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Abstract
There is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate 
environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have 
consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafax-
ine (0–50 µg/L), on the behavior of non-target organism, i.e., freshwater pond snail, Lymnaea stagnalis. As compounds 
interact with chemical cues in the aquatic ecosystems, we also tested whether the effects altered in the presence of bile 
extract containing 5α-cyprinol sulfate (5α-CPS), a characterized kairomone of a natural predator, common carp (Cyprinus 
carpio). Behavior was studied using automated tracking and analysis of various locomotion parameters of L. stagnalis. 
Our results suggest that there are differences in the effects on locomotion upon exposure to venlafaxine and fluoxetine. 
We found strong evidence for a non-monotonic dose response on venlafaxine exposure, whereas fluoxetine only showed 
weak evidence of altered locomotion for a specific concentration. Combined exposure to compounds and 5α-CPS reduced 
the intensity of effects observed in the absence of 5α-CPS, possibly due to reduced bioavailability of the compounds. 
The results highlight the need for acknowledging different mechanisms of action among antidepressants while investigat-
ing their environmental risks. In addition, our results underline the importance of reporting non-significant effects and 
acknowledging individual variation in behavior for environmental risk assessment.

Keywords  Psychopharmaceutical · SSRI · SNRI · Behavioral toxicity · Gastropod · Fluoxetine · Venlafaxine · 5α-cyprinol 
sulfate

Introduction

Since industrialization, increasing amounts of synthetic 
chemicals are being discharged to the aquatic environment 
(Bernhardt et al. 2017). Pharmaceuticals are a group of syn-
thetic chemicals that are contaminating aquatic ecosystems 
and hence included in the Water Framework Directive’s 
Watchlist of contaminants of emerging concern (Gomez 
Cortes et al. 2020). Pharmaceuticals are used to treat, prevent 
and/or diagnose a medical condition in humans and animals. 
Antidepressants are a major class of psychiatric pharmaceu-
ticals that are increasingly occurring in aquatic systems in 
recent years (Sehonova et al. 2018; Silva et al. 2015). Global 
average fluoxetine (selective serotonin reuptake inhibitor) 
concentrations in surface waters ranges between 0.012 and 
1.4 µg/L (Weinberger & Klaper 2014), while its concentra-
tion in wastewater treatment plant effluents was found to 
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reach 3.5 µg/L (Salgado et al. 2011). Observed concentra-
tions of venlafaxine (selective serotonin-norepinephrine 
reuptake inhibitor) in surface waters are variable ranging 
from 0.021 to 0.64 µg/L (Chen et al. 2022; de Jongh et al. 
2012; Fernandes et al. 2020) with concentrations as high 
as 2.190 µg/L found in wastewater treatment plant effluent 
(Schultz and Furlong 2008).

Antidepressants can be classified into nine categories 
based on their mechanism of action, out of which selec-
tive serotonin reuptake inhibitors (SSRIs), tricyclic antide-
pressants, and serotonin-noradrenaline reuptake inhibitors 
(SNRIs) are widely used (Melchor-Martínez et al. 2021). 
SSRIs and SNRIs are two major categories of antidepres-
sants that frequently occurring in aquatic systems. SSRIs 
increase neuronal activity by preventing presynaptic reup-
take of serotonin (5-HT) at all administered concentrations. 
In contrast, SNRIs are another major category of antide-
pressants that have a dual mechanism of action, i.e., at low 
concentrations SNRIs inhibit reuptake of 5-HT similar to 
SSRIs, and when administered at high concentrations, they 
prevent the reuptake of both 5-HT and norepinephrine (NE) 
(Harvey et al. 2000; Salahinejad et al. 2022). In determin-
ing standard ecotoxicological metrics, these subtle differ-
ences in the mechanism of action among antidepressant 
categories are overlooked. Considering that the active recep-
tors for antidepressants have been conserved in evolution 
among invertebrates and vertebrates (Tierney 2018), anti-
depressants may evoke a response in non-target organisms 
(Gómez-Canela et al. 2023). Hence, it is crucial to explore 
the direct and indirect effects of different categories of anti-
depressants on non-target organisms. It is also necessary to 
ascertain whether antidepressants with different mechanisms 
of actions lead to similar or different responses in organisms, 
which would determine whether there is a need to monitor 
antidepressants individually in contrast to grouping them 
under one umbrella group.

Two antidepressants, fluoxetine, an SSRI, and venlafax-
ine, an SNRI, were chosen for this study to test for sublethal 
direct and indirect effects. These two antidepressants are 
specifically of interest considering the recent discussions at 
European water authorities about the grouping of pharma-
ceuticals with similar mode of action for monitoring pur-
poses. Venlafaxine and fluoxetine both inhibit the reuptake 
of neurotransmitter—serotonin—at low concentrations, but 
at high concentrations, venlafaxine switches to also inhibit-
ing the reuptake of norepinephrine (Harvey et al. 2000). We 
selected these two pharmaceuticals because of their frequent 
occurrence in aquatic systems, similarity in mode of action, 
and lack of understanding about their potential to evoke 
direct and indirect effects on non-target organisms and to 
disrupt natural chemical compounds in aquatic ecosystems. 
For example, environmentally observed and sublethal con-
centrations of fluoxetine at 0.01 µg/L and 0.1 µg/L reduced 

the percentage of time spent on locomotion to < 20% in 
Gammarus pulex (De Lange et al. 2006).

