
E-Go Bicycle Intelligent Speed Adaptation
System for Catching the Green Light

Khalil Ben Fredj[0000−0002−5658−7352], Akhil Reddy
Pallamreddy[0000−0002−6419−3679], Geert Heijenk[0000−0002−1911−6324], Paul

Havinga[0000−0002−3399−1790], and Yanqiu Huang[0000−0003−0718−6322]

Centre for Networked Systems and Intelligence, University of Twente, Enschede,
7522NB, The Netherlands

{k.benfredj; a.r.pallamreddy; geert.heijenk; p.j.m.havinga;

yanqiu.huang}@utwente.nl

Abstract. The expanding growth of electric bikes in recent years under-
scores their increasing importance as a sustainable and eco-friendly mode
of transportation. With zero emissions and the ability to ease urban con-
gestion, e-bikes are becoming a pivotal solution in promoting greener
and more efficient commuting habits. However, signalized intersections
and frequent stops at traffic lights (TL) are considered uncomfortable
for cyclists. This article introduces a personalized and privacy-preserving
Intelligent Speed Adaption (ISA) system that helps cyclists adapt to
the required speed to catch the green light. In our system design, traffic
lights are augmented with Bluetooth Low Energy (BLE) beaconing de-
vices which allow connected e-bikes to get the remaining green light phase
duration, estimate the distance to the intersection, and assist the cyclist
to catch the green light when necessary. We address the speed adaption
problem as a convex optimization problem to ensure smooth and safe
acceleration. In addition, a fuzzy logic controller is used to control mo-
tor power to reach the recommended speed while considering the human
pedal power. We generate different scenarios with various initial veloci-
ties, time to red (TTR), slope of the road, and human pedal power to
evaluate the system’s performance. The results demonstrate that ISA im-
proves the probability of crossing the traffic light by about 77% compared
to the absence of speed adaptation.

Keywords: Smart e-bikes · Intelligent Speed Adaptation · Privacy Pre-
serving · Fuzzy Logic Control · Bluetooth Low Energy · RSSI distance
estimation · SPaT

1 Introduction

Bicycles are essential in our daily lives as a sustainable, affordable, and healthy
mode of transportation [7]. Cycling not only provides a viable alternative to
cars, reducing traffic congestion and air pollution, but also helps to improve
public health, reducing the risk of chronic diseases associated with a sedentary
lifestyle [11]. However, cycling in urban areas is inconvenient because the traffic
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infrastructure is designed primarily for cars [15]. Cyclists have prolonged waiting
times at traffic intersections due to TL [22]. In addition, they often have difficul-
ties in catching the green light because the time allotted for bicycles to cross an
intersection is much shorter than the time allocated to cars. As a result, cyclists
must be quick to start pedaling and often have to travel faster than a comfortable
pace to get through before the traffic light turns red.

Municipalities, researchers, and industry players have developed innovative
approaches to address this problem, such as sensor-based smart traffic lights and
smartphone application-based systems [1,4]. Worldwide, functioning smart traffic
light systems are available, particularly in The Netherlands, where the govern-
ment has installed intelligent traffic lights capable of communicating with vehicles
and navigation applications [2]. These smart traffic lights use reactive algorithms
and data from various sensors (radar, LiDAR, camera, pressing button, and in-
duction loop) to dynamically adjust signal phase and timing (SPaT) based on
the volume of vehicles/cyclists at intersections. However, these systems require
abundant infrastructure and lack personalization for safety and comfort.

In contrast, more personalized smart systems adapting to traffic lights rely on
smartphone Apps like “PrioBike,” “Schwung,” and “Enschede fietst app” [1,3,4].
These applications use green light time predictions and cyclists’ smartphone data
(position, direction, and speed) to offer speed recommendations. Third-party de-
velopers collect TL data from local agencies and analyze them alongside cyclists’
private data (GPS location, directions, speed) using time series prediction meth-
ods (e.g., LSTM and 1D-CNN). For example, to give a speed recommendation,
the Green Light Optimal Speed Advisory (GLOSA) system estimates the dis-
tance between the TL and the bicycle from the GPS location of the bicycle and
the location information received from the TL [24]. However, these systems have
limited availability based on data-sharing agreements and require continuous user
tracking for speed recommendations. While both sensor-based smart traffic lights
and smartphone application-based systems have shown promising results, there
is a need for a decentralized and anonymous local information-based solution.

