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Abstract
Although earlier research has shown that individual differences on the spectrum of attention deficit hyperactivity disorder 
(ADHD) are highly heritable, emerging evidence suggests that symptoms are associated with complex interactions between 
genes and environmental influences. This study investigated whether a genetic predisposition [Note that the term ‘genetic 
predisposition’ was used in this manuscript to refer to an estimate based on twin modeling (an individual’s score on the latent 
trait that resembles additive genetic influences) in the particular population being examined.] for the symptom dimensions 
hyperactivity and inattention determines the extent to which unique-environmental influences explain variability in these 
symptoms. To this purpose, we analysed a sample drawn from the Twins Early Development Study (TEDS) that consisted 
of item-level scores of 2168 16-year-old twin pairs who completed both the Strengths and Difficulties Questionnaire (SDQ; 
Goodman, in J Child Psychol Psychiatry 38:581–586, 1997) and the Strength and Weaknesses of ADHD Symptoms and Nor-
mal Behavior (SWAN; Swanson, in Paper presented at the meeting of the American Psychological Association, Los Angeles, 
1981) questionnaire. To maximize the psychometric information to measure ADHD symptoms, psychometric analyses were 
performed to investigate whether the items from the two questionnaires could be combined to form two longer subscales. 
In the estimation of genotype-environment interaction, we corrected for error variance heterogeneity in the measurement 
of ADHD symptoms through the application of item response theory (IRT) measurement models. A positive interaction 
was found for both hyperactivity (e.g., �

1
 = 2.20 with 95% highest posterior density interval equal to [1.79;2.65] and effect 

size equal to 3.00) and inattention (e.g., �
1
 = 2.16 with 95% highest posterior density interval equal to [1.56;2.79] and effect 

size equal to 3.07). These results indicate that unique-environmental influences were more important in creating individual 
differences in both hyperactivity and inattention for twins with a genetic predisposition for these symptoms than for twins 
without such a predisposition.
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Introduction

Attention deficit hyperactivity disorder (ADHD) affects 
roughly 3.4% of the worldwide child and adolescent pop-
ulation (Polanczyk et al. 2015). Symptoms of ADHD are 
measured on two different core dimensions, hyperactivity 
and inattention, which form the basis of the current Diag-
nostic and Statistical Manual of Mental Disorders subtype 
classification system. Depending on the (combination of) 
symptoms, individuals with ADHD are easily distracted dur-
ing tasks and conversations, experience severe difficulty in 
sustaining activities, or show a deficit in inhibitory control 
(Scheres et al. 2003). This can cause difficulties with school 
education, lead to emotional and behavioural difficulties or 
impair peer relationships. For 50% of the ADHD patient 
population, symptoms persist into adulthood (Schmitz et al. 
2007) and may have a significant impact on academic and 
personal life, due to, for example, poorer academic devel-
opment, family problems or higher health care expenses 
(Coghill et al. 2008).

With heritability estimates ranging from 70 to 90% 
for both symptom dimensions, the results of genetically-
informative twin studies have consistently demonstrated that 
variation in the two core dimensions of ADHD is strongly 
influenced by genetic factors (e.g., Willcutt 2005; Rietveld 
et al. 2004; Hudziak et al. 2000; Faraone and Doyle 2002; 
Faraone and Larsson 2019). A comprehensive meta-analysis 
by Nikolas and Burt (2010) that was based on the results of 
79 twin and adoption studies showed that, while both dimen-
sions are highly heritable, hyperactivity and inattention are 
distinct as to the amount of additive and dominant genetic 
influences that are important in creating individual differ-
ences: Nikolas and Burt (2010) showed that variance within 
the hyperactivity dimension could be mainly explained by 
additive genetic influences (71%) while dominant genetic 
influences contributed only a small proportion to the vari-
ance (2%). For inattention, additive genetic influences were 
also the most important source of individual differences, but 
the amount was smaller compared to hyperactivity (56%), 
while the contribution of dominant genetic influences was 
larger (15%). Furthermore, the remaining variance (27% 
for hyperactivity and 29% for inattention) could be mostly 
explained by environmental influences that are unique to 
a single twin (i.e., unique-environmental influences). That 
is, the shared environment did not account for a significant 
proportion of individual differences, a result replicated in 
many other studies. The authors of the meta-analysis fur-
thermore found that results were consistent among several 
moderating factors, including gender, age, and measurement 
instrument. Note that while the meta-analysis by Nikolas 
and Burt (2010) suggests the presence of dominant genetic 
influences, other research has highlighted that the observed 

correlation patterns among monozygotic (MZ) and dizygotic 
(DZ) might more likely be explained by the presence of sib-
ling contrast effects: Parents may either stress the similarities 
or the differences between their children which can result 
in cooperation or competition within a twin pair (influenc-
ing the degree of hyperactivity or inattention). Research in 
ADHD has consistently found evidence for the presence 
of this effect (see Rietveld et al. 2003). However, note that 
in the case that both mechanisms act on ADHD, statistical 
power is very low to also detect additive genetic influences 
(see Rietveld et al. 2003 for power calculations).

