges, 3) support for
rendering graphs on top of a map layer, 4) support for
GPU-accelerated rendering, 5) support for programmable
interactivity, 6) support for a timeline and 7) support for
integration with a dashboard framework. We believe that
these are the features a street network visualization tool or
library should possess to make it useful for real-world urban
street analysis.

As shown in Table 1, to the best of our knowledge, Dash
Sylvereye is the only tool written for Python that generates
street network visualizations that can draw atop web tile
maps, that supports programmable user interactivity, that
exploits hardware acceleration, and, most importantly, that is
designed from the ground up to be compatible with a larger
dashboard visualization framework.

When ignoring the target programming language,
Kepler.gl is the one tool that holds the most similarities
with Dash Sylvereye’s feature set. However, unlike Dash
Sylvereye, Kepler.gl is not written with dashboard integration
as one of its core features.

22https://github.com/graphistry/pygraphistry
23https://github.com/graphistry/graphistry-js
24https://github.com/graphistry/graph-app-kit

IV. DASH SYLVEREYE DESIGN
A. REQUIREMENTS
We aim to provide a flexible and accessible tool that allows
for the visualization of large road networks with associated
multivariate data on commodity systems. This aim involves a
series of design requirements:

• R1. Support for polyline drawing on top of web tilemaps.
An edge in a road network is defined as a sequence
of coordinates that represent its shape in the actual
geography. Visualizations should be able to show edges
as a sequence of lines given the sequence of coordinates.
Also, the road network should be rendered on top of
an interactive web tilemap such as those provided by
Mapbox or OSM, which allows the user to navigate
through the map by panning and zooming.

• R2. Support for markers. Street network visualization
is useful for practical applications insofar as it allows
for the graphical representation of events that happen
around the street network itself, such as traffic warnings,
car accidents, and bottleneck spots, as well as places
of interest (POI). A common practice in the industry to
represent such information in products such as Google
Maps and Waze is the use of markers. With this in
mind, a street network visualization tool should provide
support for drawing customizable markers on top of the
map and the road network.

• R3. Good frame rate for large street networks on
commodity hardware. The visualization tool should
provide an animation frame rate of 24 FPS25 or
higher, for street networks with thousands of nodes
and edges, to provide the user a responsive experience
when navigating through the visualization (zooming
and panning). Such responsive experience should be
achievable without the need for a high-end GPU,
on commodity hardware such as a laptop computer with
a commodity integrated graphics processor (e.g. Intel
HD Graphics and AMD Ryzen with Radeon graphics).

• R4. Styles for nodes, links, and markers. The tool should
enable the user to customize the visual styles (e.g. color
and size) of individual nodes, edges, and markers. Also,
it should facilitate the use of the data associated with the
street network for styling.

• R5. Interactions. The tool should allow the programmer
to listen for events triggered when the user interacts
with the elements of the visualization to define custom
behavior such as retrieving and showing the data of a
clicked node, or showing a popup with custom data on
top of a clicked marker.

• R6. Support for nodes, edges, and markers to store
arbitrary data. The tool should enable the user to
associate arbitrary data with individual elements of the
visualization. For example, edges obtained from OSM

25The standard minimum speed needed to experience realistic
motion [16].

VOLUME 11, 2023 121147



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

should be able to store their length, road type (bridge,
highway), maximum speed, etc.

• R7. Integration with a dashboard framework. Most
importantly, the tool should enable the street network
visualization to work natively with a well-known
dashboard framework to allow for the creation of
dashboard visualizations of multivariate urban data
that complement and enrich the street network
visualization.

Requirements R3, R4, and R5 have been previously iden-
tified by the authors in [12] as relevant for high-performance
complex graph visualization after interviewing experts in the
field and reviewing a series of state-of-the-art tools. Authors
in [14] also acknowledge that, when it comes to studying
urban networks with trajectory data, ‘‘the approach needs to
handle a large number of city streets and massive trajectory
data.’’ Regarding requirement R6, authors in [10] note that
‘‘node properties and edge weights play a fundamental role in
the field of multivariate network visualization,’’ in the context
of multifaceted graph visualization.

To address the aforementioned requirements, we devel-
oped Dash Sylvereye, a visual analytics library for generating
graph-based and interactive visualizations of large street
networks and their associated multivariate data. It offers the
following solutions to the identified requirements:

• R1. GPU-accelerated rendering of nodes to represent
junctions and street road polylines on top of Leaflet.js
interactive web maps.

• R2. GPU-accelerated rendering of fully customizable
markers. Popups with custom text are supported.

• R3. Nodes, edges, and markers are rendered with
WebGL for responsive and ‘‘smooth’’ navigation on
networks with thousands of elements on any graphics
adapter supported by modern web browsers.

• R4. Nodes, edges, and markers styles are customizable:
color, size/width, transparency, and visibility. In the case
of markers, the user can also customize the marker icon
by providing a custom image. Color scales are supported
and computed by the library.

• R5. Dash callback triggering when clicking individual
nodes, edges, and markers. The user can also listen for
changes in the map zoom level and any other property
of the visualization component.

• R6. Individual nodes, edges, and markers can be asso-
ciated with any arbitrary data. Functions are provided
to load not only street network topologies but the data
associatedwith them fromOSM. The library uses simple
list-of-dictionaries data structures for easy loading of
networks from any other source.

