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A B S T R A C T   

Landslides caused by mega earthquakes and other extreme climate change pose a major threat to lives and 
infrastructure. However, the lack of a detailed and timely landslide inventory and relevant risk assessment 
attributable to ongoing conflicts limits the effective prevention measures in Afghanistan. This study presents the 
first landslide inventory covering the whole nation of Afghanistan from 2015 to the present utilizing Google 
Earth Pro imagery and manual interpretation. Based on this inventory of 3,260 mapped landslides, we analyzed 
the distributional characteristics of landslides in Afghanistan and conducted a risk assessment that included 
landslide susceptibility and hazard, and vulnerability of the bearing areas. The existing regional studies attest to 
the accuracy and reliability of the inventory, and the results of the risk assessment using the optimized neural 
network method in this study are well validated. This study can provide a good database for the Afghan gov-
ernment to carry out relevant pre-disaster warnings and post-disaster reconstruction, which can help to delineate 
hotspots where landslides may occur, and reduce potential economic losses and human casualties from future 
landslides.   

1. Introduction 

Landslides are among the most prevalent geological disasters 
worldwide (Causes, 2001; Huang and Fan, 2013), which pose a signif-
icant threat to both economic development and human safety. Co- 
seismic and post-seismic landslides following mega-earthquakes, 
whose activity may continue for up to a decade (Fan et al., 2019b). In 
2022, a powerful earthquake of magnitude Mw 6.8 struck Luding 
County, China, triggering numerous coseismic landslides that destroyed 
homes, blocked roads, and caused many fatalities (Fan et al., 2022; 
Wang et al., 2022). Similarly, the Mw 7.9 Wenchuan earthquake of 2008 
in China induced numerous landslides that resulted in significant human 
and economic losses (Chang et al., 2021; Fan et al., 2019a). In Taiwan, 
the 1999 Chi-Chi earthquake triggered over 20,000 landslides, while 
subsequent heavy rains in 2000 and 2001 caused even more landslides 
due to the high disturbance of surface strata (Lin et al., 2006). Conse-
quently, researchers worldwide have undertaken investigations focusing 
on seismic activity, rainfall patterns, and other extreme weather- 
induced landslides, yielding preliminary findings. As almost all 

earthquakes can lead to secondary disasters that may last for extended 
periods, conducting risk assessments is crucial for pre-disaster warning 
and post-disaster reconstruction efforts (Agung et al., 2023; Casagli 
et al., 2023; Chomba et al., 2022; Gariano and Guzzetti, 2016; Rosly 
et al., 2023). 

A wide range of methods has been applied to assess the susceptibility 
of landslides, including logistic regression models (Dai et al., 2022), 
weight-of-evidence models (Chen et al., 2021), information quantity 
models (Tan et al., 2015), certainty factor methods (Yuan et al., 2022), 
fully connected neural network methods (Huang et al., 2020), neural 
network models (Gao and Ding, 2022), and others. Current researches 
proved that the selection of assessment models need comprehensively 
integrate local geological environments (Do et al., 2020; Shahabi et al., 
2022; Zhang et al., 2022). The analytic hierarchy process is a widely 
used and scientifically proven multiple-criteria decision-making tool for 
geological hazard assessment, and is the preferred method for many 
scholars conducting susceptibility studies with good reliability and sci-
entific validity (Kayastha et al., 2013; Vaidya and Kumar, 2006). Pre-
dominantly, vulnerability assessments of disaster-bearing bodies focus 
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on factors including but not limited to population density, building 
density, land use, and major infrastructure projects (Glade, 2003; Van 
Westen et al., 2008). Following the Wenchuan earthquake, Chinese re-
searchers have accrued substantial expertise in this domain, contrib-
uting to a more mature understanding of risk assessment in disaster- 
prone regions (Cui et al., 2012; Cui et al., 2009; Fan et al., 2018). 