While genetic influences are strongly implicated in the 
aetiology of ADHD, it remains difficult to characterize the 
particular environmental circumstances under which ADHD 
symptoms emerge. The reason for this difficulty might lie in 
the complex nature of the condition: Similar to other neu-
rodevelopmental disorders, ADHD likely results from the 
combined action of multiple genes with small effects and 
various environmental risk factors. Additionally, a simple 
distinction between nature, on the one hand, and nurture, 
on the other hand, might be too simplistic because there is 
emerging evidence that complex traits are associated with 
interactions between genetic- and environmental influences. 
In this manuscript, we focus on the latter: How do genes and 
environmental stressors interact to create individual differ-
ences on the ADHD spectrum?

Genotype‑environment interaction

A genotype-environment interaction formally refers to a 
situation in which the relative importance of environmen-
tal influences in explaining individual differences in a trait 
is conditional on the genotype (or vice versa). Applied to 
ADHD, this could, for example, mean that environmental 
influences are more important in creating individual dif-
ferences in children with a genetic predisposition towards 
ADHD than for children without such a predisposition. Vari-
ous studies suggest that genotype-environment interaction 
is an important phenomenon in mental disorders (see e.g., 
Wermter et al. 2010). Yet, research on genotype-environ-
ment interaction has not been a prominent focus: Most previ-
ous studies on genotype-environment interaction in ADHD 
have examined interactions between environments and can-
didate genes (with known limitations, see e.g., Munafo et al. 
2014) while only a few studies focused on twin modelling. In 
one of the, to our knowledge, few published papers, Gould 
et al. (2018) investigated whether there is an interaction 
between additive genetic effects on ADHD symptoms and 
two specific environmental factors: socioeconomic status 
(SES) and chaos (household disorganization). Based on a 
population sample of 520 twin pairs, results showed that 
neither SES nor chaos was associated with a change in the 
extent to which genetic influences explain variability in 
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ADHD symptoms. Note, however, that a plausible source 
for these non-findings might be insufficient power—earlier 
research has shown that much larger sample sizes are needed 
to detect genotype-environment interaction when using the 
method that was used by Gould et al. (2018) (Hanscombe 
et al. 2012). Furthermore, a Swedish population-based twin 
study used the data of 1518 twin pairs to explore the effects 
of dietary factors and found that genetic influences on inat-
tention symptoms were statistically higher among twins with 
higher levels of high-sugar and unhealthy food intake com-
pared to those with lower levels of high-sugar and unhealthy 
food consumption (Li et al. 2022).

Gould et al. (2018) and Li et al. (2022) tested genotype-
environment interaction in the case that environmental influ-
ences are specific, measured variables. They tested two vari-
ables, but there are many possible environmental factors that 
could interact with additive genetic effects. Instead of test-
ing them all separately, in the present study, we applied an 
omnibus test to assess whether there is any statistically sig-
nificant interaction between genetic influences and unique-
environmental influences. Thus, instead of focusing on one 
(or more) measured environmental stressors, this method 
parametrizes environmental influences as one (unobserved) 
latent variable, and we then test if this latent variable inter-
acts with genetic effects. As a result, we focus on the whole 
range of possible (relevant) environmental factors (summa-
rized in one latent variable), resulting in much larger power 
compared to focusing on one or more specific environmental 
stressors (see Schwabe and van den Berg 2014). This results 
in proper statistical power to determine—in an exploratory 
way—whether there is any genotype-environment interac-
tion at all. If indeed an interaction effect is found, future 
research on the aetiology of ADHD can focus on the exact 
nature of this effect by collecting specific unique-environ-
mental measures. Unlike Gould et al. (2018), we focus spe-
cifically on unique-environmental influences, since earlier 
results showed that shared environmental influences con-
tribute no variance in ADHD, making it unlikely to find an 
interaction between genetic effects and shared environmental 
factors.

Psychometric issues in the diagnosis of ADHD 
symptoms

Measurement of ADHD based on questionnaire data typi-
cally involves the construction of a composite score, such 
as a summation of endorsed symptoms or adding up a 
twin’s individual answers to all questionnaire items to form 
a sum score. However, applying this approach comes with 
a number of disadvantages in terms of methodological 
consequences and clinical interpretation. By calculating 
a composite score, all individual symptoms are weighted 
equally. Consequently, if one symptom is more indicative of 

the underlying dimension of ADHD than other symptoms, 
this is ignored. Furthermore, the use of composite scores 
neglects the uncertainty (e.g., the measurement error) that 
results from using only a limited set of items. This leads 
to a confounded measure of the underlying latent (i.e., not 
directly observable) trait, which can result not only in biased 
heritability estimates (van den Berg et al. 2007), but also in 
the spurious finding of a genotype-environment interaction 
effect. The latter has to do with the fact that the amount of 
information obtained from a questionnaire typically varies 
for different levels of the measured trait (see e.g. Loehlin 
and Nichols, 1976 and Turkheimer and Waldron, 2000). For 
example, while existing IQ tests usually show little meas-
urement error for average students, scale scores can be very 
unreliable for high-performing students because there is only 
little information provided by only a few very difficult items. 
This is also the case for clinical scales: If both affected and 
healthy individuals with ADHD are assessed with a scale 
that contains many extreme items (for example: “I always 
have a hard time to pay attention”), then scale scores may be 
very reliable for twins that show ADHD symptoms, but very 
unreliable for healthy twins. In extreme situations (such as 
the ones just discussed), this often leads to floor or ceiling 
effects. A floor (ceiling) effect represents smaller individual 
differences at the lower (higher) end of the measurement 
scale. With other words: Measurement error is not homoge-
neous. This heterogeneity in measurement error leads to a 
skewed distribution of composite scores (e.g., sum scores). 
Research shows that this statistical artifact can result in the 
finding of a spurious genotype-environment interaction 
effect. For example, when our sample consists of high-
school students and the conducted mathematics test is too 
easy for the most able twins, this will result in smaller score 
differences within highly able twin pairs than within average 
or less able twins (a ceiling effect). As a result, twins with a 
higher sum score seem more alike. In the case of a clinical 
scale, most healthy twins might not endorse extreme items 
which will result in smaller score differences within healthy 
twin pairs than within moderately ill or very ill twins (a floor 
effect). As a result, twins with a lower sum score seem more 
alike. In both scenarios, the finding of a spurious GxE effect 
can be expected—a positive effect in case of a ceiling effect 
and a negative effect in case of the floor effect (see e.g. Eaves 
et al. 1977; van der Sluis et al. 2006; Schwabe and van den 
Berg 2014; Molenaar and Dolan 2014).