• R7. The library is implemented as a component of
the widely used Dash framework. This enables Dash
Sylvereye visualizations to be natively embedded into
custom dashboards. In this way, Dash Sylvereye allows
for the display of multivariate data with the help of the
plotting components available in Dash, such as bar plots,

line plots, and scatter plots. Dash integration also allows
the user to coordinate Dash Sylvereye visualizations
with a variety of Dash UI elements such as buttons,
sliders, dropdown lists, etc.

A fully working and complete version of Dash Sylvereye
for the Python programming language has been imple-
mented. The following sections describe its design and
implementation.

B. DESIGN
1) LAYERS
Dash Sylvereye is implemented as a Dash framework
component. A Dash Sylvereye visualization is made of four
layers:

1) Tile layer. Displays a zoomable and pannable web
map generated by joining dozens of individually
requested images in real-time. Dash Sylvereye is built
on top of Leaflet.js, enabling the user to select the
tilemap provider of his/her preference (e.g. OSM and
Mapbox).

2) Edge layer. Displays a clickable polygon for each edge
in the street network. It also displays a direction arrow
sprite for each edge. It can display edges with different
widths, transparency, and color.

3) Node layer. Displays a clickable sprite for each node in
the street network. It can display nodes with different
sizes, transparency, and color.

4) Marker layer. Displays a clickable sprite for each
marker. It can display markers with different sizes,
transparency, colors, and icons.

Fig. 1 shows screenshots of a Dash Sylvereye visualization
displaying the street network of Queretaro City, Mexico,
on top of an OSM tilemap, at different zoom levels and with
different layers activated. The user can navigate through the
visualization by panning and zooming in.

2) DATA LOADING
Dash Sylvereye provides various convenient routines for
loading street networks out of NetworkX graphs and
GraphML files generated by the OSMnx library. In this way,
the user can retrieve the street network of any city from
OSM for visualization with a simple query in a single line
of code.

3) STYLING
The style of individual nodes, edges, and markers is
customizable, allowing for the programmatic manipulation
of colors, sizes, transparency, and visibility of individual
graph elements. The user can also instruct Dash Sylvereye
to automatically scale the size, color, and transparency based
on values found in the street network’s data. When using
this coloring option, the user can decide whether to use a
predefined or a custom color scale. Markers can show custom
popupmessages and the default marker’s icon can be replaced
by a custom SVG image.

121148 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 1. Screenshots of a Dash Sylvereye visualization displaying the street network of Queretaro City, Mexico, on top of an OSM tilemap
layer, at different zoom levels and by showing different visualization layers. The visualized street network has 20,385 nodes and 49,137
edges.

4) INTERACTIVITY AND COORDINATION
As previously mentioned, nodes, edges, and markers are
clickable, allowing for the definition of custom behavior at

the user interaction. In addition, the callback architecture
of the Dash framework enables the interaction between a
Dash Sylvereye visualization and other Dash components.

VOLUME 11, 2023 121149



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

More specifically, any of the visual styles, the street network
data, and the street network itself can be updated at runtime
as a reaction to events emitted by other Dash components,
such as time sliders and buttons. In this way, for example,
the transparency and color of edges can be scaled to their
vehicle count at different points in time selected via a Dash
slider. This specific example would add support for the time
dimension to Dash Sylvereye, allowing for the visualization
of dynamic events in the street network.

5) SOFTWARE AND GPU ACCELERATION
Dash Sylvereye exploits synchronous software (CPU) and
GPU acceleration for displaying a large graph on a tiled web
map as follows.

Dash Sylvereye uses PixiJS to draw the network. In a
regular multimedia application (e.g. a videogame) written
with PixiJS the main job of the GPU is to draw each
frame efficiently to give the feeling of a smooth animation.
In Dash Sylvereye the drawing of a road network and
the markers represent the redrawing of a single frame of
such an animation. Thus, the GPU function is to render
that animation frame as fast as possible. To that end,
Dash Sylvereye uses Leaflet.PixiOverlay which allows to
draw over a Leaflet.js overlay with PixiJS, which in turn
uses WebGL for GPU-accelerated drawing of thousands of
objects.

Due to the use of Leaflet.PixiOverlay, the GPU acceler-
ation is involved when: (1) drawing the road network and
markers for the first time and (2) redrawing the road network
and markers after the user has interacted with it. More
specifically, drawing/redrawing (and thus GPU acceleration)
is triggered at three specific times:

1) At startup (first draw).
2) After panning the map, i.e. after releasing the left

mouse button after panning.
3) After panning themap, i.e. after zooming in or zooming

out.

The rest of the time (i.e. during the panning and
zooming animations) the CPU handles the drawing work with
software acceleration since the road network was already
rendered.

C. SOFTWARE STACK
The Dash Sylvereye library is built on top of the following
open-source JavaScript and Python libraries:

JavaScript libraries:

• PixiJS26: Cross-device 2D rendering library accelerated
by WebGL for creating interactive graphics on web
browsers. It acts as an abstraction layer for the
WebGL API.

• Leaflet.js27: Mapping library for rendering interactive
tiled web maps hosted on public servers with (optional)

26https://www.pixijs.com/
27https://leafletjs.com/

tiled overlays. Supports HTML5 and CSS3. It can create
interactive layers.