The persisting conflict in Afghanistan has notably impeded the 
comprehensive analysis and assessment of geohazards, primarily 
attributable to the country’s economic instability and the humanitarian 
challenges it faces (Zhang et al., 2015). Nevertheless, several note-
worthy studies have delved into the realm of geohazards within 
Afghanistan. Waseem et al. (2018), Boyd et al. (2007), and Menon et al. 
(2004) conducted separate assessments, focusing on historical earth-
quakes in the region. In parallel, Zhang et al. (2015) undertook a sus-
ceptibility assessment, specifically targeting the Abe Barek landslide in 
Badakhshan Province. Shroder et al. (2011b) made fairly strides by 
investigating and characterizing a total of 22 large geologic disasters, 
encompassing rockfalls, landslides, and debris flows in northeastern 
Afghanistan. Additionally, Shroder’s work shed light on the occurrence 
of 34 large-scale loess landslides, often exacerbated by the frequency of 
earthquakes and agricultural land irrigation practices (Shroder et al., 
2011a; Shroder et al., 2011b). Nonetheless, it is pertinent to note that 
these investigations primarily homed in on distinct regions or hydro-
logical basins within Afghanistan’s geographical confines. In light of the 
scarcity of prior research addressing the vulnerability of landslide-prone 
regions in Afghanistan and the challenges posed by on-site fieldwork, 

our research endeavors to bridge this knowledge gap. Drawing upon 
established methodologies and insights gleaned from landslide vulner-
ability investigations in China, our study aspires to provide valuable 
insights into this hitherto underexplored domain. 

Recognizing the importance of reducing the loss of life and property 
caused by landslides and ensuring the safety and efficacy of post-war 
reconstruction endeavors, a comprehensive quantitative risk assess-
ment of landslides across Afghanistan is deemed a matter of notable 
research significance. To this end, we selected the entire nation of 
Afghanistan as our study area and meticulously interpreted all land-
slides that have occurred from 2015 to the present, utilizing Google 
Earth Pro (GEP) imagery. Our approach involved the utilization of the 
Analytic Hierarchy Process (AHP), the fully connected neural network 
(FCNN), and matrix analysis methods. These methods amalgamated 
geological conditions, earthquake magnitudes, precipitation data, and 
other predisposing factors with the vulnerability of populations exposed 
to disasters. By engaging in an exhaustive interpretation of landslides, 
our study culminated in a comprehensive landslide risk assessment for 
the entirety of Afghanistan. This study effectively fills a void in geo-
hazard studies within Afghanistan and offers invaluable data support for 
humanitarian efforts in the region, carrying profound implications for 
guiding future endeavors in the country. 

2. Study area 

Afghanistan, a landlocked country in Central Asia, shares borders 

Fig. 1. Map of the study area: a, topography map; b, stratigraphic lithology map. The base map came from ESRI ®.  
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with Turkmenistan, Uzbekistan, Tajikistan, China, Pakistan, and Iran (as 
shown in Fig. 1a) (Shahi, 2022). The Hindu Kush mountain range, 
located at the westernmost edge of the Tibetan Plateau (Dou et al., 
2023), stretches across Afghanistan from northeast to southwest, giving 
rise to the remarkable Wakhan Corridor. With an area of approximately 
647,500 km2, Afghanistan is located on the Iranian plateau and is home 
to the Amu Darya, Kabul, Helmand, and Harirud rivers. Except for the 
southwest region, most of Afghanistan is comprised of alpine valleys, 
with 27% of the country’s area at an elevation exceeding 2,500 m above 
sea level (a.s.l.), and its highest point, Nowshak Peak, reaching more 
than 7,400 m. Afghanistan’s geological history is extensive, and it ex-
hibits complete stratigraphic development from the oldest tertiary strata 
to the Holocene deposits (as shown in Fig. 1b) (Doebrich et al., 2006; 
Shroder et al., 2022). Numerous regions in Afghanistan are situated at 
high elevations, giving rise to low temperatures year-round and facili-
tating the formation of several glaciers and glacial lakes (Dou et al., 
2023; Haritashya et al., 2009; Joya et al., 2021). Afghanistan is pre-
dominantly influenced by the subtropical high-pressure zone during the 
summer season, resulting in a dry climate with limited rainfall. The 
Indian Ocean is the primary source of moisture for the region. Annual 
rainfall in Afghanistan typically ranges around 350 mm and is mainly 
concentrated during the winter and spring seasons. Precipitation varies 
significantly with altitude and location, with a general pattern of 
decreasing from southeast to northwest. Alpine snow and glacial melt-
water serve as crucial water sources for agricultural production (Aliyar 
and Esmailnejad, 2022; Rousta et al., 2020). 