Using simulation studies, Schwabe and van den Berg 
(2014; see also Molenaar and Dolan 2014) showed that this 
bias can be prevented by analyzing raw item scores, which 
can be done by simultaneously estimating the genetic twin 
model with an item response theory (IRT) model. Instead of 
ignoring measurement error as is done when using a com-
posite score (like a sum score), the genetic variance decom-
position (including genotype-environment interaction) is 
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done directly on the latent variable that is corrected for 
measurement error. Crucial to this approach is that the 
analysis takes place in one unified model (estimating IRT 
and genetic model at the same time). When a so-called two-
step procedure (i.e., using a measurement model to estimate 
latent trait scores and using these scores in a genetic design 
in a second step), the uncertainty of the measurement of the 
trait is not fully taken into account, and we can still expect 
spurious GxE.

This research

We explored genotype-environment interaction in 2168 
16-year-old twins who completed both the Strengths and 
Difficulties Questionnaire (SDQ; Goodman 1997) and the 
Strength and Weaknesses of ADHD Symptoms and Normal 
Behavior (SWAN; Swanson, 1981) questionnaire. To maxi-
mize the psychometric information available to measure 
ADHD symptoms, psychometric analyses were performed 
first to investigate whether the items from the respective 
subscales can be combined to form one more reliable scale. 
Next, genotype-environment interaction was studied sepa-
rately for the two dimensions hyperactivity and inattention, 
applying the methodology from Schwabe and van den Berg 
(2014). This method corrects for error variance heterogene-
ity in the measurement of ADHD symptoms. As a result, our 
results regarding genotype-environment interaction as well 
as heritability estimates are free of the mentioned statisti-
cal artifacts due to measurement error (a limited number of 
questionnaire items) while at the same time, statistical power 
to detect an effect remains good (see Schwabe and van den 
Berg 2014 for technical details and power study).

Method

Sample

The data originate from the Twins Early Development Study 
(TEDS, Rimfeld et al. 2019), which is a longitudinal twin 
study that recruited twin pairs born between 1994 and 1996 
in England and Wales through national birth records. From 
the total sample of twins that had answered the ADHD ques-
tionnaires, N = 656 individual twins were excluded from 
the analysis. N = 340 individual twins were excluded due 
to medical reasons, N = 168 because they were classified 
prenatal outliers, N = 64 due to unknown sex or zygosity, 
N = 28 due to the absence of first contact data, and for N = 56 
multiple of the mentioned exclusion criteria applied (i.e., 
for N = 32 individual twins first contact data was absent 
and sex or zygosity was unknown, N = 22 were classified 
as both medical reason exclusion as a prenatal outlier and 

N = 2 were excluded due to medical reasons and unknown 
sex or zygosity).

All twin pairs excluded from analysis were from the 
same twin families (e.g., both first and co-twin had to be 
excluded), leading to a total N of 5517 twin pairs (N = 11,034 
individual twins), of which 1991 monozygotic (MZ) twin 
pairs and 3526 dizygotic (DZ) twin pairs. Of the MZ pairs, 
858 twin pairs were male, and 1133 were female. Of the 
DZ twin pairs, 796 pairs were male, 994 pairs were female 
and 1736 were opposite-sex twin pairs. Mean age of the 
twins at the time of return of the questionnaires was 16 years 
and three months (SD = 0.75, minimum age = 14 years and 
9 months and maximum age = 18 years and 7 months). For 
the majority of the twins (N = 5293 twin pairs), English was 
the first language spoken at home and their ethnic origin was 
white (N = 5142 twin pairs).

To avoid bias in the psychometric analyses, due to the 
dependency in the data (e.g., twins being nested within fami-
lies), we randomly selected one twin from every family for 
psychometric analyses. Missing data was treated by applying 
full information maximum likelihood (FIML), an approach 
to dealing with missing data that tends to yield equivalent 
results as multiple imputation (see e.g., Lee and Shi 2021).