In addition to synthetic chemicals, aquatic systems also 
have a smellscape of natural chemicals. Natural chemi-
cals are chemicals that are released by either organisms or 
the environment through natural processes such as excre-
tion, weathering, and decomposition (Klaschka 2009). A 
specific class of natural chemicals is represented by info-
chemicals, i.e., chemicals that are released by organisms 
and affect interactions such as recognizing kin, recognizing 
predators, choosing mates, and locating food (Van Donk 
et al. 2016). Different classes of chemical cues govern 
the interaction between prey and predator. Kairomones 
are such a cue released by the predator that is adaptively 
favorable for the prey, by alerting the prey of the presence 
of the predator. Other types of cues include disturbance 
cues released by startled prey and alarm cues released 
by injured prey (chemicals leaked by damaged tissue of 
prey) (Ferrari et al. 2010). Emerging synthetic chemicals 
such as pharmaceuticals have the potential to indirectly 
disrupt interaction between aquatic organisms (Van Donk 
et al. 2016). For example, antidepressants may affect the 
response of non-target organisms to infochemicals, such 
as fish kairomones (Bedrossiantz et al. 2021; Bellot et al. 
2022). Despite these indirect effects being potentially equal 
in magnitude as the direct effects, they are currently not 
investigated in the standard ecotoxicological metrics (Pre-
isser et al. 2005). As explained in Van Donk et al. (2016), 
indirect effects of synthetic chemicals on aquatic organisms 
can be density-mediated, trait-mediated, or via mimicking/
disrupting infochemicals.

Freshwater snails are prey for other aquatic organisms 
such as fishes and crayfish and play a role in decomposition, 
making them a key organism in aquatic food webs. There-
fore, it is important to inspect the direct and indirect effects 
of environmentally relevant concentrations of pharmaceuti-
cals on this non-target group of organisms. The pulmonate 
freshwater snail, Lymnaea stagnalis, is a widespread gas-
tropod that plays an important role in aquatic food webs as 
herbivores, occasionally feeding on small dead invertebrates, 
including congeners (Amorim et  al. 2019; Ducrot et  al. 
2014). L. stagnalis is a sensitive ecosystem health indicator 
making this species a reliable model species in ecotoxicity 
tests to define standard ecotoxicological parameters such as 
no observed effect concentration (NOEC), lethal and effec-
tive concentrations of toxicants (Amorim et al. 2019; Fodor 
et al. 2020). The effect of toxicants on the behavior of L. 
stagnalis is sensitive and informative, specifically consider-
ing that behavioral traits such as avoidance and locomotion 
are highly energy consuming in L. stagnalis (Amorim et al. 
2019). Common forms of locomotion in L. stagnalis such as 
crawling are regulated by serotonergic pathway by releasing 
serotonin to the muscle and cilia in the sole (Aonuma et al. 
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2020). Therefore, antidepressants that act on serotonin such 
as SSRIs and SNRIs have the potential to affect locomotion. 
To exemplify, Fong et al. (2015) observed that venlafaxine 
(157 µg/L to 3.13 mg/L concentrations) increased crawling 
speed in 2 marine snail species (i.e., Urosalpinx cinerea and 
Lithopoma americanum). In the same study, however, fluox-
etine at high concentrations (3.45 mg/L) reduced the crawling 
speed of both snail species (Fong et al. 2015). Additionally, 
in the presence of infochemical cues from their natural preda-
tors, tench (Tinca tinca) and crayfish (Procambrius clarkia), 
L. stagnalis display an innate anti-predator response by crawl-
ing out of the water surface (crawl-out response) (Dalesman 
et al. 2006; Orr and Lukowiak 2010). L. stagnalis possesses 
serotonin receptors that are binding sites for both chosen 
antidepressants, hence indicating their potential to indi-
rectly affect traits such as locomotion and/or interfere in the 
anti-predator response caused by the predator infochemical. 
Additionally, L. stagnalis possess receptors for octopamine, 
which are involved in locomotion. Octopamine is structurally 
similar to norepinephrine, i.e., a neurotransmitter regulated 
by venlafaxine at high concentrations (Bymaster et al. 2001). 
Differences in the direct and indirect effects of fluoxetine and 
venlafaxine on behavior of L. stagnalis at environmentally 
relevant concentrations and their potential to affect natural 
chemical information transfer remain unexplored.

In this study, therefore, we tested differences in the effect 
of these two representatives and widely used antidepressants 
(i.e., fluoxetine and venlafaxine) on behavior of freshwater 
snail, Lymnaea stagnalis. As we were interested in how the 
presence of a potential infochemical affected the impact of 
antidepressant exposure, we also assessed if effects caused 
by two antidepressants were modulated by the presence of 
a potential infochemical (carp bile extract with active kai-
romone (5α-CPS); Hahn et al. 2019). Several studies have 
shown behavioral responses such as locomotory responses 
to be rapid and instinctive; therefore, we focused on the 
response of individuals upon acute exposure (Bossus et al. 
2014; De Lange et  al. 2006; Ford and Fong 2016). We 
hypothesized the response pattern along the exposure gra-
dient varies between fluoxetine and venlafaxine, owing to the 
differences in the receptors they act upon (Fong et al. 2015). 
More specifically, due to this different mode of actions, 
we expected exposure to both fluoxetine and venlafaxine 
individually to increase locomotion in L. stagnalis seen as 
increasing velocity (mm/s) and duration of movement (s) 
and crawl-out over the concentration gradient. Additionally, 
we hypothesized that the presence of a kairomone from a 
natural predator (carp bile extract with active kairomone(5α-
CPS) would modulate the differences in the effects caused 
by venlafaxine and fluoxetine on the locomotion of L. stag-
nalis, i.e., mean velocity (mm/s), duration of movement (s) 
and proportion of crawl-out.