In this work, the authors aim to address this limitation by considering dy-
namic expected velocities based on the distance to the traffic light, human pedal
power, road slope, and time-to-red (TTR), ensuring appropriate motor power
adjustments for efficient and safe cycling. This study establishes a personalized
and privacy-preserving intelligent system that allows cyclists to catch green lights
while maintaining comfort and safety. Usually, when cyclists approach the traffic
light and see that it is green, they try to accelerate to cross the intersection before
the TL turns red. However, they do not have information about the remaining
green time. Consequently, either they put an unnecessary effort and cross the
green light before it turns to red or the green phase duration is so short that
they end up violating the red light. Assisting the cyclist to safely accelerate to
the required speed when possible by catching the current green light phase will
ensure safety and comfort.

The main contributions of this work include the following:
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– This is the first work combining Bluetooth Low Energy (BLE) communication
with the fuzzy logic controller-based motor power control system to adapt
the bicycle speed for catching the green light.

– It formulates the speed adaptation problem as a convex optimization problem
and provides the optimal strategy for controlling motor power to catch the
green light while ensuring safety and comfort, which goes beyond the current
state-of-the-art.

– The system in this work dynamically updates and enhances the distance esti-
mates along the journey using a Kalman filter and the continuously received
beacons from the TL, which is simple and preserves users’ privacy compared
to GPS-based solutions.

The paper is organized as follows. Sec. II introduces related work on motor
power control and distance estimation methods. The system modeling and prob-
lem formulation are presented in Sec. III. In Sec. IV, we provide the proposed
speed adaptation system consisting of distance estimation and speed adaptation.
The experimental and numerical results are illustrated in Sec. V followed by the
discussion and future work in Sec. VI and conclusion in Sec. VII.

2 Related work

In this section, we present an overview of the present pinnacle of speed adapta-
tion techniques aimed at effectively catching the green light. The manipulation of
motor power in the bicycle’s mechanics on the one hand, and the accurate estima-
tion of distance between the e-bike and the traffic light on the other, constitute
the pivotal components underpinning the functionality of the speed adaptation
system. Consequently, we will explore separately the state of the art of the motor
power control methods and the distance estimation techniques in the following
two subsections.

2.1 Motor power control methods

Thanks to several researchers, including [5,8,12,13,16–20,23,24] it is now possible
to control the motor power in the bicycles to adapt their speed. So far, two types
of assisted power methods are available for commercial electric-assist bicycles.
The first is called constant-assisted power (CAP) [19]. It provides the rider with
a consistent and predetermined level of power support, regardless of the pedal
power applied. The second is proportional assisted power (PAP) [20]. The idea is
to assist motor power proportionally to pedal power until a specific speed limit
and then gradually recede. The limitations of these approaches are that they do
not consider environmental factors contributing to the resistance (e.g., air drag,
road surface friction), leading to tapering off the riding comfort and safety.

To address the problem of dealing with the different environmental circum-
stances that bicycles encounter a reinforcement learning (RL) based algorithm
is proposed in [13] to improve riding quality considering different road slopes
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and human pedal power. However, this RL-based solution requires abundant
data and high computations, especially in dynamic environments for updating
optimal policy to provide sufficient riding quality. To ensure riding quality, [5]
proposed a sophisticated algorithm considering wind force and road slopes us-
ing a mixed controller to maintain a constant velocity, but its reliance on reli-
able inputs raises concerns in dynamic environments. To address the limitations
posed from the above, a fuzzy logic controller (FLC) has been used to assist
the cyclists [8,12,16–18,23,24]. The FLC demonstrates exceptional performance
in dealing with vague and uncertain inputs and allows one to model and con-
trol complex systems in an intuitive and human-interpreted way. For example,
Lee and Jiang [16] have proposed a solution that adapts the bicycle’s speed by
achieving the urban riding velocity (assuming the expected velocity to be 18
km/h throughout the journey) for ordinary, power-less, and powerful cyclists.

Although the results to date were prominent in maintaining comfort and
safety throughout the journey, existing FLC-based methods can only adapt the
speed to a predetermined constant velocity. In the real-time application realiza-
tion, many factors affect the performance of the system, including stops in the
TL. In order to catch the green light, the expected velocity should be dynamic
along the journey, which depends on the distance to the TL, human pedal power,
road slope, and TTR. Obtaining the dynamic expected velocity and adapting
motor power accordingly remain overlooked. To the best of our knowledge, this
is the first time that anyone has considered the dynamic change in the expected
velocity for speed adaptation.