• Leaflet.PixiOverlay28: Overlay class for Leaflet.js for
WebGL-accelerated drawing on top of tiled web maps
using PixiJS.

• Chroma.js29: Library for computing color conversions
and color scales in the web browser.

• JSTS30: Library of spatial predicates and functions for
processing geometries in web browsers. It is a JavaScript
port of the JTS Java library.

• RBush31: Library for 2D spatial indexing of points and
rectangles in web browsers. It is built around a custom
R-tree data structure with bulk insertion support.

• React.js: Component-driven front-end library for build-
ing UI components maintained by Facebook.

• React Leaflet32: Bindings between React.js and
Leaflet.js. Exposes Leaflet.js layers as React compo-
nents.

Python libraries:

• Plotly Dash: User interface library for creating
data-driven web applications around dashboard visual-
izations entirely in Python.

• NetworkX33: Social Network Analysis library for net-
work reading, creation, generation, manipulation, mea-
suring, and visualization.

• Shapely34: Library for manipulating geometric objects
in the Cartesian plane.

Fig. 2 shows the library stack used to develop Dash
Sylvereye. Leaflet.js provides a layer of tiled web maps
as well as zooming and panning capabilities, whereas the
PixiJS library provides WebGL-powered street network
drawing primitives (polygons and sprites). This is done by
using Leaflet.PixiOverlay which provides a Leaflet.js overlay
where PixiJS can draw.

Dash Sylvereye also makes use of other third-party
JavaScript libraries, such as JSTS for defining edge-hit
polygons, RBush for efficiently finding edge-hit polygons
that have been clicked by the user, and Chroma.js for
computing color scales for edges, nodes, and markers.

React Leaflet is used to bring everything together: the
Leaflet.js map, the tilemap layer, and the road network
visualization layer that exploits Leaflet.PixiOverlay. All these
elements are encapsulated into the SylvereyeRoadNetwork
React Component. The React component is then wrapped
to produce the SylvereyeRoadNetwork Dash component by
using the toolchain provided by Dash.

On the Python side, Dash Sylvereye network loading
routines make use of NetworkX and Shapely, enabling Dash

28https://github.com/manubb/Leaflet.PixiOverlay
29https://gka.github.io/chroma.js/
30https://bjornharrtell.github.io/jsts/
31https://github.com/mourner/rbush
32https://react-leaflet.js.org/
33https://networkx.org/
34https://github.com/Toblerity/Shapely

121150 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 2. Stack of the main libraries used to build the Dash Sylvereye library. The diagram can be read in the top-down
direction as follows: the library in a given layer uses the libraries in the layer located immediately below. The boxes in blue
are Python libraries. Boxes in yellow are JavaScript libraries.

Sylvereye to import street networks from the OSMproject via
OSMnx or from OSMnx-generated GraphML files.

V. USAGE EXAMPLE
This section presents a simple usage example to illustrate
what programming with Dash Sylvereye looks like. The
example is separated into three parts, namely initialization,
interactivity, and styling.

In Fig. 3, the street network of Queretaro City is retrieved
from OSM with the OSMnx library and then transformed
to Dash Sylvereye’s list-of-dictionaries data structure by
using the utility function load_from_osmnx_graph().
Dash Sylvereye also provides the function
load_from_osmnx_graphml() to load a street network
from a graph file in GraphML format generated by OSMnx.

To insert a street network visualization in a Dash
dashboard, the programmer only has to insert an instance
of the class SylvereyeRoadNetwork in the dashboard
application layout. The street network topology (and data)
is provided via the nodes_data and edges_data
parameters. Apart from the road network, the user can provide
information about the map and the web tile layer by using an
interface similar to that of Leaflet.js.

Table 2 shows the list of currently supported properties
in the SylvereyeRoadNetwork class. These properties
allow the user to set up the tilemap (e.g. tilemap provider and
attribution), the road network data (e.g. nodes and edges),
node/edge/marker style options, the layer visibility, and the
map itself (e.g. zoom level and center). Recall that any of
these parameters can be updated at runtime, triggering the
automatic update of the visualization when changed. For
example, if the user wants to update the street network
topology, it is enough to update the nodes_data and the
edges_data parameters in a callback.
Fig. 4 shows an example of the use of callbacks for

reacting to user interaction by using the clicked_node
and clicked_edge callback parameters listed in Table 2.
Every time the user clicks a node, a callback provided by
the programmer is triggered to update an H2 Dash label

component with the node’s coordinates. Likewise, every time
the user clicks an edge the provided callback is triggered to
update an H2 label component label with the edge’s polyline
coordinates.

The programmer can fine-tune the visuals of the street
network visualization on an element-by-element basis by
filling option dictionaries available for nodes, edges, and
markers. Table 3 lists the currently supported style option
methods. The user only needs to: 1) get an options dictionary
pre-filled with default settings, 2) customize the options
dictionary by selecting and setting up one or more visual
option methods listed in Table 3, and 3) pass the dictionary
to the Dash Sylvereye component. Again, if the user passes
an updated options dictionary to Dash Sylvereye at runtime,
the visualization will update accordingly in an automatic
fashion.