Methodology

We tested the effect of two widely used antidepressants 
fluoxetine and venlafaxine on behavior of freshwater snail, 
Lymnaea stagnalis, using a randomized block design, to 
account for the effect of timing (experimental day) on the 
experimental results. Each block represents an experimen-
tal day, and the experiments were done over the same time 
period, with 96 snails for each antidepressant (n = 192) ran-
domly assigned to one block. To reflect the environmental 
relevant concentrations that affected locomotion in Gam-
marus pulex (De Lange et al. 2006), we exposed juveniles 
of L. stagnalis to a replicated concentration gradient of 
antidepressants (fluoxetine or venlafaxine) ranging from 0 
to 50 µg/L (0, 0.01, 0.05, 0.1, 0.5, 1, 10, 50 µg/L) in six 
replicates. To test the blocking effect in our experimental 
design, we carried out 36 additional trials with control treat-
ments where L. stagnalis juveniles were exposed to aerated 
groundwater. The snails were exposed to each of the anti-
depressant concentrations separately and in combination 
with a fixed concentration of carp bile extract with active 
kairomone (5α-cyprinol sulfate, 5α-CPS; Hahn et al. 2019). 
The behavior of the acclimatized snails was tracked in 6-well 
plates (volume: 16.8 mL; each well representing an experi-
mental unit) for a period of 60 min using the Noldus Danio-
vision system (Noldus, The Netherlands). The tracking was 
done in the presence and absence of carp bile extract with 
active kairomone (5α-CPS) to test potential of fluoxetine and 
venlafaxine to disrupt the anti-predator response. We also 
performed a degradation experiment to account for photo-
degradation of both chosen antidepressants over the course 
of the experiment.

Collection and maintenance of snails

Lymnaea stagnalis individuals were collected from the 
ponds located at the Netherlands Institute of Ecology 
(NIOO-KNAW), Wageningen, The Netherlands (51° 59′ 
17.3″ N 5° 40′ 25.0″ E). Twelve adult snails were transferred 
to plastic tanks containing 20 L of aerated groundwater and 
cultured under a light regime of 16:8 h at room temperature 
(20 °C). The snails were fed butterhead lettuce ad libitum 
(Large et al. 2006). To maintain good water quality and 
remove organic waste, the water was completely replaced 
with clean groundwater every week, until the adult snails 
had laid eggs along the surface of the tank. Subsequently, 
half of the water was replaced in order to reduce the loss of 
eggs and hatchlings. Juvenile snails of similar size (aged 
2 to 7 days post-hatching) were used for behavior-tracking 
experiments considering their high sensitivity to chemical 
pollutants and higher locomotory activity in comparison to 
the adults (Gérard et al. 2005; Mazur et al. 2016). A batch 



	 Environmental Science and Pollution Research

of juveniles were fed and then collected from the rearing 
tanks by filtering the water from tanks with 110-µm sieve 
and added to a clean tank of aerated groundwater 24 h prior 
to the bioassay to keep them free from the alarm signals of 
conspecifics.

Kairomone and pharmaceuticals

Kairomone used in the study was carp bile extract containing 
5 alpha-cyprinol sulfate (5α- CPS). The bile was extracted 
using the method described in Hahn et al. (2019). In short, 
the bile was extracted by C18-solid-phase and eluted with 
pure methanol to a volume of 1 mL. The bile salt was 
quantified by an UHPLC system with an Accela 1250 psi 
pump coupled with an Exactive Orbitrap mass spectrom-
eter (Thermo Fisher). This extract was determined to con-
tain 30 ng/µL of 5α-CPS. Two hundred microliters of the 
bile was diluted in 500 mL of aged, aerated groundwater 
(referred to as groundwater medium) which resulted in a 12 
ng/mL final concentration of 5α-CPS.

Fluoxetine hydrochloride, N-methyl-3-phenyl-3-[4-
(trifluoromethyl) phenoxy] propan-1-amine; hydrochloride 
(CAS 56296–78-7), a serotonin reuptake inhibitor; venlafax-
ine hydrochloride, 1-[2-(dimethylamino)-1-(4-methoxyphe-
nyl) ethyl] cyclohexan-1-ol (CAS 99300–78-4), serotonin 
and norepinephrine reuptake inhibitor were purchased from 
Merck, Sigma-Aldrich. One milligram per liter stock of both 
fluoxetine and venlafaxine was prepared from which dilu-
tions of 100 µg/L and 10 µg/L were prepared using MilliQ 
water. Stocks were prepared daily to avoid potential loss of 
compounds due to degradation which would otherwise lead 
to variations in the final concentrations.