Due to Afghanistan’s location as a landlocked country with high 
mountain growth and an active Alpine-Himalayan orogenic belt, it is 
highly susceptible to mega earthquakes (Waseem et al., 2018). These 
earthquakes can cause the mountains to crack, leading to geotechnical 
instability and an increased likelihood of landslides (Fan et al., 2019b). 
The current state of affairs in Afghanistan is marred by political turmoil 
and persistent conflict, posing not only a threat to the nation’s peace and 
stability but also a substantial challenge to the international community. 
Moreover, Afghanistan’s diverse topography, spanning mountains, de-
serts, and grasslands, frequently experiences natural disasters, most 
notably landslides. Regrettably, due to the ongoing political instability 
and conflict, conducting fieldwork in Afghanistan remains unfeasible at 
present. 

3. Materials and methods 

3.1. Map of landslides 

Google Earth Pro (GEP) as one of the most advanced remote sensing 
image collection platforms, provided a large number of various high- 
resolution satellite images, it could be the base map for disaster inter-
pretation (Yu and Gong, 2012). The GEP images completely covered the 
whole of Afghanistan, so this study used GEP exclusively as the image 
source for disaster interpretation. In this process, to ensure the accuracy 
of landslide and debris flow outlines, all interpretations were manually 
interpreted by a team of dozens of experienced experts, and at least two 
different experts cross-checked the results. We selected only images with 
a level larger than L18 (i.e., 0.5 m resolution) for interpretation (i.e., 
WorldView-2 and QuickBird satellite images with a resolution of 0.5 m 
in GEP). Based on the satellite imaging time, this study’s disaster 
interpretation time range was from August 28, 2013, to September 12, 
2021. ASTER GDEM V3 is used as the only digital elevation model 
(DEM) in the process of analyzing terrain factors such as slope and 
aspect due to its high accuracy and wide coverage (Abrams et al., 2020). 
The data sources used in this study are demonstrated in detail in Table 1. 

3.2. Landslide risk assessment methodology 

A complete system of landslide risk assessment includes the landslide 
assessment of susceptibility and hazard, as well as the vulnerability 

assessment of the landslide-bearing body (Chang et al., 2022). Different 
impact factors and assessment systems are used when conducting 
landslide risk assessment (Dai et al., 2002). Here we briefly describe the 
methods and models used to conduct the risk evaluation of landslides in 
Afghanistan, see the Appendices for more information. 

3.2.1. Susceptibility assessment 
According to the characteristics of Afghanistan’s topography and 

landscape, this paper divides Afghanistan into two different assessment 
regions: the highland assessment region and the mountain assessment 
region. 

Based on the available literature and data, a total of ten factors were 
selected for susceptibility assessment in this study, namely: Slope, 
Aspect, Stratigraphic Lithology, Peak Ground Acceleration (PGA), 
Normalized Difference Vegetation Index (NDVI), Distance to road, Dis-
tance to river, Elevation, Fractional Snow Cover (FSC) and Land use 
type. As the highland assessment area contains more glaciers, more than 
half of the area is covered by snow, resulting in significant snow melt 
(Bishop et al., 2014). In contrast, the mountain assessment region has 
relatively less snow and contributes less to the occurrence of disasters. 
Therefore, FSC was used only in the highland assessment region, while 
Land use type was used only in the mountain assessment region. After a 
comprehensive assessment of various commonly used methods, this 
paper employs the FCNN to assess the susceptibility of landslides in 
Afghanistan. In contrast to the simpler artificial neural network with 
only one input layer, one hidden layer, and one output layer, our study 
designed an FCNN with one input layer, four hidden layers, and one 
output layer. This design significantly enhances model accuracy, re-
duces errors, and effectively avoids overfitting even with extended 
training time, as evidenced by the improved performance resulting from 
the addition of three hidden layers. 

To generate random points for this study, we employed the random 
point generation tool in ArcGIS Pro ®. The same number of random 
points were generated as positive and negative samples within the 
disaster zone and 200 m outside the disaster buffer zone, respectively 
(Lucchese et al., 2021; Zhou et al., 2018). The multi-value extraction to 
points tool in ArcGIS Pro ® was used to extract the actual values of 
factors into each random point attribute table. Next, we marked the 
random points with landslide hazards as positive samples and those 
without landslide hazards as negative samples. The training set and 
validation set were randomly selected using a certain ratio, with the 
ratio of positive and negative samples in each set maintained at 1:1. 

In the highland assessment region, this study produced 4,000 points, 
with and without disasters, utilizing ArcGIS Pro’s random point tool and 
the established disaster database. The eigenvalues for the nine assess-
ment factors were extracted using the Extract Multiple Values to Points 
tool and designated as positive and negative samples. From there, this 

Table 1 
Data sources list. Processing of temperature, precipitation, and snow cover data 
see Appendices.  