In Fig. 5, the transparency level (alpha) of all nodes is
set to 0.25 to make them translucent. Also, the size method
is set to NodeSizeMethod.SCALE in order to set the
diameter of all nodes in proportion to their weight. As for
the visuals of edges, both the edge width and edge color
methods are also set to EdgeWidthMethod.SCALE and
EdgeColorMethod.SCALE, respectively, in order to be
scaled in proportion to edge weights. Fig. 6 shows the
resulting web dashboard when putting together the code
provided in Figs. 3-5.

VI. ANIMATION PERFORMANCE ASSESSMENT
We quantitatively assessed how ‘‘responsive’’ is to the
user interaction with Dash Sylvereye visualizations on a
commodity computer for a set of OSM street networks of
varying sizes when exploiting software acceleration.

Panning35 a web map is an important operation since,
in our case, it lets the user navigate the road network and
explore its elements. We, therefore, assessed how smooth
is the panning of a network visualization by measuring the

35Panning consists of holding the left button of the mouse and moving the
mouse to navigate on the map.

VOLUME 11, 2023 121151



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 3. Example showing how to embed a SylvereyeRoadNetwork component in a minimal Dash dashboard
to display a street network obtained with OSMnx.

FIGURE 4. Example showing how to use dash callbacks to react to mouse clicks on the street network’s nodes
and edges.

121152 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 5. Example showing how to configure the visual styles of nodes (transparency and size)
and edges (width and color scale) in a dash sylvereye visualization.

FIGURE 6. Screenshot of the resulting dashboard example after putting together the code snippets shown in Figs. 3-5.

screen refresh rate of a web page in terms of the animation
frames per second (FPS). The CPU time and frame duration
can offer insights for explaining the observed FPS.

We conducted the assessment on a commodity computer
with a dual-core AMD A9-9425 processor at 3.1 GHz, with
an Integrated AMD Radeon R5 (Stoney Ridge) GPU, and
7.2 GiB in RAM. The computer was running Linux Ubuntu
18.04.4 LTS 64-bits. Note that the processor used in the

experiments is a mid-end mobile CPU with an integrated
GPU that can be found in budget laptops.

The assessmentmethodology consisted of twomain stages.
In the first stage, we retrieved the data of street networks
from OSM by running OSMnx with the query strings listed
in Table 4 for four cities. We used the OSM website to get
initial map center coordinates to open the test dashboards and
then choose the final map centers and zoom levels. Final map

VOLUME 11, 2023 121153



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

TABLE 2. The SylvereyeRoadNetwork Dash component supports an array of properties classified as follows: 1) data properties, 2) (style) option
properties, 3) show/hide properties, map properties, 4) tile layer properties, and 5) callback properties. All but the callback properties are provided and
updated by the user to set up and tune the street network visualization. Callback properties, on the other hand, are updated by Dash as a reaction to
user-click interaction.

TABLE 3. Style methods available for nodes, edges, and markers. For example, there are three color methods for nodes: NodeColorMethod.DEFAULT,
NodeColorMethod.SCALE, and NodeColorMethod.CUSTOM. DEFAULT methods use the predefined settings provided by Dash Sylvereye, which can be
customized. SCALE methods, on the other hand, scale visual style values in proportion to a weight field. CUSTOM methods allow styling based on the data
associated with individual nodes, edges, and markers. For the case of visibility methods, ALWAYS instructs Dash Sylvereye to turn the visibility of all
elements on. Some other style methods are more specific to a given kind of element, such as the ORIGINAL method for marker icons, which makes Dash
Sylvereye use the original color of the SVG image specified as an icon.

centers and zoom levels were chosen in such a way that the
whole street network was visible.

In the second stage, we conducted the following experi-
ment for each street network. We used the performance tab of
the Chrome DevTools console to record the dashboard while
manually panning the whole visualization by performing
circular dragging movements. We used Google Chrome
v85.0.4183.121.

Next, we manually registered the frame duration, frame
FPS, and frame CPU time of 31 recorded animation
frames from the Chrome DevTools performance tab to
obtain statistically valid results. We repeated this experiment
10 times for each street network.

Fig. 7 shows the median frame FPS, duration, and CPU
time for each experiment and each city. Fig. 8 shows the
median values when merging all experiments for each city.
We use the median because it is less sensitive to outliers than
the average. Cities are sorted from smaller to larger from left
to right.

Figures show that lower FPS values are associated with
larger CPU times and frame durations. This might be
explained by the fact that the more the CPU has to work
the more the duration of an animation frame, negatively
impacting the FPS in that animation frame.

From the FPS perspective, figures show that the larger
the city the lower the FPS, ranging from around 60 FPS
for the Alameda city to around 10 FPS for the Beijing
city. Nonetheless, Queretaro city, with 20k nodes and 49k
edges, shows an FPS of above 24 FPS, suggesting that Dash
Sylvereye can smoothly handle the panning of networks with
dozens of thousands of nodes and edges on the experiment
machine.

VII. ANIMATION PERFORMANCE COMPARISON
We also present a performance comparison between Dash
Sylvereye and other state-of-the-art visualization libraries
that can render large road networks: Kepler.gl and city-roads.
We quantitativelymeasured and compared the responsiveness

121154 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

TABLE 4. Details of the OSM street networks and the tilemap configuration used for the animation performance assessment.

FIGURE 7. Dash Sylvereye’s median frame FPS, duration, and CPU time for each experiment and each city. Cities are sorted from smaller to
bigger from left to right. Bars with the same color across plots correspond to the same experiment.