Behavioral tracking

As a first step to behavioral tracking, naive L. stagna-
lis individuals were acclimatized in the 6-well plate (one 
individual per well) with 7.5 mL of groundwater medium 
for 15 min (Well’s plate Company: Falcon; dimensions: 
12 cm × 8 cm × 2 cm; material: polystyrene; well volume: 
16.8 mL). Subsequently, all the wells were spiked with 
pharmaceutical using stock solutions (i.e., 1 mg/L stock for 
exposure concentrations 10 and 50 µg/L; 100 µg/L stock 
for 1 µg/L; 10 µg/L stock for < 1 µg/L), and groundwater as 
control. Finally, the total volume at required concentrations 
was made up to 15 mL with only groundwater or ground-
water containing 5α-CPS kairomone. The individuals were 
exposed to a certain concentration from a concentration 
gradient of fluoxetine or venlafaxine ranging between 0.01 
and 50 µg/L, while the concentration of 5α-CPS was kept 
at 12 ng/mL (1.87 µM) which is approximately ninefold 
higher than the 107 pM concentration that induced behav-
ioral responses in Daphnia magna (Hahn et al. 2019). The 

Noldus Daniovision system with the EthoVision software 
was used for the behavioral tracking (Noldus et al. 2001; 
Valenti et al. 2012). The software setup consists of experi-
mental settings, arena settings, trial control settings, and 
detection settings. Experimental settings were set to live 
tracking, and the videos were recorded using Basler Geni-
Cam (Basler acA1300-60) with a frame rate of 60 fps and 
resolution of 1280 × 1024. The six arenas representing each 
well on the 6-well plates were placed in the DanioVision 
apparatus, the wells were automatically detected as arenas in 
the arena settings, and the arenas were calibrated at 80 mm 
according to the size of the plate. Trial control settings were 
set to track for 1 h with 1 min of acclimation time, and snails 
in the wells were recognized using auto-detect settings in 
DanioVision setup. All the trials were carried out during 
the light period (10:00 till 18:00 in July, i.e., summer period 
in The Netherlands), and 48 trials were run per day. All the 
experimental units were tracked for behavioral parameters 
such as mean velocity (mm/s), and cumulative duration of 
movement(s) in DanioVision tracking system with 60 s prep-
aration time and 3600 s, i.e., 60 min tracking. The tracking 
time of 60 min was based on the understanding that behav-
ioral changes to contaminant exposure are instinctive and 
immediate and yet ecologically significant considering that 
behavioral changes are energy consuming and alter interac-
tions with predator, prey, and conspecifics (Weis et al. 2001). 
The tracks were recorded, and videos were used to visually 
determine which snails crawled out of the arena and the time 
point of the experiment at which they crawled out.

Validation of experimental design

Chemical analysis

To validate the exact exposure concentration of fluoxetine 
and venlafaxine, concentrations in water from each well 
were quantified using LC–MS/MS(Agilent 1290 Infinity II 
liquid chromatography-triple quadrupole (LC-QQQ, Agi-
lent). We took samples at the end of the trial. Samples (500 
µL) were collected at the exposure concentrations < 1 µg/L 
and diluted with 70% acetonitrile (v/v in MilliQ) to a final 
volume of 1 mL and stored at 4 °C until quantification. 
The sample volume was reduced to 300 µL in concentra-
tions > 1 µg/L to avoid matrix effects such as carryover 
affecting the accuracy of quantification. Diluted samples 
were quantified using LC–MS/MS in ESI ( +) mode with 
Zorbax SB-C18 column (1.8 µm) for separation. Both the 
compounds were detected in a multiple reaction monitor-
ing in positive mode with transitions m/z 310.1—> 148.2 
for fluoxetine and m/z 278.2—> 121.2 for venlafaxine. The 
aliquots needed to establish a calibration curve of fluoxetine 
and venlafaxine were prepared in MilliQ water with physi-
cal properties similar to groundwater. The concentration of 



Environmental Science and Pollution Research	

the stock solutions was confirmed and for quantification of 
concentrations in the experimental units, the limit of quan-
tification was determined (for details, see Supplement 1,1).

Additionally, all the diluted samples stored with 70% 
acetonitrile (v/v in MilliQ) were qualitatively analyzed for 
the presence of kairomone, 5α-CPS in the carp bile extract 
used for the exposure. Zorbax SB-C18 column (1.8 µm) was 
used for separation, and the presence of 5α- CPS in the sam-
ples was confirmed by the abundant m/z fraction 531.29986 
[M–H]– in ESI (-) mode (Hahn et al. 2019).

The quantitative analysis software of Masshunter (QQQ, 
Agilent) was used to quantify the concentration of fluox-
etine and venlafaxine as well as to confirm the presence of 
5α-CPS in samples containing the kairomone. The bile used 
in the experiment was used as the standard against which the 
presence/ absence of 5α-CPS was confirmed in the samples 
from experimental treatments.

Degradation experiment

Pharmaceutical degradation under environmental condi-
tions is inevitable. This can be through various degrada-
tion pathways such as photodegradation, biodegradation, 
hydrolysis, photolysis, and oxidation (Andrés-Costa et al. 
2017; Kwon and Armbrust 2006; Rúa-Gómez and Püttmann 
2013; Sterr and Sommaruga 2008). In order to account for 
the potential loss of the antidepressants during our exposure 
experiments, we determined the fate of both venlafaxine and 
fluoxetine under our experimental conditions. Triplicates of 
15 mL of aerated groundwater with fluoxetine hydrochlo-
ride and venlafaxine concentrations 0, 1, 10, and 100 µg/L 
were incubated at 20 °C with continuous light. From each 
experimental unit < 100 µg/L, 500 µL of samples were col-
lected at 5 sampling timepoints: initially and after, 1, 8, 24, 
and 48 h. Aliquots of 100 µL were collected from the units 
exposed to 100 µg/L to avoid carryover effects caused by 
higher concentrations hindering quantification. All collected 
samples were stored in amber vials with the volume brought 
up to 1 mL using 70% acetonitrile (v/v in MilliQ) for further 
analyses. Diluted samples with fluoxetine and venlafaxine in 
70% acetonitrile (v/v in MilliQ) were quantified by LC–MS/
MS (see “Data analysis”).