Data Types Sources Resolution References 

Land use type Google Dynamic 
World 

10 m Brown et al. 
(2022) 

DEM ASTER GDEM V3 30 m Tachikawa 
et al. (2011) 

Satellite images Google Earth Pro 0.5 m / 
Tectonics U.S. Geological 

Survey 
1:500,000 Doebrich et al. 

(2006) Stratigraphic 
lithology 

Precipitation Climatic Research 
Unit gridded Time 
Series 

0.5◦ (Processing 
to 300 m) 

Harris et al. 
(2020) Temperature 

Snow cover Science Data Bank 600 m 
(Processing to 
300 m) 

Qiu (2018) 

Population WorldPop 1 km Tatem (2017)  
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study randomly created training and validation sets for FCNN, with 
ratios of 8:2, 7:3, and 6:4 for the model training. In contrast, 3000 
sample points each in the disaster and non-disaster areas were randomly 
generated in the high mountain region for the same model training. The 
eigenvalues of the nine factors were utilized to train the model in the 
highland and mountain regions. The training results revealed that when 
the ratio of the training and validation sets for the factors in the highland 
region was 7:3, the accuracy of the training results increased rapidly and 
the loss rate decreased swiftly. Conversely, the best model training 
outcomes were obtained when the ratio of the training and validation 
sets for the mountain region was 8:2. Therefore, this study employed 
two distinct ratios of training and validation sets, namely 7:3 and 8:2, for 
the highland and mountain regions, respectively, to predict the sus-
ceptibility of landslides for the entire area. To ensure high accuracy in 
the calculation of the regional model, a sequential fusion of nine factors 
with multi-band satellite images was performed using ArcGIS Pro ®. 
This was followed by radiation matrix prediction at the image level, 
achieved with the aid of the geospatial data abstraction library (GDAL) 
in ArcPy ® (Warmerdam, 2008). The predicted values and the suscep-
tibility results were then returned in raster format in the form of matrix 
information. 

3.2.2. Hazard assessment 
This study integrates surface runoff and glacial snow meltwater 

equivalent as contributing factors, derived through the soil conservation 
service curve number (SCN-CN) method (Mishra et al., 2006) and 
Degree-day model (Braithwaite and Zhang, 2000) (See Appendices for 
detailed information), respectively, for risk assessment of highland and 

mountain regions based on landslide susceptibility assessment. The 
assessment factors are subjectively weighted by AHP to assess the hazard 
of landslides. 

3.2.3. Vulnerability assessment 
This article presents a comprehensive analysis of the fundamental 

characteristics of landslides and their potential impact on Afghanistan. 
Considering the availability of assessment factors in the study area, we 
have developed a vulnerability assessment index system for geological 
hazards in Afghanistan. Specifically, we have identified five key factors, 
namely population density, building density, road density, and envi-
ronmental vulnerability. These indicators have been carefully selected 
and integrated to provide a robust and accurate framework for assessing 
the vulnerability of regions in Afghanistan to geological hazards. This 
study used population density data from WorldPop (Tatem, 2017), while 
building and road data were obtained by manual interpretation with 
landslides. Land use type data were collected from Google Dynamic 
World (Brown et al., 2022). 

The vulnerability assessment of landslide-bearing areas in 
Afghanistan is based on three main aspects: population vulnerability, 
economic vulnerability, and environmental vulnerability. Among them, 
the main evaluation indicator of population vulnerability is population 
density, the main evaluation indicator of economic vulnerability is 
building density and road density, and the indicator of environmental 
vulnerability is environmental fragility. According to existing surveys 
and statistical data, regions prone to landslides in Afghanistan are pre-
dominantly concentrated in major cities and towns exhibiting high 
population vulnerability. Although the country’s average population 

Fig. 2. Map of the distribution of different indicators: a, population density; b, building area; c, road class; d, land use type. The base map came from ESRI ®.  
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density was a mere 49.73 people/km2, Kabul, the capital, features a 
striking population density of approximately 1,127.29 people/km2, 
rendering it the most densely populated city in the country. Other sig-
nificant urban centers exhibit population densities between 400 and 800 
people/km2, while the majority of provinces and cities maintain a 
general population density below 200 people/km2 (as shown in Fig. 2a). 
There were various forms of buildings as one of the disaster-bearing 
bodies, and the calculated normalized building density results were 
used to represent the vulnerability of buildings in this paper (as shown in 
Fig. 2b). And, owing to the results of road interpretation in Afghanistan, 
the roads were classified into four classes, with Class I roads suffering 
the most damage from landslides (as shown in Fig. 2c). In Afghanistan, 
the assessment of environmental vulnerability covers the environmental 
capacity of different land types, including arable land, woodland, 
scrubland, wetland, water bodies, and built-up areas, with the unit price 
of land factored. The findings, normalized for comparison, are illus-
trated in Fig. 2d. 