FIGURE 8. Dash Sylvereye’s median frame FPS, duration, and CPU time when merging all experiments for each city. Cities are sorted from
smaller to bigger from left to right.

to the user interaction of the three tools on a commodity
computer for the Alameda, Enschede, Queretaro, and Beijing
road networks.

The hardware setup and the two-stage methodology were
the same as in Section VI. We conducted the 10 experiments
for each tool sequentially and continuously in time, without
interruptions (no computer reset, no login-logout, etc.) to
get numbers as accurate as possible. There were no other
apps and tabs other than the web browser was open. The
full city map was always visible during the movements in
all experiments. All circular movements were performed
manually, and clockwise in all experiments. We used
the same manual movements with regard to speed and
diameter as humanly possible. The center and zoom level
in Kepler.gl and Dash Sylvereye were adjusted program-
matically whereas for city-roads we had to set the center
and zoom level manually. For this experimentation, we used
Google Chrome v87.0.4280.88 on Ubuntu 20.04.1 LTS
(64-bit).

Fig. 9 shows the median frame FPS, duration, and CPU
time for each experiment and each city for the three
tools. Fig. 10 shows the median values when merging all
experiments for each city for the three tools.

Figures show that, for the three tools, lower FPS values
are associated with larger CPU times and frame durations.
However, Figures also show that, unlike Dash Sylvereye,
Kepler.gl and city-roads seem unaffected by the road network
size. This suggests that these tools might exploit hardware
acceleration during the panning process. In contrast, recall
that Dash Sylvereye exploits hardware acceleration only after
panning (and zooming) for redrawing.

Nonetheless, note in Fig. 9 that Kepler.gl showed FPSs
lower than 10 in one experiment for Alameda, one experiment
for Enschede, and two experiments for Queretaro. In contrast,
for Alameda, Enschede, and Queretaro, Dash Sylvereye’s
FPS was higher than 20 whereas the duration and CPU
remained low. For the largest city, Beijing, Dash Sylvereye’s
FPS was higher than 20 for three experiments.

VOLUME 11, 2023 121155



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 9. Median frame FPS, duration, and CPU time shown by Dash Sylvereye, Kepler.gl, and city-roads on each experiment and each city.
Cities are sorted from smaller to bigger from left to right. Bars with the same color across plots correspond to the same experiment.

FIGURE 10. Dash Sylvereye’s median frame FPS, duration, and CPU time shown by Dash Sylvereye, Kepler.gl, and city-roads when merging all
experiments for each city. Cities are sorted from smaller to bigger from left to right.

Overall, Figures 9 and 10 show that Dash Sylvereye’s
performance was inversely proportional to the road network
size. However, Fig. 9 also shows that Dash Sylvereye
FPS outperformed Kepler.gl in three out of four cities
(Alameda, Enschede, and Queretaro), whereas it outper-
formed city-roads in one out of four cities (Alameda).
Additionally, as city-roads, Dash Sylvereye showed FPSs
above 24 for three out of four cities (Alameda, Enschede, and
Queretaro). With these results, Dash Sylvereye showed to be

competitive when compared to both Kepler.gl and city-roads
for road networks with dozens of thousands of nodes and
edges.

VIII. DASHBOARD EXAMPLE: QUERETARO CITY TRAFFIC
SIMULATION
This section presents the design and implementation of
an example dashboard application written with the Dash
framework that exploits Dash Sylvereye for the analysis

121156 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 11. Layout of the dashboard made with Dash and the Dash Sylvereye library for analyzing a SUMO traffic simulation. Labels in orange are the
Dash component identifiers referred to in Fig. 12.

VOLUME 11, 2023 121157



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 12. Callback graph of the SUMO simulator dashboard example, as generated by the Dash Dev
Tools. Gray boxes represent Dash components. Labels on top of gray boxes are the Dash component
identifiers. Green rounded boxes represent callback functions. Blue boxes represent the input and output
properties. Solid gray arrows pointing to green rounded boxes come from input callback parameters.
Solid blue arrows going out of green rounded boxes point to output callback parameters. Dashed gray
arrows pointing to green circles represent states.

of postmortem simulation data on the street network of
Queretaro City, Mexico. For simulations, we made use of the
SUMO urban traffic simulator [4], a well-known simulator in
the field of urban analysis.

The purpose of this section is twofold. Firstly, we intend to
better illustrate the usefulness of Dash Sylvereye in assisting
a traffic analyst to observe how traffic bottlenecks build up
with time in a busy transportation area made of thousands of
street roads and junctions through a dashboard visualization
centered around Dash Sylvereye. Secondly, we intend to
offer the reader more details about how the Dash Sylvereye
component can be integrated into a non-trivial dashboard
by coordinating it with other charts and UI controls for
multivariate data visualization.

A. STREET NETWORK RETRIEVAL AND SIMULATION
A street network from the center of the metropolitan area
of Queretaro City, Mexico, was manually selected and
downloaded in OSM format by taking advantage of the
export features of the OSM website. The resulting street
network had 8,713 nodes and 17,099 edges. The OSM
network was converted to SUMO’s XML format by using
SUMO’s netconvert tool. Finally, the SUMO XML network

was converted to Dash Sylvereye’s list-of-dictionaries format
with the help of the Sumolib Python library.36

To create synthetic vehicle trip data, a simulation was
run by using SUMO as follows: random trips for vehicles
were generated with SUMO’s randomTrips.py script.
A SUMO simulation was run for 3,500 timesteps with the
--fcd-output flag to save the Floating Car Data (FCD)
of all timesteps in XML format. The produced FCD data was
then processed to get CSV files that could be conveniently
imported into the Dash dashboard application. CSV files
included the vehicle count for edges at each timestep, the
speed of vehicles at each timestep, total vehicle counts for
each timestep, and average vehicle speed at each timestep.