Based on the results of the psychometric analyses, it was 
decided which subset of the data was used for genetic analy-
ses (either only the items originating from the longer SWAN 
subscale or the combined scale based on both items from 
the SWAN and SDQ). Of this subset, data of families with 
missing data on all items were excluded from the analysis. 
This resulted in a sample size of N = 1084 twin pairs (415 
MZ twin pairs and 669 DZ twin pairs) for both the hyper-
activity and the inattention scale. Out of the remaining twin 
families, N = 1033 (95%) twin families had no missing data 
on the hyperactivity scale, within N = 20 (2%) families a 
single item answer was missing, N = 8 (1%) families missed 
8 or fewer item scores and N = 23 (2%) had 9 unknown item 
scores. Concerning the inattention scale data, for N = 1016 
(94%) twin pairs all item data were complete, within N = 34 
(3%) families a single item answer was unknown, N = 11 
(1%) twin pairs were missing 2 or up to 7 item scores and 
N = 23 (2%) families were missing 9 (N = 22 families) or 10 
(N = 1 twin family) item scores.

ADHD scales

The Strengths and Difficulties Questionnaire (SDQ; Good-
man 1997) is a brief questionnaire for children and young 
people, meant for emotional and behavioural screening. 
With a total of 25 items, the hyperactivity/impulsive sub-
scale of the questionnaire consists of 5 items and uses a 
three-point scale (0—not true, 1—quite true and 2—very 
true). Three of the items of this subscale measure inatten-
tion and two items hyperactivity. The items of the SDQ were 
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part of the test booklet that was sent to twins at the age of 16 
and answered by themselves (not their parents or teachers).

Developed by Swanson et al. (1981), the Strength and 
Weaknesses of ADHD symptoms and Normal Behavior 
(SWAN) questionnaire consists of two subscales of each 9 
items, derived from the DSM-IV-TR (American Psychiatric 
Association 2008). The two subscales measure inattention 
and hyperactivity respectively using a seven-point scale 
of behaviour (1—far below average, 2—below average, 
3—slightly below average, 4—average, 5—slightly above 
average, 6—above average and 7—far above average). Like 
the items from the SDQ, the items of the SWAN were part 
of the test booklet that was sent to twins at the age of 16 
and answered by themselves (not their parents or teachers). 
Online Appendix A contains a list with all items included 
in the hyperactivity and inattention subscales of the SWAN 
and SDQ.

Psychometric analyses

Psychometric analyses were conducted separately for hyper-
activity (e.g., 9 items from the SWAN questionnaire and 
2 items from the SDQ questionnaire) and for inattention 
(e.g., 9 items from the SWAN questionnaire and 3 items 
from the SDQ questionnaire). To investigate whether the 
two questionnaires measure the same underlying trait, we 
formed two long scales—consisting of a total of 11 items 
(hyperactivity) and 12 items (inattention) respectively. The 
item scores of the two combined scales were recoded such 
that a higher score on the combined scale reflected a higher 
trait score (i.e., a high degree of hyperactivity and inatten-
tion respectively).

To test whether combining the items from the different 
scales resulted in one unidimensional scale that measures 
the same latent trait (hyperactivity and inattention, respec-
tively), multiple IRT models were estimated (e.g., the partial 
credit model (PCM), the generalized partial credit model 
(GPCM) and the graded response model (GRM)). Based 
on the lowest Akaike Information Criterion (AIC), the best-
fitting IRT model was selected and used to investigate item 
information curves and item fit of the combined scales. For 
the estimation of all models, the R package mirt (Chalmers 
2012) was used.

Genetic models

Different genetic models were estimated. First of all, we used 
the ACE model that decomposes the phenotypic variance, 

�2
P
 , into variance that can be explained by additive genetic 

influences (e.g., �2
A
 ), common-environmental influences 

(e.g., �2
C
—parametrized as perfectly correlated within the 

same family) and unique-environmental influences (e.g., �2
E

—parametrized to be correlated zero within one family). We 
furthermore considered an AE model (setting the C compo-
nent to zero) and an ADE model in which the D component 
represents dominance effects (e.g., non-additive genetic 
variance).1

Genotype‑environment interaction

In case of genotype-environment interaction, the amount of 
variance due to unique-environmental influences is not the 
same for every twin but depends on an individual’s genetic 
value, which is parametrized as a latent (e.g., unobserved) 
variable. This means that the unique-environmental variance 
component (e.g., �2

E
 ) can be larger at either higher or lower 

levels of the genetic value. For this particular application, 
this means that unique-environmental influences are either 
more important for twins with a high genetic predisposition 
for ADHD (i.e., positive genotype-environment interaction) 
or for twins with no or only a weak genetic predisposition 
(i.e., negative genotype-environment interaction). A posi-
tive genotype-environment interaction predicts that twins 
with the same high genetic value (genetically predisposed 
for ADHD) are less similar (more variance) than twins with 
the same low genetic value (low predisposition for ADHD). 
A negative genotype-environment interaction predicts the 
opposite.

To model genotype-environment interaction under the 
ACE and AE model, we portioned variance due to unique-
environmental influences into an intercept (representing 
environmental variance when A = 0) and a slope parameter 
that is a function of the additive genetic value A and repre-
sents the interaction effect (henceforth referred to as AxE). 
This makes the unique-environmental influence different for 
every individual j with additive genetic value Aj as follows:

where �0 denotes the intercept and �1 is a slope parameter 
that represents AxE. To force the variance to be positive, the 
exponent was taken (cf. SanCristobal-Gaudy et al. 1998).