4. Results 

4.1. Distribution characteristics of landslides in Afghanistan 

In this study, the interpretation covered an area of 647,500 km2 and 
identified 3,260 landslides (as shown in Fig. 3). The results of the 
interpretation show that the geology of Afghanistan has a significant 
influence on the occurrence of landslides, most of which are of the 
epochal type. Areas, where bedrock is exposed, are subject to severe 
weathering leading to the formation of landslides. The results also show 
that epochal landslides tend to be medium to large in size, while recent 
landslides tend to be smaller. 

Through statistical analysis of the distribution characteristics of 
landslides, it has been revealed that almost all landslides have an area of 
less than 1 km2, of which those with an area of less than 0.1 km2 have 
2,620, accounting for 80.37% of the number of all landslides (as shown 
in Fig. 4). These catastrophic events occur in 31 out of the 34 provinces 
spanning Afghanistan, the specific distribution is shown in Table 2. 
Notably, the density of landslide occurrences is approximately 5.54 
units per 1,000 km2, indicating a relatively concentrated distribution. 
Furthermore, among the provinces experiencing landslide events, 

Badakhshan, Parwan, Samangan and Takhar Provinces stand out as 
areas with a high density, with values surpassing 10 units per 1,000 km2. 

4.2. Landslide susceptibility assessment result 

The assessment result of landslide susceptibility in the highland and 
mountain regions is shown in Fig. 5 and Table 3. Specifically, in the 
highland region, 9.239 % of all assessed zones exhibited high suscepti-
bility, with medium and low susceptibility accounting for 12.96% and 
21.23%, respectively. In the mountain region, 5.30% of the assessed 
zones were categorized as highly susceptible to landslides, while 3.30% 
and 4.61% were classified as medium and low susceptibility, respec-
tively, with the remaining 86.94% being deemed less prone to land-
slides. Combined with the topographic and geomorphological features 
of Afghanistan, the high landslide susceptibility zones are mainly 
located in regions with steep terrain and more abundant physical 
sources. The highland region has a much higher susceptibility to land-
slides compared to the mountain region. 

4.3. Landslide hazard assessment result 

Using the discriminant matrix from the AHP, we analyzed the 
meltwater equivalent and surface runoff and derived hazard weight 
matrices for the highland and mountain regions as shown in Table 4 and 
Table 5. Using the results of the meltwater equivalent, surface runoff, 
and susceptibility, we performed an overlay analysis in ArcGIS Pro ® to 
derive the landslide hazard assessments. 

The calculated results were classified into low, medium, high, and 
very high hazard zones using the reclassification tool of ArcGIS Pro ® 
with the natural breakpoint method (Nandi and Shakoor, 2008), 
following the principle of landslide hazard increasing from small to 
large. The hazard assessment results were analyzed separately for the 
highland and mountain regions (as shown in Fig. 6 and Table 6). And the 
results showed that in the highland region, the total area of landslide 
hazard assessment is 9,6281.53 km2, with 9,558.51 km2 (9.93% of the 
total area) classified as very high hazard zone, 13,001.35 km2 (13.50% 
of the total area) classified as high hazard zone, and 21,241.31 km2 

(22.06% of the total area) classified as a medium hazard zone. In the 
mountain region, the total area of landslide hazard assessment is 

Fig. 3. Map of landslide distribution for Afghanistan.  
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293,247.38 km2, with 15,862.640 km2 (5.41% of the total area) classi-
fied as a very high hazard zone, 28,564.74 km2 (9.74% of the total area) 
classified as high hazard zone, and 30,214.95 km2 (10.30% of the total 
area) classified as a medium hazard zone. As with the susceptibility 
results, these findings suggested that the hazard of landslides is signifi-
cantly higher in the highland region than in the mountain region. 