In this work, the authors aim to tackle this limitation by considering dy-
namic expected velocities based on the distance to the traffic light, human pedal
power, road slope, and time-to-red (TTR), ensuring appropriate motor power
adjustments for comfort and safe cycling.

2.2 Distance estimation methods

In order to find the dynamic expected velocity for crossing the traffic light, the
distance between the bicycle and the TL is crucial to determine. The distance can
be realized using positional information with Global Positioning System (GPS),
sensors like camera, ultrasonic and LiDAR. One of the most used solutions for
estimating the distance to the traffic light is GPS location information. For in-
stance, in the Green Light Optimal Speed Advisory (GLOSA) system, the dis-
tance between the TL and the bicycle is derived from the GPS location of the
bicycle and the location information received from the TL [24]. In addition, it
gives an optimal recommended speed for the rider when approaching the traffic
light. However, it may overwhelm the rider with excessive information and the
rider is responsible for acknowledging and responding to this information, as the
proposed system does not assist in adjusting the bicycle’s speed.

Although GPS is widely available on all smartphones, sharing the location
of cyclists might affect their privacy and make them vulnerable to malicious
activities by tracking their movements and mobility history. To improve the
distance estimation accuracy using positional solutions, [21] have combined the
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Global Navigation Satellite System (GNSS), inertial and magnetic data using an
extended Kalman filter to enhance bicycle localization in urban environments.
However, this method requires additional computation and hardware, such as
GPS equipment and Inertial measurement units on the bicycle. In addition, the
TLs should also know their position information that is accessible to the GPS
for accurately estimating the distance.

Another wireless solution proposed in [10] has used a combination of a log-
normal shadowing model and an adaptive neural fuzzy inference system to reduce
the distance estimation error between bicycles and anchor nodes. However, the
computation and convergence time depend on a set of parameters, such as the
number of membership functions, which is unsuitable for our application when
the bicycle has to adapt its speed during a limited time window. Furthermore,
several real-time applications use sensors like cameras, LiDAR, and ultrasonic to
estimate the distance. However cameras and LiDAR are expensive, they could
be affected by the environmental conditions and use high computational power
in identifying the objects (in this case TL) that are required to estimate the
distance. Meanwhile, [6] enabled cars to detect bicycles using Bluetooth beacons
and trigger an alert to the driver when the cyclist is approaching closer to 50 me-
ters [6]. The path loss model and the Received Signal Strength Indicator (RSSI)
of the received beacons enable the calculation of the distance. Yet, the distance
estimation is not accurate enough due to reflection, and scattering, which brings
distance estimation error and might affect the possibility of catching the green
light in our application.

In this work, we aim to provide a low-cost solution for distance estimation
for the long-rage application to 100m, to avoid privacy issues presented when
sharing the bicycles’ GPS location, and dynamically enhance the RSSI-based
distance estimation along the journey to cross the intersection.

3 System modeling and problem formulation

In this section, we first explain the bicycle dynamics and the parameters used
for the fuzzy logic controller. Then we will formalize the adaptation strategy
as a convex optimization problem to smoothly adapt the bicycle’s speed while
preserving the cyclist’s comfort and safety. In this paper, safety and comfort refer
to maintaining acceleration and speed in a predefined range. This range might
change according to the cyclist’s preference and capabilities. However, to be able
to assess our system we will consider safety by maintaining an acceleration in
the range of [−0.4, 0.4m/s2] and a speed in the range of (16 − 20km/h), as
recommended in the literature [13].

3.1 System modeling of bicycle dynamics

A bicycle in motion follows specific physics laws. The power required to move a
bicycle with an expected velocity vexp, has to deal with resisting forces. There
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Fig. 1: Free-body diagram of all resisting environmental forces acting on a bicycle
when moving uphill.

are three resisting forces as shown in Figure 1: Fdrag air drag, Fhill gradient drag,
and Ffriction road surface friction at the point of contact on the ground.

The total power required, Preq, is the product of resisting force (sum of all re-
sisting forces) and the expected velocity, vexp (since Power = Force×V elocity):

Preq = (Fdrag + Fhill + Ffriction)× vexp . (1)

Fdrag is characterized by the atmospheric drag coefficient Cd, frontal area Ac,
atmospheric density ρ, and bicycle’s relative velocity to wind vrelative (in our
simulation the wind’s velocity is negligible, hence this vrelative eventually becomes
vcurr):

Fdrag =
Cd Ac ρ

2
(vrelative)

2 . (2)

Fhill is proportional to the object’s mass m, gravitational force g, the angle of
elevation / depression of the road surface α:

Fhill = mg sinα , (3)

and Ffriction is governed by the friction coefficient µ, the object’s mass m, and
gravitational force g and the angle of elevation / depression of the road surface
α:

Ffriction = mg µ cosα . (4)

The total power provided to the bicycle’s transmission system Preq is the
sum of the human pedal power and the motor power, which decides the current
velocity of the bicycle vcurr.