Note that the sign of the slope (e.g., �1 ) determines the 
direction of the interaction effect and is modelled here as a 
(log)linear effect. This means that AxE is interpreted as a 
linear effect (on the log scale), assuming that environmen-
tal variance is larger at either a higher (positive) or a lower 
(negative) level of the genetic value (i.e., larger differences 
among individuals with similar A).

Under the ADE model, the AxE interaction effect (in case 
of the ADE model referred to as GxE) was conditioned on 

(1)�2
Ej
= exp(�0 + �1Aj)

1 Since correlations (based on sum-scores) in ADHD scores were 
similar, it was decided to analyse DZ opposite-sex twins together 
with same-sex DZ twins.
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the complete genotype (e.g., both additive genetic and domi-
nant genetic effects) instead of only additive genetic effects. 
This makes variance due to unique-environmental influences 
different for every individual j with genetic value Gj:

where Gj represents the genetic value (including both addi-
tive and non-additive genetic effects) of individual j,  �0 
denotes the intercept (when Gj = 0) and �1 is a slope param-
eter that represents GxE.

Measurement model

Simultaneously to every fitted genetic model, a measurement 
model in the form of an IRT model was estimated. In IRT 
models, item scores depend not only on a person’s latent trait 
(in this case, hyperactivity and inattention respectively) but 
also on the properties of the items that are contained in the 
questionnaire such as the difficulty of an item. We used the 
generalized partial credit model (GPCM), which is an IRT 
model that is suitable for polytomous, ordinal data (Muraki 
1992). The GPCM treats polytomous responses as ordered 
trait levels and models the probability of endorsing response 
category k over k—1 for item i using both the latent trait 
value and item parameters. For example, if symptom occur-
rence is assessed on a scale with 4 answer categories (e.g., 
“1—never”, “2—sometimes”, 3—often and 4—always), we 
have K = 4 and a respondent who selects “sometimes” as 
the response that describes best their situation, is consid-
ered to have chosen “sometimes” over “never” and “often” 
over “sometimes”, but to not have chosen “always” over 
“often”. This can be interpreted intuitively as if therespond-
ent “passes” all of the preceding ordered response categories 
before stopping at the final response which reflects most 
accurately the person’s standing on the latent variable con-
tinuum. For each successive response category, the probabil-
ity of endorsing response category k over k—1 for item i is 
assumed to follow a conditional probability that is dependent 
on an individual’s latent trait, the discrimination parameter 
�i of that item and thresholds for every item category k of 
item i, βik, that a person has to step through in order to reach 
the next response category. The discrimination parameter 
represents how well an item discriminates between the vari-
ous levels of the latent trait (comparable to a factor-loading 
in structural equation modelling). Note that by adopting the 
IRT approach we define ADHD as a latent trait that varies 
on a continuum, rather than a category of a disorder.

To identify the IRT model, we set the mean of the latent 
trait as well as the first threshold for all items to zero (i.e., 
μ = 0 and βi1 = 0).

(2)�2
Ej
= exp(�0 + �1Gj)

One‑step estimation of genetic and measurement 
model

Van den Berg et al. (2007) showed that, in order to take full 
advantage of the IRT approach, the genetic model and the 
IRT model have to be fitted concurrently. Only then, the 
uncertainty of the measurement of the trait is fully taken into 
account and the spurious finding of a genotype-environment 
interaction effect due to heterogeneous measurement error 
can be prevented. Here we use a Bayesian approach to esti-
mate the parameters from the IRT measurement model and 
the genetic model at the same time, in a unified model. In 
Bayesian statistical modeling, inference is based on the joint 
posterior density of all model parameters, which is propor-
tional to the product of a prior probability and the likeli-
hood function of the observed data (Box and Tiao 1992). 
To obtain this joint posterior density, we applied the Markov 
chain Monte Carlo (MCMC) algorithm Gibbs sampling 
(Geman and Geman 1984; Gelfand and Smith 1990). For a 
detailed description of the specification of the used genetic 
models in this context, the reader is referred to van den Berg 
et al. (2006), Schwabe and van den Berg (2014), Schwabe 
et al. (2015), Schwabe et al. (2017) and Schwabe (2017). 
For the MCMC estimation, we used the freely obtainable 
MCMC software package JAGS (Plummer 2003). Statisti-
cal details as well as the JAGS syntax for the most complex 
model (ACE with AxE) can be found in the online Appendix 
(remaining scripts can be obtained from the first author). For 
further data handling, the statistical programming language 
R was used (R Development Core Team 2008). As an inter-
face from R to JAGS, we used the rjags package (Plummer 
2013). Note that by applying the IRT approach, we were 
able to analyze the data on item-level such that the raw data 
could be used as input in JAGS without having to impute any 
missing item scores first. JAGS automatically imputes the 
missing data based on their posterior distribution at every 
iteration of the algorithm.

To determine which genetic model fitted the data best, 
while, at the same time, being parsimonious, we fitted all 
possible combinations of genetic models, with and with-
out genotype-environment interaction (e.g., AE, AE with 
AxE, ACE, ACE with AxE)2 and calculated the deviance 
information criterion (DIC, Spiegelhalter et al. 2002). The 
DIC is a measure that estimates the amount of information 
that is lost when a given model is used to present the data 
generating process, taking into account both goodness of fit 
and complexity of the model. All estimated genetic models 
were fitted simultaneously with a measurement model (IRT 

2 Both ADE and ADE with GxE models did not achieve stationarity 
(did not approach the joint posterior distribution sufficiently closely) 
and are therefore not discussed (see Appendix B for more details).
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model) as described above. For the MCMC estimation, we 
used the freely obtainable MCMC software package JAGS 
(Plummer 2003). Note that by applying the IRT approach, 
we were able to analyze the data on item-level such that the 
raw data could be used as input in JAGS without having to 
impute any missing item scores first. JAGS automatically 
imputes the missing data based on their posterior distribu-
tion at every iteration of the algorithm.