4.4. Vulnerability assessment of the bearing area 

The holistic vulnerability assessment of landslides in Afghanistan 
was derived by considering the aforementioned evaluation factors (as 
shown in Table 7, Table 8, and Fig. 7). High and very high vulnerability 
zones predominantly occurred in regions with dense populations, well- 
developed infrastructure, including housing, and extensive surface 
arable land. These zones were chiefly found in the central and western 
provinces surrounding the capital city, as well as in the northern prov-
inces of Afghanistan. Characterized by low-lying terrain and relatively 
advanced transportation systems, these zones are conducive to agricul-
tural production and human settlement. Consequently, the probability 
of human casualties and economic losses due to landslides was elevated, 
with significant potential impacts. Furthermore, high vulnerability 
zones could also be found in other mountainous and gully locations 
where larger flat expanses are present. The medium vulnerability zones 
were distributed around the high susceptibility zones. 

4.5. Landslide risk assessment result 

Landslide risk assessment in Afghanistan was conducted through 
matrix analysis, as depicted in Fig. 8. Owing to the reduced likelihood of 
landslide occurrences in areas with low susceptibility, the associated 
risk in these zones was determined to be low. The outcomes of the risk 
assessment revealed a distinct spatial pattern in the distribution of 
landslide risks across Afghanistan (as shown in Fig. 9 and Table 9). Very 

Fig. 4. Frequency statistics for landslide area: (a) for all areas, (b) for landslides less than 1 km2, and (c) for landslides less than 0.09 km2.  

Table 2 
Density of landslide distribution in various provinces of Afghanistan.  

Numbers Province Area of 
Province 
(km2) 

Landslide 
Counts 

Density of Landslides 
(units/1000 km2) 

2 Kunduz  44756.55 4  0.09 
3 Zabul  18550.75 25  1.35 
4 Paktika  19643.32 12  0.61 
5 Helmand  54984.86 18  0.33 
6 Khost  3443.88 17  4.94 
7 Paktia  5544.37 18  3.25 
8 Ghazni  20514.34 1  0.05 
9 Daykundi  20999.85 128  6.10 
10 Logar  4554.90 24  5.27 
11 Wardak  7489.32 90  12.02 
12 Nangarhar  7902.99 71  8.98 
13 Kabul  4829.14 51  10.56 
14 Kapisa  2398.59 7  2.92 
15 Laghman  3139.19 59  18.79 
16 Ghazni  34213.73 139  4.06 
17 Parwan  5922.47 194  32.76 
18 Bamyan  19750.15 149  7.54 
19 Kunar  3136.62 164  52.29 
20 Nuristan  11452.45 312  27.24 
21 Panjshir  3621.91 15  4.14 
22 Badghis  24541.79 19  0.77 
23 Sar-e-Pol  14144.20 74  5.23 
24 Baghlan  16401.87 142  8.66 
25 Faryab  24938.11 25  1.00 
26 Samangan  17972.35 176  9.79 
28 Balkh  13997.23 17  1.21 
30 Takhar  16776.30 71  4.23 
31 Badakhshan  47319.72 854  18.05 
32 Uruzgan  11935.11 3  0.25 
33 Farah  49782.69 146  2.93 
34 Herat  53852.58 235  4.36  
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high and high risk zones are mainly located in the tectonically developed 
areas along the Hindu Kush, especially along the Kolcha River that 
straddles the border between Takhar and Badakhshan Provinces. Other 
high-risk areas include the KabulRiver along the border of Nangarhar, 
Laghman, Kapisa and Kabul Provinces. In addition, these risk-prone 
areas are also concentrated along the Helmand River as well as along 
the Hindu Kush, and are evident in the traffic-developed areas of 

Nuristan, Khulna, Nangarhar, Logar, Khost, Farah, and Baghlan Prov-
inces, as well as scattered in the Hindu Kush areas along the route. Zones 
of medium risk were more uniformly distributed across Afghanistan, 
predominantly in the eastern region of the country. Due to these zones 
primarily comprised high mountainous and valley terrain, the popula-
tion distribution is comparatively concentrated and susceptible to 
disaster-related losses. Notably, Kabul, Panjshir, Nangarhar, and 
Badakhshan provinces represented the most conspicuous medium risk 
zones within the territory. Additionally, Kandahar and Uruzgan prov-
inces in southern Afghanistan, as well as the western regions of Herat 
province, which were situated near the periphery of population ag-
glomerations, also falled within the medium-risk classification. 