B. LAYOUT DESIGN
Recall from Section II that a Dash dashboard application is
composed of two parts: 1) the layout which describes what
the application looks like and 2) the callbacks that define the
interactivity of the application. Fig. 11 shows a screenshot of
the resulting dashboard layout.

The dashboard includes a Dash Sylvereye visualiza-
tion as its main element (sylvereye-roadnet). The
user can select which layers are visible through the

36https://sumo.dlr.de/docs/Tools/Sumolib.html

121158 VOLUME 11, 2023



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

FIGURE 13. Radiography-like visualizations centered at the ‘‘Alameda Hidalgo’’ park at three arbitrarily selected but consecutive simulation
time steps. The visualization style was configured through the GUI components of the SUMO traffic dashboard developed with Dash and the
Dash Sylvereye library. Note that the large blue arrows are street roads rendered by Dash Sylvereye (images were not edited).

show-layers-checklist checklist. Markers are dis-
played at either the middle of edges with the highest vehicle
counts or atop the slowest vehicles, depending on the option
selected by the user in the markers-at-select selection
list.

The user can also select which visual attributes of edges
(transparency, width) to scale in proportion to the edge vehi-
cle count through the scale-by-checklist checklist.
The dashboard shows a slider to allow the user to select the

desired simulation time to display (time-slider). When
the user changes the simulation time, a callback is triggered
to update:

• The network edges, width, and transparency.
• The position and the popup texts of markers.
• A bar plot of the top-10 edges with the highest vehicle
count in the network (top-edges-graph)

• A bar plot of the speed for the top-10 slowest vehicles
(top-vehicles-graph)

VOLUME 11, 2023 121159



A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

When the user clicks either an edge, a node, or a
marker, data about the clicked element is shown in
the label at the top-right corner (clicked-edge-h5).
Finally, the dashboard also shows a line plot showing
the vehicle count over time and a line plot showing
the average vehicle speed over time. However, these two
plots are static in the sense that they do not need to
change as a result of the interaction of the user with the
dashboard.

C. CALLBACK DESIGN
Fig. 12 shows the callback graph of the SUMO simulator
dashboard example, as generated by the Dash Dev Tools.
The application contains four main callbacks, callbacks A
to D, which together define the interactivity of the whole
application.

Callback A triggers when either:

1) The value of markers-at-select changes its
value, in which case the callback outputs a new set of
markers.

2) The time-slider changes its value, in which case
the callback updates the markers and both bar plots
top-vehicles-graph and top-edges-graph
to reflect the data at the new time step.

Callback B triggers when any of the click attributes of the
Dash Sylvereye component changes its value as the result of
a user clicking on a node, an edge, or a marker. The callback
updates the label clicked-edge-h5 with info about the
clicked element.

Callback C triggers when show-layers-checklist
changes its value because the user selected a different set of
layers to show. The callback updates the show/hide properties
of the Dash Sylvereye component accordingly.

Finally, callback D triggers when the component
scale-by-checklist changes its value because the user
selected different scale options. The callback updates the
edge_options attribute of the Dash Sylvereye component
accordingly to update the edge’s alpha and width style
methods.

D. VISUALIZATION INSIGHTS
Fig. 13 shows screenshots of the Dash Sylvereye com-
ponent at three arbitrarily selected simulation time steps.
The tilemap is centered at the ‘‘Alameda Hidalgo’’ park,
a centric place where traffic bottlenecks build up in real
life. Edges transparency and width were scaled to the
vehicle count by checking the corresponding checkboxes
in the dashboard. The map tile layer, as well as the
nodes and markers layers, were hidden by unchecking the
corresponding checkboxes. The result was a radiography-like
visualization of the vehicle traffic. The ‘‘radiography’’ in
Fig. 13 clearly shows that, even with random trips, vehicle
traffic builds up on the main street roads surrounding the
park.

IX. CONCLUSION
This paper presented Dash Sylvereye, a new Python library
for generating web-based visualizations of large street
networks, delivered as a component for the widely-used Dash
framework. To the best of our knowledge, Dash Sylvereye is
the first tool written for Python that generates street network
visualizations atopweb tilemaps that supports programmable
user interactivity, that is designed as a component of a
dashboard framework from the ground up, and that supports
WebGL. Dash Sylvereye can be combined with other Dash
UI and chart components to enable the development of
interactive dashboard visualizations around street network
data.

We showed that Dash Sylvereye can offer fast response
speeds (close to 60 FPS) for street networks with thousands
of edges. We also found Dash Sylvereye to be competitive
when compared to the state-of-the-art visualization libraries
Kepler.gl and city-roads for road networks with dozens of
thousands of nodes and edges. With the help of a dashboard
application example, we explored how Dash Sylvereye can
be utilized as a convenient tool for interactively analyzing
multivariate traffic data.