For the genetic model that fitted the data best, we calcu-
lated the mean and standard deviation for each parameter as 
well as the 95% highest posterior density (HPD, see e.g. Box 
and Tiao 1992) interval. The HPD interval can be interpreted 
as the Bayesian version of a confidence interval (CI) in fre-
quentist statistics. The influence of a model parameter can 
be regarded as significant when the respective HPD interval 
does not contain zero (with the exception of the variance 
components, since these are bounded at zero). Furthermore, 
in the case that a model that included an interaction effect 
was chosen as the best-fitting model for the data at hand, we 
also calculated the effect size of the interaction effect. The 
effect size was defined as the factor with which the environ-
mental variance component increases for an individual with 
an additive genetic effect of Ai = �a . For technical details 
and power calculations, we refer the reader to Schwabe and 
van den Berg (2014).

Results

Psychometric results

Psychometric analyses showed that the two scales cannot be 
combined to form one long scale. It was therefore decided 
to base all further analyses on analysis of SWAN (i.e., the 
longer scale) item scores only. Results of psychometric anal-
yses furthermore showed where in the distribution of hyper-
activity and inattention scores there is the most phenotypic 
information. With regard to the hyperactivity subscales, it 
can be concluded that the subscales provide information 
mostly on individuals in the middle range of hyperactiv-
ity (e.g., individuals with neither a very low or a very high 
degree of hyperactivity). On the other hand, the inattention 
subscales provide considerable information at the middle 
range and higher end of the spectrum (i.e., individuals with 
a high degree of inattention). For the sake of readability, 
results of psychometric analyses are not described in detail 
here but can be found in online Appendix C (including item 
information curves of the combined scales).

Genetic results

Since the results of the psychometric analyses showed that 
we cannot combine the two scales, only the items originating 

from the SWAN questionnaire were used for the genetic 
analyses. We chose to use the items from the SWAN ques-
tionnaire, because (1) the item information curves showed 
that these items were more informative and (2) the question-
naire contains more items (i.e., 9 hyperactivity items com-
pared to 2 in the SDQ questionnaire, and 9 inattention items 
compared to 3 in the SDQ questionnaire) and will therefore 
be more reliable. Since the two MCMC chains of the ADE 
and ADE with GxE model did not achieve stationarity (i.e., 
did not approach the joint posterior or target distribution 
sufficiently closely), the results of these two models are not 
discussed below, but results are restricted to those based on 
the remaining genetic models.

Hyperactivity

An item-level analysis of all 9 SWAN questionnaire hyperac-
tivity items resulted in a Cronbach’s alpha equal to 0.89 with 
a lowest item-rest correlation equal to 0.43. The distribution 
of sum-scores (based on all MZ and DZ twins without any 
missing item scores) can be found in Fig. 1. Sum-scores 
correlated 0.47 among MZ twins and 0.19 among DZ twins.

Table 1 presents the DIC for all fitted genetic models. 
The AE model with AxE showed the lowest DIC and was 
therefore chosen as the preferred model for our data.

The posterior means and standard deviations of all param-
eters as well as narrow-sense heritability ( h2, defined here 
as �2

A

�2
A
+exp(�0)

 ) resulting from the AE with AxE model can be 
found in Table 2. Most of the observed variance in hyperac-
tivity could be explained by additive genetic influences, 
resulting in a narrow-sense heritability equal to 57%. Fur-
thermore, a substantial part of the variance could be 
explained by unique-environmental influences. Analyses 

Fig. 1  Distribution of the sum-scores of all 9 hyperactivity items 
(based on all MZ and DZ twins with complete data). A higher sum-
score is representative for a higher value on the trait (e.g., a higher 
degree of hyperactivity)
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furthermore resulted in a positive and significant AxE inter-
action, meaning that twins with a high genetic value (e.g., a 
high value on the latent trait that represents additive genetic 
influences) tend to show more variance due to unique-envi-
ronmental influences than twins with lower genetic values. 
The effect size of this interaction effect was equal to 3.00 
which can be regarded as a large effect (see Schwabe and van 
den Berg, 2014 for technical details).

The 95% credibility region of the AxE interaction effect 
is displayed for the entire range of estimated genetic values 
in Fig. 2.

Inattention

An item-level analysis of all 9 SWAN questionnaire inatten-
tion items resulted in a Cronbach’s alpha equal to 0.89 with 
lowest item-rest correlation equal to 0.45. The distribution 
of sum-scores (based on all MZ and DZ twins without any 
missing item scores) can be found in Fig. 3. Sum-scores 
correlated 0.46 among MZ twins and 0.24 among DZ twins.

The DIC for all fitted genetic models can be found in 
Table 3. The ACE model with AxE showed the lowest DIC 
and was therefore chosen as the preferred model for the twin 
data.