Fluoxetine in our experimental conditions followed first-
order kinetics; therefore, we applied mkin package (Ranke 
et al. 2023) in Rstudio (version 4.0.3) to determine the dis-
sipation time-50 (DT50), i.e., the time required for 50% of the 
initial concentration of fluoxetine or venlafaxine to dissipate 
from our experimental system.

Data analysis

Raw data output from EthovisionXT was used to calculate 
mean velocity (mm/s), and cumulative duration of movement 

(s) for 60 min. The data was quality controlled by visually 
inspecting each recording, with removal of unrealistic values 
caused by the snail crawling out, immobility affecting detec-
tion or detection issues due to low visibility caused by the 
snail being in the edges of the wells plate. The outlier values 
were removed based on the inter quartile range method for 
outlier detection for each treatment (Boratyński et al. 2012).

In order to test for a blocking effect in our experimental 
design, we carried out 36 additional trials with control treat-
ments where naive L. stagnalis juveniles, i.e., offspring from 
the pool of 6 parents were exposed to aerated groundwater 
in the absence of fluoxetine, venlafaxine, and kairomone. As 
the aim was to test for potential blocking effects of the day 
of experiment, we spread the additional testing over 6 days, 
similar to the experimental runs. The behavioral changes in 
L. stagnalis juveniles were tracked following the same steps 
as the trials of experimental treatments using the Daniovision 
apparatus. As we detected a blocking effect (see for details 
Supplement 1.3), we proceeded with analyzing trait-mediated 
indirect effects of fluoxetine and venlafaxine on locomotion 
parameters using log response ratios. Log response ratio (LRR) 
is an effect size ratio determined as a natural logarithm of the 
ratio of a response variable (in this case, velocity (mm/s) and 
duration of movement (s) in an experimental treatment to that 
of a control treatment) (Hedges et al. 1999). Further statistical 
analyses were performed using R (version 4.0.3).

Tests were performed using linear mixed effects models 
(lme), using the lmer function in the “lme4” package (Bates 
et al. 2023). Two lme tests were performed: first to compare 
the effect of fluoxetine and venlafaxine on mean velocity and 
cumulative duration of movement, and second, to test the 
effect of fluoxetine/venlafaxine in the absence of kairomone 
in comparison to fluoxetine/venlafaxine in the presence of 
kairomone, on mean velocity and cumulative duration of 
movement. Logistic regression was used to test crawl-out 
frequency on exposure to the two compounds in the absence/
presence of kairomone. Lastly, we calculated Cohen’s d 
using the method from Brysbaert and Stevens (2018) to 
evaluate the strength of our statistical claims. Details on 
these calculations can be found in Supplement 1.4.

The residuals of LRR of endpoints, i.e., mean velocity 
and total duration, were then checked for normality (Shap-
iro–Wilk test) and homogeneity of variance (Levene’s test) 
(Shapiro and Wilk 1965).The effect of compound exposure 
on the LRRs was tested using submodels with day as the 
random factor and fixed effects namely only concentration 
(model 1), only compound (model 2), and combined effect 
of concentration and compound (model 3). These submod-
els were tested against a zero model (effect on LRRs in 
the absence of both concentration and compound in fixed 
effects). Using the model with the combined effect of con-
centration and compound, pairwise comparisons were made 
within and between the compounds.
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In order to test if the natural chemical compound modu-
lates the effects caused by the two antidepressants, we also 
tested the effect of carp bile extract with the natural chemi-
cal compound, 5α-CPS on the locomotion parameters, i.e., 
time taken to crawl-out of the water surface, mean veloc-
ity and cumulative duration of movement in comparison 
to control. To test the effects of simultaneous exposure to 
kairomone and compound, a model with compound (fluox-
etine or venlafaxine), concentration, and kairomone (absent/
present) was set as fixed effects and day of the experiment 
as the random factor. Pairwise comparisons were performed 
using the “emmeans’’ package (Lenth et al. 2023). We used 
the language of evidence (Muff et al. 2022) to report and 
interpret the outcome of our statistical tests. To this end, 
p-values have been interpreted according to the approximate 
range within which the p-value falls (range 0.1–1 indicating 
little or no evidence, 0.05–0.1 as weak evidence, 0.01–0.05 
as moderate evidence, 0.001–0.01 as strong evidence, 
and < 0.001 as very strong evidence).

Results

Validation of experimental design

Chemical analysis

We observed that measured concentration of fluoxetine and 
venlafaxine in our experimental matrix (i.e., groundwa-
ter) was unaffected by the presence of kairomone carp bile 
extract. The average measured concentrations of fluoxetine 
in experimental treatments (both in the presence and absence 
of kairomone) containing 0.5, 1, 10, and 50 µg/L were 0.14 
(s.d. ± 0.08), 0.19 (s.d. ± 0.17), 6.92 (s.d. ± 0.4), and 37.1 
(s.d. ± 5.74) µg/L, respectively. Average measured concen-
trations in treatments with expected venlafaxine concentra-
tions of 10 and 50 µg/L (both in the presence and absence of 
kairomone) were 2.09 (s.d. ± 0.12) and 25.08 (s.d. ± 8. 58) 
µg/L. 5α-CPS was qualitatively confirmed to be present in 
all the samples containing bile extract. The degradation pat-
tern of the two compounds in our experimental conditions 
was also measured for validation of the setup (Supplement 
1.2).