Preq = Phuman + Pmotor . (5)

The current velocity of the bicycle vcurr should reach the expected velocity
vexp as close as possible under the influence of the controller. By substituting all
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the resisting forces Equations (2) to (4) in Equation (1) using Equation (5) and
rearranging, we can get

vcurr =
Phuman + Pmotor

Fdrag + Fhill + Ffriction
. (6)

This equation determines how much motor power should be provided by FLC
to reach the expected velocity.

3.2 Problem formulation of bicycle speed adaptation

. . ....... ai-1 ai+1 aN

{
Response Time Window # i :

     Distance traveled : Si
     Acceleration : ai 
     Duration : δwin

Fig. 2: Scenario representation where Time To Red is divided into N equal Re-
sponse Time Windows (RTW) of a duration δwin each

According to the bicycle dynamics in Section 3.1, we can control the mo-
tor power to reach any expected velocity when the human pedal power and
environmental-related forces are known. However, the expected velocity is di-
rectly linked to the safety and comfort of cyclists. Therefore, our aim is to
smoothly accelerate the bicycle, when the current velocity vcurr is not sufficient
to catch the green light while maintaining safety and comfort. In theory, deceler-
ation is possible, but this work focuses solely on acceleration due to two reasons:
i) We aim to retain human control and avoid complete system takeover. This
means no motor assistance if there is no human pedal power. ii) Implementing
deceleration alongside acceleration requires additional electronic blocks, which is
beyond the scope of this work.

We formulate the problem as a convex optimization problem where we min-
imize the variance of the accelerations while: i) ensuring the possibility to catch
the green light ii) not exceeding preset acceleration and velocity thresholds. The
optimization problem can be expressed as follows:

argmin
ai

N∑
i=1

(ai −
1

N

N∑
j=1

aj)
2 , (7)

s.t.

N∑
i=1

Si ≥ DTL , (8)
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vi ≤ vmax for i ∈ [1....N ] , (9)

0 ≤ ai ≤ amax for i ∈ [1....N ] . (10)

As seen in Figure 2, Si = vi−1 δwin + 1
2 ai δ

2
win is the distance traveled at the

ith time window of a duration δwin, where N = ⌊TTR
δwin

⌋ represents the number of
Response Time Windows (RTW) of the system ,vmax is the maximum allowed
velocity, amax is the maximum acceleration that could be tuned by the cyclist
according to his comfort and safety range, and DTL is the distance between the
bicycle and the TL.

Once ai is calculated, we can derive vexp,i as follows:

vexp,i = vexp,i−1 + ai δwin . (11)

After getting the expected velocity, a controller shall supply the motor assistance
with the required power to reach this expected velocity.

4 Methodology and system design

This section introduces our system design and methodologies for solving the speed
adaptation problem formulated in Section 3.2.

As shown in Figure 3, the ISA consists of two parts: a Control Unit, and a
FLC. The control units takes TTR and the RSSI measurements received from
the BLE module as input and estimates the distance to the TL and calculates
the expected velocities. Then, the FLC estimates the required motor power to
reach the expected velocity vexp to assist the rider in catching the green light.
The expected velocity in this case is the required velocity to move the bicycle
from one window to the other. One of the inputs to the FLC is the velocity
error verror, which is the difference between the expected velocity vexp to catch
the green light and the bicycle’s current velocity vcurr. The other input is the
Human pedal power Phuman. The vcurr in practical can simply be achieved using
a speed sensor in the bicycle, however for the simulation we realize this using
Equation (6). We will introduce the details of the control unit and the FLC in
the following sub-sections.

4.1 Control Unit: expected velocity calculation based on dynamic
distance estimation combining RSSI Path Loss model with
Kalman Filter

In this subsection, we introduce how we estimate the distance to the TL on the
one hand and how we derive the expected velocity to catch the green light on the
other hand.