Posterior means and standard deviations of all param-
eters as well as narrow-sense heritability based on the ACE 
with AxE model can be found in Table 4. In contrast to 
the results of the hyperactivity scale, unique-environmen-
tal influences were the most important source to explain 

individual differences in inattention, with a narrow-sense 
heritability equal to 24%. Furthermore, a positive and sig-
nificant AxE interaction was found, meaning that twins with 

Table 1  Hyperactivity: Model 
fit (DIC) for all genetic models

DIC deviance information crite-
rion

Genetic Model DIC

I. AE 51,755
 With AxE 51,658

II. ACE 51,757
 With AxE 1,661

Table 2  Hyperactivity: estimates of all parameters and narrow-sense 
heritability, based on the AE model with AxE interaction

Total phenotypic variance, defined as �2

A
+ exp

(

�
0

)

 , was equal to 
0.44. HPD refers to the 95% highest posterior density interval and h2 
to narrow-sense heritability

Posterior mean (SD) HPD

�2
A

0.25 (0.03) [0.19;0.31]
exp(�0) 0.19 (0.03) [0.14;0.24]
�1(AxE) 2.20 (0.22) [1.79;2.65]
h
2 0.57 (0.04) [0.48;0.65]

Fig. 2  Hyperactivity: 95% credibility region of the AxE interaction. 
The entire range of estimated genetic values (i.e., all posterior means 
of all twins) is displayed on the X-axis with the respective (unstand-
ardized) environmental variance, calculated as �2

Ej
= exp(�0 + �1Aj) 

on the Y-axis. A higher genetic value is representative for a higher 
genetic predisposition for hyperactivity

Fig. 3  Distribution of the sum-scores of all 9 inattention items (based 
on all MZ and DZ twins with complete data). A higher sum-score is 
representative for a higher value on the trait (e.g., a higher degree of 
inattention)

Table 3  Model fit (DIC) for all 
genetic models

DIC deviance information crite-
rion

Genetic Model DIC

I. AE 49,919
 With AxE 49,884

II. ACE 49,917
 With AxE 49,857
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a high genetic value (e.g., a high value on the latent trait that 
represents additive genetic influences) tend to show more 
variance due to unique-environmental influences than twins 
with lower genetic values. The 95% credibility region of 
this interaction effect is displayed for the entire range of 
estimated genetic values in Fig. 4. The effect size of the AxE 
interaction effect was equal to 3.07 which can be regarded 
as a large effect (see Schwabe and van den Berg, 2014 for 
more technical details).

Discussion

The results of decades of twin studies make it undebatable 
that ADHD is a heritable disorder. Although research sug-
gests that complex traits are associated with interactions 
between genetic- and environmental influences, research on 
genotype-environment interaction using twin modelling has 

so far not been a focus of genetically informative ADHD 
studies. Here, we investigated genotype-environment inter-
action in explaining individual differences in ADHD by ana-
lysing the item-level scores of 2168 twins who completed 
two questionnaires that measure the two ADHD core dimen-
sions, hyperactivity and inattention—the Strengths and Dif-
ficulties Questionnaire (SDQ) and the Strength and Weak-
nesses of ADHD Symptoms and Normal Behavior (SWAN) 
questionnaire. Specifically, it was investigated whether a 
genetic predisposition for hyperactivity (inattention) deter-
mines the extent to which unique environmental influences 
explain variability in hyperactivity (inattention).

Establishing a measure with good psychometric proper-
ties is important for finding genomic signals (see van der 
Sluis et al. 2010; van den Berg and Service 2012; Schwabe 
et al. 2019). To maximize the psychometric information on 
ADHD symptoms, here, a thorough psychometric evaluation 
of the questionnaires was performed to investigate whether 
the items from the two questionnaires could be combined 
to form two longer subscales. Multiple analyses suggested, 
however, that the items from the different questionnaires do 
not measure the same latent construct and hence cannot be 
used in the same analysis to reflect the same construct. This 
is an important result since genomic studies often combine 
data from multiple cohorts to increase power to find genetic 
signals (van den Berg et al. 2014). Based on the results of 
this study, we advise researchers to only use ADHD data 
from individuals that were assessed by the same question-
naire (either SWAN or SDQ). The psychometric analyses 
furthermore showed where in the distribution of hyperactiv-
ity and inattention scores there is the most phenotypic infor-
mation. With regard to the hyperactivity subscales, it can 
be concluded that the subscales provide information mostly 
on individuals in the middle range of hyperactivity (e.g., 
individuals who show neither a very low nor a very high 
degree of hyperactivity). On the other hand, the inattention 
subscales provide considerable information at the middle 
range and higher end of the spectrum (i.e., individuals with 
a high degree of inattention). This is important to note since 
the power to detect a quantitative trait locus (QTL) does 
not only depend on variation in genotypes and variation in 
liability, but also on how well the measurement tool that is 
used to assess liability discriminates among the genotypes. 
Improving the scale that is used to measure the phenotype 
might be much cheaper than ever-increasing sample sizes 
with the same clinical test (see van den Berg & Service for 
more details and practical examples).