Differences in trait‑mediated effects of venlafaxine 
and fluoxetine

Log response ratio (LRR) of velocity and duration of 
movement of an experimental treatment relative to the 
control (Fig.  1A, B) exhibit a difference in response 
for venlafaxine and fluoxetine. Based on the lme model 
(combined effect of concentration and compound), pair-
wise comparisons were made within and between the 

two compounds. Within the compound (along the con-
centration gradient), venlafaxine was observed to show 
a non-monotonic (biphasic) dose response (NMDR) with 
stimulation at lower concentrations and inhibition at the 
highest concentration. Fluoxetine did show a different 
pattern in response and had values closer to the control 
line, except for one concentration (Fig. 1A). Compari-
sons between the two compounds revealed that at lower 
concentrations 0.01 μg/L, 0.1 μg/L, 1 μg/L, exposure to 
venlafaxine caused an increase in cumulative duration of 
movement relative to the control in contrast to exposure to 
fluoxetine which led to a decrease in cumulative duration 
of movement relative to the control (Fig. 1B). The results 
have been detailed below using the language of evidence 
(Muff et al. 2022).

Main effects and interaction effects

Regardless of the compound, concentration had a moderate 
effect on mean velocity (P = 0.03) and cumulative duration 
of movement (P = 0.03) (Model 1). The type of compound, 
i.e., venlafaxine vs. fluoxetine, had no effect on mean veloc-
ity and a very strong effect on cumulative duration of move-
ment (P < 0.001) (Model 2). A combined effect of compound 
and concentration showed a very strong effect on mean 
velocity (P < 0.001) and cumulative duration of movement 
(P < 0.001) (Model 3).

Pairwise comparisons within the concentration gradient 
for each compound

Pairwise comparisons were made from the lme model with 
a combined effect of concentration and compound. The 
lowest concentration of venlafaxine 0.01 μg/L showed 
moderate to strong evidence of an increase in cumulative 
duration of movement when compared to concentrations 
of venlafaxine 0.05 µg/L (P = 0.02), 0.5 µg/L (P = 0.03), 
50  µg/L (P < 0.001) (Fig.  1B). However, the highest 
concentration of venlafaxine 50 µg/L showed moderate 
to strong evidence of decrease in mean velocity when 
compared to lower concentrations 0.01 µg/L(P = 0.03), 
0.1 µg/L (P = 0.008), 0.5 µg/L (P = 0.08), 1 µg/L (P = 0.03) 
(Fig. 1A). Similarly for cumulative duration of movement, 
the highest concentration of venlafaxine 50 µg/L showed 
moderate to very strong decrease when compared to the 
lower concentrations 0.01  µg/L (P < 0.001), 0.1  µg/L 
(P = 0.03), 0.5 µg/L (P = 0.09), 1 µg/L (P = 0.01), 10 µg/L 
(P = 0.02) (Fig. 1B). Pairwise comparisons of fluoxetine 
exhibited weak evidence of an increase in mean velocity 
for concentration 0.5 µg/L when compared to 0.01 µg/L 
(P = 0.06), 0.05  µg/L (P = 0.03), 0.1  µg/L (P = 0.06), 
50 µg/L(P = 0.07); no effects were observed for cumula-
tive duration of movement (Fig. 1A, B).
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Pairwise comparisons between the two compounds

Using a lme model with a combined effect of concentration 
and compound, pairwise comparisons were also made for 
the same concentration between the two compounds (e.g., 
response in LRRs for venlafaxine 0.01 µg/L vs fluoxetine 
0.01 µg/L). There was moderate evidence of difference in 
mean velocity between the two compounds for concentra-
tion 0.1 µg/L (P = 0.05). Cumulative duration of movement 
showed moderate evidence of difference between the two 
compounds for the concentrations 0.01 µg/L (P = 0.02), 
0.1 µg/L (P = 0.04), 1 µg/L (P = 0.04), with an increase in 

cumulative duration of movement for venlafaxine in com-
parison to a slight decrease observed for fluoxetine (Fig. 1B).

Crawl‑out response

Additionally, we determined the differences in the effect 
of fluoxetine and venlafaxine on crawl-out by comparing 
the crawl-out proportion (i.e., number of animals crawled 
out out of the total number of animals (n = 6)) as seen in 
Fig. 1C and D. Overall, we did not record a 100% crawl-
out along the concentration gradient for both fluoxetine and 
venlafaxine exposure. However, 2 of 6 individuals (i.e., 

Fig. 1   Trait-mediated effects of fluoxetine (green) and venlafaxine 
(yellow) concentrations (0, 0.01, 0.05, 0.1, 0.5, 1, 10, 50 µg/L) on 
locomotion of L. stagnalis. A Mean velocity: Log response ratio of 
average mean velocity of venlafaxine (yellow boxes) and fluoxetine 
(green boxes) with no-effect (i.e., 0 LRR) represented by the blue 
solid line. B Duration of movement: Log response ratio of cumula-
tive duration of movement of venlafaxine (yellow boxes) and fluox-
etine (green boxes), with no-effect (i.e., 0 LRR) represented by blue 
solid line; Positive log response ratio indicates an increase; nega-
tive indicates a decrease in mean velocity/ duration of movement. 