The Control Unit, as shown in Figure 4, extracts the RSSI measurements and
the TTR value from the BLE module and estimates the required acceleration
to catch the green light. The distance estimation error is quite significant as the
RSSI measurements fluctuate even when the bicycle is at the same distance from
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Fig. 3: Proposed communication-based ISA for e-bikes

Path Loss Model

Find acceleration

Kalman Filter

B
L

E
M

o
d

u
le

vexpRSSI

TTR

Distance measurement zk

D
is

ta
n

ce
m

e
as

u
re

m
e
n

t 
z 0

Acceleration Control Input ak-1

Distance update dk
^

Control Unit

Fig. 4: Control Unit

the TL. Therefore, it affects the cyclist’s comfort and the chance to catch the
green light. To mitigate this issue, we apply a Kalman filter to enhance distance
estimation accuracy while the bicycle is moving. The system state of the bicycle
evolves from a previous state to the next state following Newton’s law of motion
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and can be expressed as follows:

Xk = AXk−1 +B ak−1 + wk−1 , (12)

where Xk =

(
dk
vk

)
, dk and vk are the distance and speed of the bicycle at time

k, respectively. A =

(
1 −δt
0 1

)
, B =

(
− δ2t

2
δt

)
, δt is the period of the distance mea-

surement inputs to the Kalman filter, and wk−1 is the uncertainty of the model
with a covariance Q.
Additionally, the measurement zk, is the measured distance based on the ex-
tracted RSSI values obtained using Eq. (15) :

zk = HXk + uk (13)

Where H =
(
1 0
)
and uk is the measurement noise with variance R. According

to Friis formula for free-space transmission [9], the distance can be calculated
using the RSSI based on the log-distance model [14], as follows:

RSSI[dBm] = C − 10n log10(d) (14)

Here C is a constant, n is the path loss exponent, and d is the distance in meters
between the transmitter and the receiver. Hence, we could derive the distance
measurement between the TL and the bicycle from the equation as follows:

zk = 10
C−RSSIk

10n (15)

Since both the system model and the measurements have noise, we could
obtain the distance estimation using the KF equations in Eq. (16) to find the
best trade-off between them.

X̂−k = AX̂−k−1 +B ak−1

P−k = APk−1 A
T +Q

Kk = P−k HT (HP−k HT +R)−1

X̂k = X̂−k +Kk(zk −HX̂−k )

Pk = (I −KkH)P−k

(16)

Where Pk denotes the a posteriori estimate covariance matrix. Then we find the
distance estimate as:

d̂k = HX̂k (17)

The details of dynamically updating the distance estimates through the Kalman
filter are listed in Algorithm 1. Since the Kalman filter needs several measure-
ments to converge, we split the duration of the entire journey into Nu windows.
Each window is of a period ∆t =

TTR
Nu

(line 8). During the duration of ∆t and at
each δt seconds (δt ≪ ∆t) , the TL sends a δt−periodic beacon containing a TTR
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value to the bicycle and the Kalman filter uses the distance measurements of the
RSSI path-loss model and the control input acceleration to update the distance
estimation (line 21 to line 23). At the end of each period ∆t, we decrement the
value of TTR by ∆t and calculate the list of accelerations and the corresponding
expected velocities using the last distance update from the Kalman filter (line
24 to line 29). Here we mention that the initial list of accelerations is calculated
using only the distance measured through the path-loss model at the reception
of the first beacon (line 13 and line 14). Having in hand the list of expected ve-
locities we move to the next section to explain how we use it in order to estimate
the required motor power to assist the cyclist to catch the green light.

Algorithm 1 Intelligent Speed Adaptation

1: Initialization:
2: Inputs: Nu, δwin, Phuman, α
3: Output: Pmotor

4: FLC ← Fuzzy simulation using membership functions
5: Power motor ← MotorPower(fuzzy simulation, Verror, Phuman)
6: Main:
7: while a beacon is received & Traffic Light Phase is Green do
8: Calculate ∆t = TTR

Nu

9: Calculate i = ⌊ ∆t
δwin

⌋
10: Calculate N = TTR

δwin

11: Timer = ∆t

12: Start Timer
13: Calculate the distance measurement input of the Kalman Filter z using Equation (15)
14: Calculate [a1, ., aN ] and [vexp,1, ., vexp,N ] through Equation (7) and Equation (11) using z

as the distance to the traffic light (DTL = z).
15: if Timer == 0 then
16: TTR← TTR−∆t

17: Timer = ∆t

18: Start Timer
19: end if
20: k = 1
21: while a beacon is received & Traffic Light Phase is Green do
22: Calculate the distance measurement input of the Kalman Filter z through Equation (15)

using the received RSSI

23: Calculate the Kalman filter distance update d̂ through Equation (12) - Equation (17).
24: if Timer == 0 then
25: TTR← TTR−∆t