Visualization generation time is an important factor that
impacts the experience of the end-user. Even with WebGL
acceleration, we have observed that the visualization first
drawing and redrawing of very large graphs in Dash Sylver-
eye may take non-negligible time on a commodity system,
an overhead not present in other libraries like Kepler.gl and
city-roads. This overhead includes the time needed for the
generation of the graphics (sprites and polygons) of the street
network and the computation of hit polygons for edge click
detection. Future work includes methodologically assessing
visualization generation times on commodity computers and
evaluating optimization options.

Similar to other web-based visualization tools, one of
Dash Sylvereye’s main drawbacks is that the size of a street
network the library can handle is limited by the system’s
physical memory and the GPU memory capacity. In this
regard, an interesting research venue is to study efficient
graph coarsening algorithms for edge bundling that 1) allow
the tool to handle very large networks and 2) help the
researcher’s cognitive process of making sense of such
complex structures.

We have released Dash Sylvereye under an open-source
license,37 enabling anyone to use it for their specific street
network visualization needs.

REFERENCES
[1] T. Anderson and S. Dragićević, ‘‘Complex spatial networks: Theory and

geospatial applications,’’ Geography Compass, vol. 14, no. 9, Sep. 2020,
Art. no. e12502, doi: 10.1111/gec3.12502.

[2] M. Bastian, S. Heymann, and M. Jacomy, ‘‘Gephi: An open source
software for exploring and manipulating networks,’’ in Proc. Int. AAAI
Conf. Web Social Media, Mar. 2009, vol. 3, no. 1, pp. 361–362.

37https://github.com/observatoriogeo/dash-sylvereye

121160 VOLUME 11, 2023

http://dx.doi.org/10.1111/gec3.12502


A. Garcia-Robledo, M. Zangiabady: Dash Sylvereye: A Python Library for Dashboard-Driven Visualization

[3] S. Batt, O. R. Harmon, and P. Tomolonis, ‘‘Learning tableau: A data
visualization tool,’’ J. Econ. Educ., vol. 51, nos. 3–4, pp. 317–328, 2020.
[Online]. Available: https://doi.org/10.1080/00220485.2020.1804503

[4] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz,
‘‘SUMO—Simulation of urban mobility—An overview,’’ in Proc.
3rd Int. Conf. Adv. Syst. Simulation, Barcelona, Spain, 2011, pp. 55–60.

[5] G. Boeing, ‘‘OSMnx: A Python package to work with graph-theoretic
OpenStreetMap street networks,’’ J. Open Source Softw., vol. 2, no. 12,
p. 215, Apr. 2017, doi: 10.21105/joss.00215.

[6] G. Boeing, ‘‘OSMNX: New methods for acquiring, constructing,
analyzing, and visualizing complex street networks,’’ Comput., Env-
iron. Urban Syst., vol. 65, pp. 126–139, 2017. [Online]. Available:
https://doi.org/10.1016/j.compenvurbsys.2017.05.004

[7] D. Fang, M. Keezer, J. Williams, K. Kulkarni, R. Pienta, and D. H. Chau,
‘‘Carina: Interactive million-node graph visualization using web browser
technologies,’’ in Proc. 26th Int. Conf. World Wide Web Companion, 2017,
pp. 775–776.

[8] T. Fujiwara, J. Zhao, F. Chen, and K.-L.Ma, ‘‘A visual analytics framework
for contrastive network analysis,’’ in Proc. IEEE Conf. Vis. Anal. Sci.
Technol. (VAST), Oct. 2020, pp. 48–59.

[9] S. Gray, O. O’Brien, and S. Hügel, ‘‘Collecting and visualizing real-
time urban data through city dashboards,’’ Built Environ., vol. 42, no. 3,
pp. 498–509, Oct. 2016, doi: 10.2148/benv.42.3.498.

[10] S. Hadlak, H. Schumann, and H. Schulz, ‘‘A survey of multi-faceted graph
visualization,’’ in Proc. Eurograph. Conf. Vis., 2015, pp. 1–20.

[11] M. Haklay and P. Weber, ‘‘OpenStreetMap: User-generated street maps,’’
IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18, Oct. 2008, doi:
10.1109/mprv.2008.80.

[12] D. Han, J. Pan, X. Zhao, and W. Chen, ‘‘NetV.Js: A web-based
library for high-efficiency visualization of large-scale graphs and net-
works,’’ Vis. Informat., vol. 5, no. 1, pp. 61–66, Mar. 2021, doi:
10.1016/j.visinf.2021.01.002.

[13] B. Hayes. (2020). Usage of Programming Languages by Data Scientists:
Python Grows while R Weakens. Accessed: Apr. 30, 2021. [Online]. Avail-
able: https://businessoverbroadway.com/2020/06/29/usage-of-programm
ing-languages-by-data-scientists-python-grows-while-r-weakens/

[14] X. Huang, Y. Zhao, C. Ma, J. Yang, X. Ye, and C. Zhang, ‘‘TrajGraph:
A graph-based visual analytics approach to studying urban network
centralities using taxi trajectory data,’’ IEEE Trans. Vis. Comput. Graph.,
vol. 22, no. 1, pp. 160–169, Jan. 2016, doi: 10.1109/TVCG.2015.
2467771.