The whiskers in the box plot represent the interquartile range (IQR) 
and extend to the minimum and maximum values 1.5 times the 
IQR. Yellow and green whiskers indicate IQR in venlafaxine and 
fluoxetine treatment respectively. C Venlafaxine crawl-out response: 
Proportion of the total number of replicates that crawled out when 
exposed to venlafaxine (yellow dots) over a concentration gradient. 
D Fluoxetine crawl-out response: Proportion of the total number of 
replicates that crawled out when exposed to fluoxetine (green dots) 
over a concentration gradient
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0.33 proportion) crawled out when exposed to venlafaxine 
at 0.5 µg/L, 0.1 µg/L, and 10 µg/L concentrations. Contrast-
ingly, no crawl-out was observed upon 0.5 µg/L fluoxetine 
exposure. The results from logistic regression analysis show 
no significant results for both fluoxetine and venlafaxine 
throughout the exposure gradient.

Effect of fish kairomone on locomotion of L. 
stagnalis 

As a first step in testing the effects of fluoxetine and ven-
lafaxine on the locomotion of L. stagnalis in the presence 
of fish kairomones, we tested the effects of solely the fish 
kairomone (bile extract with 5α-CPS) on the locomotion of 
L. stagnalis. The effect of carp bile extract with 5α-CPS was 
evaluated by comparing the mean velocity (mm/s), cumulative 

duration of movement (s), and proportion of crawl-out of only 
5α-CPS exposed treatments with no 5α-CPS, non-pharma-
ceutical exposed controls (Fig. 2). There was no evidence of 
the effect of the bile extract when compared to the control for 
mean velocity (P = 0.34), cumulative duration of movement 
(P = 0.67), and crawl-out response (P = 0.9).

Effects of venlafaxine and fluoxetine in the presence 
of fish kairomone

To test the differences in treatments on simultaneous expo-
sure to pharmaceutical and kairomone, a model with com-
bined effects of compound (fluoxetine or venlafaxine), 
kairomone(5α-CPS) (absent or present), and concentration 
was used (Fig. 3A, B). The results observed in the pres-
ence of kairomone were found to be similar to the results 

Fig. 2   Effect of carp bile extract with natural chemical compound, 
kairomone 5α-CPS on the locomotion of L.stagnalis in comparison 
to non-antidepressant, non-5α-CPS exposed controls. A Mean veloc-
ity: Average mean velocity (mm/s) of control (yellow boxes) and kair-
omone, 5α-CPS (green boxes). B Duration of movement: Cumulative 
duration of movement (s) of control (yellow boxes) and kairomone, 
5α-CPS (green boxes). C Crawl-out response: Proportion of the total 

number of replicates that crawled out when exposed to control (yel-
low boxes) and kairomone, 5α-CPS (green boxes). The whiskers in 
the box plot represent the interquartile range (IQR) and extend to the 
minimum and maximum values 1.5 times IQR. Yellow and green 
whiskers indicate IQR in control and kairomone, 5α-CPS treatment 
respectively
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in the absence of kairomone as mentioned above, but the 
effects were weaker with higher p-values. Although similar 
to crawl-out response in the absence of kairomone, logistic 
regression analysis showed a lack of significant effect on 
crawl-out when exposed simultaneously to venlafaxine and 
5α-CPS (Fig. 3C) or to fluoxetine and 5α-CPS (Fig. 3D).

Pairwise comparisons within the concentration gradient 
for each compound in the presence of fish kairomone

In the presence of the fish kairomone, venlafaxine showed 
a NMDR response only for cumulative duration of move-
ment although there was weaker evidence in comparison to 

the moderate to strong evidence in the absence of 5α-CPS 
(the “Pairwise comparisons within the concentration gradi-
ent for each compound” section). Additionally, in the pres-
ence of 5α-CPS, there was evidence of an increase in the 
cumulative duration of movement on exposure to 0.5 µg/L 
of venlafaxine, which was not observed in the absence of 
5α-CPS (Figs. 1B, 3B). There were weak effects observed 
on mean velocity on exposure to fluoxetine in the absence 
of 5α-CPS; however, there was no evidence of effects on 
locomotion parameters on exposure to fluoxetine in the pres-
ence of 5α-CPS (Figs. 1A, 3A). The lowest concentration 
of venlafaxine 0.01 µg/L showed moderate evidence of an 
increase in cumulative duration in comparison to the highest 

Fig. 3   Effect of fluoxetine (green) and venlafaxine (yellow) concen-
trations (0, 0.01, 0.05, 0.1, 0.5, 1, 10, 50  µg/L) on locomotion of 
L.stagnalis in the presence of 5α-CPS (kairomone). A Mean veloc-
ity: Log response ratio of average mean velocity of venlafaxine (yel-
low boxes) and fluoxetine (green boxes) in the presence of 5α-CPS 
with no-effect represented by the blue solid line. B Duration of move-
ment: Log response ratio of cumulative duration of movement of ven-
lafaxine (yellow boxes) and fluoxetine (green boxes) in the presence 
of 5α-CPS with no-effect represented by blue solid line; Positive log 
response ratio indicates an increase, negative indicates a decrease in 
mean velocity/ duration of movement. The whiskers in the box plot 

represent the interquartile range (IQR) and extend to the minimum 
and maximum values 1.5 times IQR. Yellow and green whiskers 
indicate IQR in venlafaxine + kairomone and fluoxetine + kairomone 
treatment respectively. C Venlafaxine + 5α-CPS crawl-out response: 
Proportion of the total number of replicates that crawled out when 
exposed to venlafaxine in the presence of 5α-CPS (yellow dots) over 
a concentration gradient. D Fluoxetine + 5α-CPS crawl-out response: 
Proportion of the total number of replicates that crawled out when 
exposed to fluoxetine in the presence of 5α-CPS (green dots) over a 
concentration gradient
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concentration 50 µg/L (P = 0.03). There was moderate to 
very strong evidence of an increase in cumulative duration 
of movement for concentration 0.5 µg/L in comparison to 
0.05 µg/L (P = 0.04), 1 µg/L (P = 0.007), 10 µg/L (P = 0.03), 
50 µg/L (P < 0.001) (Fig. 3B). Pairwise comparisons with 
the concentration gradient for fluoxetine showed no effects 
for either of the locomotion parameters in the presence of 
5α-CPS (Fig. 3A, B).