26: if TTR <= 0 then
27: break
28: else
29: Calculate [aki, ., aN ] and [vexp,ki, ., vexp,N ] through Equation (7) and Equation (11)

using the last updated d̂ and TTR
30: Calculate vcurr using Equations (2) to (4) and (6)
31: Calculate verror = vexp − vcurr

32: Calculate Pmotor using inputs Phuman & verror with FLC
33: k ← k + 1
34: Timer = ∆t

35: Start Timer
36: end if
37: end if
38: end while
39: end while
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4.2 Fuzzy logic controller for adapting the speed

This sub-section explains how FLC controls the motor power to reach the ex-
pected velocity vexp obtained by the control unit above.

The FLC processes the inputs verror and Phuman in three stages: a) fuzzifi-
cation, b) inference, and c) defuzzification, to estimate the motor power Pmotor.
In the fuzzification stage, crisp input values are transformed into fuzzy variables
using the membership function (MF) shown in Figure 5. Next, the fuzzy infer-
ence system (FIS) applies fuzzy rules and operators (e.g., AND, NOT, OR) from
Table 1 to generate a new set of fuzzy variables. Finally, the FIS’s fuzzy vari-
ables are converted back to crisp output values using centroid defuzzification. To
maintain mathematical simplicity, the triangular membership function is utilized
to prepare the MFs and linguistic variables with their abbreviations, all based
on heuristic rules.

Table 1: Fuzzy inference rules for velocity error & human pedal power inputs and
motor power output

Velocity error (verror) Human pedal power (Phuman)
VL L M H

Motor Power (Pmotor)
Z VL VL L L
VL VL L L M
L VL L M M
M L M M H
MH L M H H
H M M H VH
VH H H VH VH

For the verror, seven linguistic variables are created including Zero (Z),Very
Low (VL), Low (L), Medium (M), Medium High (MH), High (H), and
Very High (VH) Figure 5 (a). Since regulations in the European Union require
turning off the motor assistance when the velocity exceeds 25 km/h, the velocity
error MF is thereby in the range of (0-25 km/h).

The human pedal power is represented by four linguistic variables: Very Low
(VL), Low (L), Medium (M), and High (H). While Figure 5 (b) shows the
power range as (0-100) W, the MF can be dynamically adapted by adjusting the
triangular center points to accommodate different power ranges exerted by cy-
clists. The human pedal power MF is constructed by adopting the slope gradient
and corresponding human pedal power values from [13] as seen in Table 2. The
slope gradient is between 0-3 %, and their corresponding human pedal power is
modeled from 45 - 125 W with distinct variances.

The motor power is represented by five linguistic variables: Very Low (VL),
Low (L), Medium (M), High (H), and Very High (VH), which define the
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fuzzy sets of output motor power. As our approach utilizes Mamdani FIS, the
output MF is constructed with fuzzy sets using if-then inference rules to handle
uncertainties, as depicted in Table 1 [16].

Referring to [16], the construction of the 28 specified fuzzy rules in Table 1
involves a heuristic approach using the “Fuzzy AND” operator. The rules are as
follows: First, when pedal power is constant, an increase in velocity error neces-
sitates more motor power. Second, when velocity error is constant, an increase in
pedal power also requires additional motor power. Third, the motor power should
be reduced to zero when either human pedal power tends to zero or the current
velocity exceeds 25 km/h. These rules determine the fuzzy output variable using
the fuzzy max-min inference technique.
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Fig. 5: FLC’s linguistic variables and their associated membership functions for
inputs a) Velocity error, (b) Human pedal power, and output (c) Motor power.
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Table 2: Slope gradient and it’s corresponding human pedal power

Parameters Slope grade
0% 1% 2% 3%

Total percent of individual slopes
in the entire sampled slope data

70% 15% 10% 5%

Human pedal power mean and
variance for different slope values

45,30 65,40 95,50 125,60

5 Results

In this section, we simulate bicycle’s dynamics and combine that with the im-
plemented controller and samples taken from a large set of BLE propagation
measurements. In addition, we evaluate the performance of ISA in terms of com-
fort, safety, and the chance to catch the green light. As explained previously,
comfort and safety entail the preservation of acceleration and velocity within pre-
determined ranges. These ranges are guaranteed by the solution design through
Equation (10) and Equation (9). The constant parameters required for simulation
in the equations are given in Table 3.