Based on the results of the psychometric analyses, 
genetically-informative analyses that included the mod-
eling of genotype-environment interaction were restricted 
to the items from the SWAN questionnaire. An AE with 
AxE interaction model based on the hyperactivity data 
resulted in a moderate narrow-sense heritability (57%), 

Table 4  Inattention: estimates of all parameters and narrow-sense 
heritability, based on the ACE model with AxE interaction

Total phenotypic variance, defined as �2

A
+ �2

C
+ exp

(

�
0

)

 , was equal 
to 1.09. HPD refers to the 95% highest posterior density interval and 
h
2 to narrow-sense heritability

Posterior mean (SD) HPD

�2
A

0.27 (0.07) [0.14;0.41]
�2
C

0.31 (0.05) [0.20;0.41]
exp(�0) 0.51 (0.07) [0.37;0.65]
�1(AxE) 2.16 (0.32) [1.56;2.79]
h
2 0.24 (0.06) [0.14;0.36]

Fig. 4  Inattention: 95% credibility region of the AxE interaction. The 
entire range of estimated genetic values (i.e., all posterior means of 
all twins) is displayed on the X axis with the respective (unstandard-
ized) environmental variance, calculated as �2

Ej
= exp(�0 + �1Aj) 

on the Y axis. A higher genetic value is representative for a higher 
genetic predisposition for inattention
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which is comparable to the results of earlier studies (e.g., a 
meta-analysed narrow-sense heritability equal to 71%, see 
Nikolas and Burt 2010). Furthermore, while the finding that 
common-environmental influences contributed a negligible 
part to the observed variance was also in line with earlier 
research, our model resulted in a slightly higher estimate 
of unique-environmental influences. Contrary to earlier 
research, the results of our ACE with AxE model suggest 
that the most important source of explaining variance in the 
inattention dimension were unique-environmental influences 
while both additive genetic influences as well as common-
environmental influences also contributed a significant part 
to explaining the observed variance. One reason for this 
seeming contradiction could be that the results of earlier 
research were based on the analysis of possibly skewed 
sum-scores whereas all models estimated here were based 
on latent trait scores.

Next to the models discussed above, also models were 
estimated that included dominant genetic influences. How-
ever, independent of whether we also included a gene-envi-
ronment interaction, even with a very large number of burn-
in iterations (e.g., 75,000), the two MCMC chains did not 
achieve stationarity (i.e., did not approach the joint posterior 
or target distribution sufficient closely). Since models were 
already quite complex and the focus of this study was on a 
possible gene-environment interaction, we did not estimate 
any models that included contrast effects but note that these 
effects might also act on differences among MZ and DZ 
twins in the degree of hyperactivity and/or inattention.

The most important result of this research is that, on both 
core dimensions of ADHD, we found significant genotype-
environment interaction (AxE), meaning that the unique-
environmental variance component is larger in adolescents 
with a genetic predisposition towards high hyperactivity 
(inattention) than in adolescents with a genetic predispo-
sition towards low hyperactivity (inattention). Since effect 
sizes and credibility regions show that these concern large 
and robust effects, these results contribute to our understand-
ing of the aetiology of ADHD. Note that the mechanism 
causing this interaction is unknown, meaning that statisti-
cally a positive interaction can mean two different things: 
either unique-environmental factors moderate the influ-
ence of additive genetic factors on individual differences in 
hyperactivity and inattention, or vice-versa (additive genetic 
factors moderate the influence of unique environments on 
hyperactivity and inattention). In other words, the degree 
to which genetic factors contribute to individual differences 
in hyperactivity may vary depending on exposure to unique 
environments, and the degree to which unique environmental 
factors contribute to individual differences in hyperactivity 
may vary depending on additive genetic factors.

Note that, although the TEDS sample consists of a rep-
resentative sample of the population in England and Wales 
(see e.g. Rimfeld et al. 2019) the results discussed above 
are very specific to this particular population (i.e., 16-year-
old twin pairs born between 1994 and 1996) and might not 
generalize to other (similar) populations. For example, con-
textual factors might be very different for a sample of twins 
born in a different time period. Furthermore, the degree of 
hyperactivity and inattention was assessed using the two 
subscales of the SWAN which were part of the test booklet 
sent to twins and answered by themselves (not their par-
ents or teachers). Although the items were derived from 
the DSM-IV-TR (American Psychiatric Association 2008), 
research suggests that one needs a more robust assessment 
(for example a clinical interview and/or neuropsychological 
assessment) for a more reliable distinction between subjects 
with and without ADHD (see e.g., Bodenburg et al. 2022).

The method that was used in this research to investigate 
genotype-environment interaction in ADHD was parametrized 
such that, both genetic as well as unique-environmental influ-
ences, were modelled as latent (i.e., unmeasured) variables. 
Although this results in great statistical power to determine 
in an exploratory way whether there is genotype-environment 
interaction at all (see Schwabe and van den Berg, 2014 for 
technical details), a drawback is that we do not know what 
specific unique-environmental measures create more indi-
vidual differences in adolescents genetically predisposed to a 
high degree of hyperactivity and inattention. Future research 
on the aetiology of ADHD should focus on the exact nature 
of the effect found here by collecting specific environmental 
measures at the individual level. These should specifically be 
tested in adolescents with many ADHD symptoms, since that 
is where these environmental factors operate. Given that there 
is a broad range of influences that can contribute to differences 
in twin pairs (ranging from subtle prenatal differences to dif-
ferent perceptions of the environment), future research should 
first focus on variables that have proven to be important for 
ADHD, like parental stress (Tzang et al. 2008) and adverse 
childhood experiences like socioeconomic hardship or neigh-
bourhood violence (Brown et al. 2014).
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