5. Conclusions and discussion 

As a country susceptible to seismic events, co-seismic and post- 
seismic landslides crucially imperil human life and property of 
Afghanistan. However, the prevailing uncertainty caused by conflict and 
other unavoidable reasons made fieldwork remain infeasible. In this 
study, we have successfully established the first-ever landslide inventory 
utilizing optical satellite imagery and manual visual interpretation. This 
inventory mapped 3,260 landslides covering the whole of Afghanistan 
from 2015 to the present. Most of them are distributed in the north-
eastern mountainous region. Based on this inventory, we conducted a 
detailed risk assessment including landslide susceptibility and hazard, 
and vulnerability of the bearing area. Given the country’s unique 
geographical location and climate, we integrated hazard assessment 
results with two factors—meltwater equivalent from glaciers and snow 

Fig. 5. Distribution map of landslide susceptibility assessment.  

Table 3 
Landslide susceptibility statistics for highland and mountain regions.  

Region Class Landslide 
Area (km2) 

Landslide area as a 
percentage (%) 

Landslide 
density 

Highland None  1.44  0.50 0.0274 ×
10− 3 

Low  8.52  2.95 0.4328 ×
10− 3 

Medium  30.73  10.64 2.3304 ×
10− 3 

High  248.00  85.91 22.832 ×
10− 3  

Mountain None  0.06  0.09 0.0002 ×
10− 3 

Low  0.06  0.09 0.0043 ×
10− 3 

Medium  0.23  0.35 0.0241 ×
10− 3 

High  66.76  99.48 4.3001 ×
10− 3  

Table 4 
Hazard weighting discriminant matrix for the highland region.  

Factor Susceptibility Meltwater 
equivalent 

Surface 
runoff 

Weight 

Susceptibility 1 4 5  0.6648 
Meltwater 

equivalent 
1/4 1 4  0.2449 

Surface runoff 1/5 1/4 1  0.0902  

Table 5 
Hazard weighting discriminant matrix for the mountain region.  

Factor Susceptibility Surface 
runoff 

Meltwater 
equivalent 

Weight 

Susceptibility 1 5 6  0.7016 
Surface runoff 1/5 1 5  0.2258 
Meltwater 

equivalent 
1/6 1/5 1  0.0727  
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and surface runoff—to evaluate landslide hazards in Afghanistan. We 
found a large number of very high and high risk zones in the tectonically 
developed areas along the Hindu Kush, as well as many medium risk 
regions in the more populated areas of eastern Afghanistan. 

Compared with previous studies of landslides in Afghanistan, we 
adopted two distinct geographic settings, namely highland and moun-
tain regions. In this way, we conducted the assessment of the whole of 
Afghanistan rather than some specific mountainous or watershed 

regions. In the research by Zhang et al. (2015), an extensive analysis was 
undertaken concerning the Abe Barek landslide, a significant event that 
transpired on May 2, 2014, within the confines of Badakhshan Province, 
Afghanistan. Employing the weight-of-evidence methodology, Zhang 
et al. (2015) meticulously conducted a susceptibility assessment that 
encompassed a substantial 609 landslides across the region. In this 
study, we mapped 854 landslides within Badakhshan province, which 
served as a complement to Zhang et al.’s map, particularly in the un-
explored regions of Wakhan and other adjacent areas. An insightful 
comparison of our findings with Zhang et al.’s results within overlapping 
mapped landslide-prone. This compelling congruence substantiates the 
methodological soundness underpinning our assessment and, by exten-
sion, attests to the scientific validity and reliability of the outcomes 

Fig. 6. Hazard assessment distribution map of landslide in Afghanistan.  

Table 6 
Landslide hazard statistics for highland and mountain regions.  

Region Class Landslide Area 
(km2) 

Landslide area as a 
percentage (%) 

Disaster 
density 

Highland Low  3.57  1.24 0.0728 ×
10− 3 

Medium  11.39  3.95 0.5087 ×
10− 3 

High  34.70  12.02 2.4133 ×
10− 3 

Very 
high  

239.09  82.80 22.750 ×
10− 3  

Mountain Low  0.06  0.09 0.0002 ×
10− 3 

Medium  0.12  0.18 0.0071 ×
10− 3 

High  0.47  0.69 0.0447 ×
10− 3 

Very 
high  

66.65  99.05 4.2382 ×
10− 3  

Table 7 
Factor weights, CR and λmax of the AHP matrix for vulnerability evaluation. Here, CR is the stochastic consistency ratio of the matrix; λmax is the maximum eigenvalue 
of the matrix.  

Factor Population density Building density Road density Environmental vulnerability Weight CR λmax 

Population density 1 3 4 5  0.4258 0.0079 3.0092 
Building density 1/3 1 3 4  0.2945 
Road density 1/4 1/2 1 3  0.1848 
Environmental vulnerability 1/5 1/4 1/3 1  0.0949  

Table 8 
Landslide vulnerability statistics for highland and mountain regions.  