Table 3: Simulation Parameters

Conditions Parameters Value

Environmental Cd 0.5
Ac 1 m2

ρ 1.18 kg/m3

µ 0.014
α (0,1,2,3)%
g 9.8 m/s2

Rider mass 75 kg
pedal power (0 - max W)

Journey DTL,init 100m
vinit vinit ∈ [10, 20]Km/h

TTRinit TTR ∈ [15, 25]s
vmax 20Km/h
amax 0.4m/s2

fb 4Hz
δwin 1s
Nu 4

Number of simulations - 215
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5.1 Data collection and generation
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Fig. 6: RSSI Path Loss model with n = 2.5 and C = −28.8

We have collected RSSI measurements using two Nordic development kits
NRF52832, one as a transmitter (Tx) and the other as a receiver (Rx). Both
boards were running the BLE v5 protocol stack. Segger-embedded systems and
C++ were used to program the two boards; one was configured as the BLE
central device (Rx), and the other was configured as a peripheral device (Tx).
The transmission power for the experiments has been set to 0 dBm. We have
recorded the RSSI on the receiver side at each step of 5 meters to a maximum
distance of 100 meters between the central and peripheral nodes. More than 150
packets containing RSSI values have been recorded at each step. In our setup,
we assume that the roadside unit (in this case TL), Tx, will have a Line Of
Sight (LOS) with the On-Board Unit (OBU), Rx, on the bicycle. Therefore, we
ensured a clear LOS between Tx and Rx in the experimental measurements. One
major motivation behind this assumption is that in many European countries,
such as the Netherlands, the separation between bicycle lanes and car lanes is
widely considered for safety, so the LOS is less to be obstructed by obstacles such
as cars and trucks. After fitting the data curve, as shown in Figure 6, we obtain
from Equation (15): C = −28.8 and the path loss exponent n = 2.5. These values
depend on the measured environment and we assume that during equipping the
TLs with BLE modules calibrations have to be done.

Furthermore, we have synthetically generated the slope and human pedal
power data, for the simulation, provided in [13]. The slope values are in the
range (0 - 3 %). This means increase in the road’s gradient, in meters, over a
horizontal run of 100 meters. For example, a 2% slope constitutes a rise of 2 meters
over a distance of 100 m. The slope generation involves uniform distribution for
respective slope values as shown in Table 2 along with an additive white Gaussian
noise of mean and standard deviation 0 and 0.2 to resemble the real world road
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profile. The generation of human pedal power corresponding to the slope involves
using a normal distribution with mean and variance values listed in e.g., a slope
of 0% will have 70% of the total distribution Table 2.

5.2 Impacts of distance estimation error on ISA

To evaluate the distance estimation accuracy, we have generated many scenarios
of journeys. Each journey starts when the bicycle receives the first beacon and
ends when it reaches the TL. At the start of each journey, we randomly generate
an initial velocity vinit and TTRinit value as mentioned in Table 3, where init
refers to the value at the reception of the first beacon.

To calculate the distance estimation error, we first obtain the real distance
of the bicycle to TL along the journey. It is calculated by first solving the opti-
mization problem in Equation (7), to obtain a list of accelerations assuming that
the initial distance to the traffic light is known; then we get the real distance of
the bicycles at every second through Newton’s law of motion. Further, at each
distance of 5 meters, we compare the estimated distances of the Kalman Filter
and the Path Loss model to the real distance between the bicycle and the TL.
The RSSI values are fed to the Control Unit at a frequency of fb = 4Hz. As we
collected the RSSI values only at discrete points of every 5 meters, we randomly
select one RSSI value from the set of collected data that is closest to the current
position of the bicycle.

In Figure 7, we show the Mean Absolute Error (MAE) of the estimated dis-
tance of Kalman filter and path-loss model. The mean is calculated over 215

combinations of initial velocities, TTR, road slopes, and human pedal power. As
expected, the Kalman filter has less MAE than the Path-loss model, as we are
reducing the noise coming from the RSSI measurements. Due to the fact that
our RSSI collected data is only done at each distance of 5 meters, in Figure 6, we
are losing accuracy of at least 2.5 meters for the distance estimation. Therefore,
collecting RSSI data at several different distances will give us better distance
estimation accuracy.

To give a more straightforward illustration of the distance estimation, we show
in Figure 8 one scenario where vinit = 15.47km/h and TTRinit = 21.58 s. We
have simulated this scenario for multiple runs considering the random selection
of the RSSI measurements from the corresponding distances. At each second, we
average all the estimated distances and compare those mean values of Kalman
Filter and Path Loss model with the real distances. The results are consistent with
Figure 7 that ISA method is closer to the optimal solution and less fluctuating
than using only Path Loss model for distance estimation.