[15] C. Jing, M. Du, S. Li, and S. Liu, ‘‘Geospatial dashboards for monitoring
smart city performance,’’ Sustainability, vol. 11, no. 20, p. 5648, Oct. 2019,
doi: 10.3390/su11205648.

[16] M. Kuperberg, M. Bowman, R. Manton, and A. Peacock, A Guide to
Computer Animation. Oxford, U.K.: Focal Press, 2002.

[17] S. Li, Z. Zhou, A. Upadhayay, O. Shaikh, S. Freitas, H. Park, Z. J. Wang,
S. Routray, M. Hull, and D. H. Chau, ‘‘Argo lite: Open-source interactive
graph exploration and visualization in browsers,’’ in Proc. 29th ACM Int.
Conf. Inf. Knowl. Manage., Oct. 2020, pp. 3071–3076.

[18] R. Matheus, M. Janssen, and D. Maheshwari, ‘‘Data science empowering
the public: Data-driven dashboards for transparent and accountable
decision-making in smart cities,’’ Government Inf. Quart., vol. 37, no. 3,
Jul. 2020, Art. no. 101284, doi: 10.1016/j.giq.2018.01.006.

[19] F. Mwalongo, M. Krone, G. Reina, and T. Ertl, ‘‘State-of-the-art report
in web-based visualization,’’ Comput. Graph. Forum, vol. 35, no. 3,
pp. 553–575, Jun. 2016, doi: 10.1111/cgf.12929.

[20] A. Sakib, S. Ismail, H. Sarkan, A. Azmi, and O. Yusop, ‘‘Analyzing traffic
accident and casualty trend using data visualization,’’ inProc. IRICT, 2018,
pp. 84–94.

[21] A. Sarikaya, M. Correll, L. Bartram, M. Tory, and D. Fisher, ‘‘What
do we talk about when we talk about dashboards?’’ IEEE Trans.
Vis. Comput. Graph., vol. 25, no. 1, pp. 682–692, Jan. 2019, doi:
10.1109/TVCG.2018.2864903.

[22] A. Saska, D. Tichy, R.Moore, A. Rasquinha, C. Akdas, X. Zhao, R. Fabbri,
A. Jeličić, G. Grover, H. Jotwani, M. Shadab, R.M. Helikar, and T. Helikar,
‘‘ccNetViz: A WebGL-based JavaScript library for visualization of large
networks,’’Bioinformatics, vol. 36, no. 16, pp. 4527–4529, Aug. 2020, doi:
10.1093/bioinformatics/btaa559.

[23] A. Schoedon, M. Trapp, H. Hollburg, D. Gerber, and J. Döllner, ‘‘Web-
based visualization of transportation networks for mobility analytics,’’
in Proc. 12th Int. Symp. Vis. Inf. Commun. Interact., Sep. 2019,
pp. 1–5.

[24] A. Sevtsuk andM.Mekonnen, ‘‘Urban network analysis. A new toolbox for
ArcGIS,’’ Revue Internationale Géomatique, vol. 22, no. 2, pp. 287–305,
Jun. 2012, doi: 10.3166/rig.22.287-305.

[25] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker, ‘‘Cytoscape: A software
environment for integrated models of biomolecular interaction net-
works,’’ Genome Res., vol. 13, no. 11, pp. 2498–2504, Nov. 2003, doi:
10.1101/gr.1239303.

[26] Y. Zheng, W. Wu, Y. Chen, H. Qu, and L. M. Ni, ‘‘Visual analytics in
urban computing: An overview,’’ IEEE Trans. Big Data, vol. 2, no. 3,
pp. 276–296, Sep. 2016, doi: 10.1109/TBDATA.2016.2586447.

ALBERTO GARCIA-ROBLEDO received the
M.Sc. and Ph.D. degrees in computer science
from the Center for Research and Advanced
Studies, National Polytechnic Institute, Mexico.
He was a Tech Lead with the Geospatial Data
Center, Massachusetts Institute of Technology,
USA. Currently, he is a Conacyt Research Fellow
with the Center for Research in Geography and
Geomatics, Mexico. His current research interests
include HPC, big data, graph analytics, and visual
analytics.

MAHBOOBEH ZANGIABADY received the
Ph.D. degree in computer science from the Centre
for Research and Advanced Studies, National
Polytechnic Institute. She is currently a Lecturer
with the Design and Analysis of Communication
Systems (DACS) Group, University of Twente.
Her research interests include network virtu-
alization, QoS, resource management, machine
learning, and network functions virtualization,
software-defined networks (NFV/SDN).

VOLUME 11, 2023 121161

http://dx.doi.org/10.21105/joss.00215
http://dx.doi.org/10.2148/benv.42.3.498
http://dx.doi.org/10.1109/mprv.2008.80
http://dx.doi.org/10.1016/j.visinf.2021.01.002
http://dx.doi.org/10.1109/TVCG.2015.2467771
http://dx.doi.org/10.1109/TVCG.2015.2467771
http://dx.doi.org/10.3390/su11205648
http://dx.doi.org/10.1016/j.giq.2018.01.006
http://dx.doi.org/10.1111/cgf.12929
http://dx.doi.org/10.1109/TVCG.2018.2864903
http://dx.doi.org/10.1093/bioinformatics/btaa559
http://dx.doi.org/10.3166/rig.22.287-305
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1109/TBDATA.2016.2586447