Region Class Graded raster 
counts 

Graded Area 
(km2) 

Graded area as a 
percentage (%) 

Highland Low 834,415  52555.905  54.586 
Medium 514,322  32394.752  33.646 
High 124,485  7840.687  8.144 
Very 
high 

55,413  3490.186  3.625  

Mountain Low 2,083,431  130353.349  44.452 
Medium 1,744,788  109165.583  37.226 
High 746,103  46681.184  15.919 
Very 
high 

112,636  7047.260  2.403  
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presented herein. Furthermore, during the concluding manual inspec-
tion phase of our landslide inventory, we extensively cross-referenced 
the previously documented landslides by Shroder et al. (2011a, b). 
While Shroder et al.’s research primarily focused on elucidating the 
mechanisms and characteristics of these landslides without delving into 
a comprehensive risk assessment, their work nonetheless furnished a 
robust underpinning for landslide validation within the purview of this 
study. 

While this study has effectively mapped landslides across 
Afghanistan from 2015 to the present, an obvious constraint lies in our 
inability to undertake on-site field surveys to the identified landslides 
and access to detailed local population and building. The absence of 
such field surveys represents a primary limitation of this study endeavor. 
These field investigations are essential for rigorously validating the 

accuracy of our mapping outcomes and furnishing data for refining the 
selection and weighting of factors involved in landslide risk assessment. 
This also could promise to enhance the precision and reliability of our 
evaluation results. Besides, Afghanistan is also confronted with other 
hazards, including rock avalanches, debris flows, glacial lake outburst 
floods, and others. These additional hazards will be the primary focus of 
our subsequent research efforts. 

In conclusion, for Afghanistan, detailed monitoring and early 
warning of existing landslides is particularly important. This study 
provides a detailed checklist and guidelines for the Government of 
Afghanistan to carry out landslide monitoring and early warning. 
Installation of the necessary monitoring equipment in key areas close to 
cities to observe the stability of slopes promptly. Disaster awareness in 
remote and underdeveloped areas should be promoted through 

Fig. 7. Vulnerability assessment of landslide-bearing area for highland and mountain regions.  

Fig. 8. Landslide risk rating matrix for Afghanistan.  
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extensive publicity and training to ensure that people can notice 
impending landslides and take effective evacuation measures. Further-
more, we anticipate that the ongoing advancements in satellite tech-
nology will usher in a new era of higher-resolution imagery. This holds 
the potential to address the existing shortcomings in our current dataset, 
thereby bolstering the comprehensiveness and efficacy of our landslide 
assessments. 

CRediT authorship contribution statement 

Ming Chang: Conceptualization, Writing – original draft, Writing – 
review & editing, Project administration, Resources, Funding acquisi-
tion. Xiangyang Dou: Conceptualization, Methodology, Formal anal-
ysis, Visualization, Writing – original draft, Writing – review & editing. 
Fenghuan Su: Writing – review & editing, Resources, Funding acqui-
sition. Bo Yu: Methodology, Software, Data curation, Formal analysis. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This research was financially supported by the Second Tibetan 
Plateau Scientific Expedition and Research Program (STEP) (grant 
number 2019QZKK0902), the National Natural Science Foundation of 
China (grant number 42077245), and the State Key Laboratory of 
Geohazard Prevention and Geoenvironment Protection Independent 
Research Project (grant number SKLGP2022Z005). Xiangyang Dou 
would like to thank the China Scholarship Council (CSC) for funding his 
research period at the University of Twente (grant number 
202309230008). The authors acknowledge the constructive comments 
from the editor and reviewers improving the quality of this manuscript. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2023.111179. 

References 

Abrams, M., Crippen, R., Fujisada, H., 2020. ASTER Global Digital Elevation Model 
(GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens-Basel 12 
(7), 1156. https://doi.org/10.3390/rs12071156. 

Agung, P.A., Maha, H., Rouf, M.F., Susilo, A., Ahmad, M.A., Ahmad, B., Mohd, J., 
Abdurrahman, U.A., Sudjianto, A.T., Suryo, E.A., 2023. Compilation of parameter 
control for mapping the potential landslide areas. Civil Eng. J. 9 (4), 974–989. 
https://doi.org/10.28991/cej-2023-09-04-016. 

Aliyar, Q., Esmailnejad, M., 2022. Assessment of the change of trend in precipitation over 
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