5.3 ISA performance evaluation based on success percentage of
catching the green light

We have evaluated our system based on the percentage of scenarios where we
successfully catch the green light. We have generated random values of initial
velocities in the range of [10, 20]km/h and initial TTRinit in the range of [15, 25]s.
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Fig. 7: Mean Absolute Error of Distance Estimation.

Fig. 8: Average Estimated distances using Kalman Filter and Path Loss model
compared to real distances to the TL through one journey with vinit = 15.47km/h
and TTRinit = 21.58s

Then we defined 215 combinations of initial velocities, initial TTRs, road slopes
and human pedal power. Each combination defines one scenario. The rest of
the simulation parameters can be found in Table 3. Furthermore, due to the
formulation of convex optimization problem the control unit ensures the safety
and comfort metrics. It is prepared to satisfy the upper and lower inequality
constraints presented in Equation (7).

Table 4: The percentage of success in catching green light
Method Success percentage

Without speed adaptation 37.54%

Speed adaptation with Path Loss model 60%

ISA 66.40%
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In Table 4, we illustrate a range of techniques alongside their respective suc-
cess rates in capturing the green light. It is essential to note that the success rates
in this analysis are derived from a subset comprising 57.80% of the 215 simula-
tion scenarios wherein catching the green light is physically feasible. Regarding
the initial scenario, where the bicycle maintains a constant speed without any
adjustments, the success rate is recorded at 37.54%, indicating the lowest success
rate among the techniques considered.

Comparatively, the Intelligent Speed Adaptation (ISA) method demonstrates
a notable 66.40% probability of catching the green light, marking a significant
enhancement of nearly 77% compared to the non-adaptive approach. Moreover,
this improvement is approximately 10% relative to that achieved through the
implementation of the path-loss model, attributable to the more accurate distance
estimations provided by the ISA methodology. Attaining a flawless success rate
hinges on the system’s ability to obtain precise distance estimates to the traffic
light and promptly adjust the speed upon receiving the first beacon. However,
our system relies on obtaining additional beacons during the journey to refine the
distance estimation to the traffic light, enabling the calculation of the necessary
acceleration for intercepting the green light.

6 Discussion and Future Work

This work serves as a starting point in the design of smart bicycles for self-speed
adaptation to assist cyclists in catching the green light. There are, however, sev-
eral aspects that need to be investigated in the future. In particular, we anticipate
continuing our research work along the following lines.

– Deceleration and large-scale evaluation. As a proof-of-concept, ISA is
evaluated when there is only one bicycle that needs to accelerate to catch
a traffic light. We need to further investigate how to decelerate and how to
quantify the impacts of other road users on the speed adaptation. To include
both acceleration and deceleration in one system will increase the complexity,
and hence we first focused only on acceleration. In addition, physical imple-
mentation with embedded systems is needed to test the system in the real
traffic scenarios. Time and battery consumption saved will be further used to
evaluate the system when there are multiple traffic lights along the journey.

– Interaction with smart traffic lights. The results showed in this paper
are based on a normal traffic light with fixed signal phase and timing (SPaT).
Smart traffic lights are able to change the SPaT according to the traffic
situations. Nevertheless, we believe that the basic building blocks of ISA
are well posed to tackle the dynamical SPaT because of two reasons. First,
ISA can obtain the new SPaT information based on the periodically received
BLE beacons; and second, ISA dynamically estimates the distance to the
traffic light along the journey and updates the control policy accordingly. We
need to generate different scenarios to test this functionality and evaluate the
effectiveness in the next step.
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7 Conclusion

This paper proposes an intelligent speed adaptation system at traffic lights for
cyclists to increase the chances of catching the green light. The system combines
BLE communication with FLC based motor power control and can be fully im-
plemented on the bicycle. It overcomes the limitations of existing methods in
two ways: first, compared with smart traffic lights that adapt signal phase to
prioritize a group of cyclists conditionally, ISA provides personalized assistance
considering the cyclist’s velocity, pedal power, distance to the traffic light, time
to red, and slopes of roads; second, compared with smartphone application sys-
tems that adapt to traffic lights, ISA does not leak users’ private information
to third parties. Extensive simulation results show that our system improves the
probability of catching a green light by 77% compared to no speed adaptation
while maintaining the safety and comfort of the cyclist.
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