Pairwise comparisons between the two compounds 
in the presence of fish kairomone

Pairwise comparison between the compounds (e.g., response 
in LRRs for venlafaxine 0.01  µg/L in the presence of 
5α-CPS vs fluoxetine 0.01 µg/L in the presence of 5α-CPS) 
showed weak evidence of difference for low concentrations 
0.01 µg/L (P = 0.09), 0.05 µg/L (P = 0.08) and very strong 
evidence for 0.5 µg/L (P < 0.001) (Fig. 3B), in comparison 
to the moderate evidence observed in the absence of 5α-CPS 
(“Pairwise comparisons between the two compounds” sec-
tion), except for venlafaxine 0.5 µg/L where there is a strong 
increase in cumulative duration of movement in the presence 
of 5α-CPS. Pairwise comparisons for the same concentration 
between the two compounds showed no evidence of differ-
ence for mean velocity (Fig. 3A).

Discussion

Antidepressants alter the receptors serotonin and/or nor-
epinephrine both of which are evolutionarily conserved 
and control locomotion in molluscs. Recently, the adaptive 
role of serotonin in animal behavior and cognition both in 
invertebrates and vertebrates has been highlighted (Bacqué-
Cazenave et al. 2020). In this study, we examined the effects 
of two antidepressants on the non-target organism Lymnaea 
stagnalis, considering environmentally relevant concentra-
tions and their impact on energy-consuming behaviors such 
as locomotion and anti-predator responses alongside natural 
chemical compound, i.e., a kairomone 5α-CPS.

Differences in trait‑mediated effects of venlafaxine 
and fluoxetine

Our results show that venlafaxine and fluoxetine vary in 
their effects on the behavior of L.stagnalis. For venlafaxine, 
we observed a non-monotonic response with an increase in 
cumulative duration of movement at the lower concentra-
tions and decrease in both locomotion parameters at the 
highest concentration. Exposure to fluoxetine did not alter 
locomotion except for weak evidence of an increase of mean 
velocity for concentration 0.5 µg/L. On comparing LRRs 

between the two compounds, effects on locomotion in lower 
and environmentally relevant concentrations (0.01 µg/L, 
0.1 µg/L, 1 µg/L) were also found to be significantly different 
between fluoxetine and venlafaxine. The cumulative dura-
tion of movement increased when exposed to venlafaxine, 
whereas it decreased when exposed to fluoxetine.

Differences in response to venlafaxine and fluoxetine 
exposure have also been observed in other studies. Fong et al. 
(2015) found clear effects of venlafaxine with an increased 
crawling speed of two marine snails, i.e., Lithopoma and Uro-
salpinx, while fluoxetine reduced crawling speed. In our study, 
we observed a NMDR for venlafaxine and no strong effects of 
fluoxetine on locomotion. The discrepancy between the Fong 
et al. (2015) study and ours could be because our study was 
focused on the lower concentration gradient between 0.01 and 
50 µg/L, while Fong et al. (2015) used higher concentrations 
ranging from 3.13 µg/L to 3.13 mg/L. In addition, exposure 
duration was longer in the study of Fong et al. (2015) com-
pared to our study, 4 h vs 1 h, respectively. Furthermore, Fong 
et al. (2015) applied a “before and after” design because of 
the considerable between-animal variation in crawling speed. 
Both studies confirm a variation in response between the 
antidepressants. This can be due to the differences in their 
mechanism of action, i.e., along with the serotonin reuptake 
inhibition similar to fluoxetine; venlafaxine also inhibits the 
reuptake of norepinephrine (also known as noradrenaline- a 
neurotransmitter). Similar to serotonin, octopamine, another 
neurotransmitter involved in regulating locomotion in gastro-
pods, is structurally similar to norepinephrine and has affinity 
to norepinephrine receptors (Gerhardt et al. 1997). Therefore, 
venlafaxine has the potential influence to locomotion in L. 
stagnalis via serotonin and norepinephrine receptors. The 
alteration in locomotion observed at ecologically relevant con-
centrations of venlafaxine in our study has ecological implica-
tions such as increased risk of predation and modifications in 
crawling out behavior (Fong et al. 2015). Changes in behavior 
can be considered an early warning signal for more serious 
ecological implications (Hellou 2011).

The high variability in trait-mediated effects observed 
in this study highlights that antidepressants with simi-
lar modes of action such as SSRI and SNRIs should not 
be grouped together in environmental risk assessments. 
Compounds within the class of SSRI antidepressants 
themselves have been shown to have high variability in 
chemical structures (Coleman and Gouaux 2018), which 
can lead to differences in response upon exposure. Dif-
ferences in activity, feeding, and chemotaxis of Caeno-
rhabditis elegans in responses to 2 SSRIs (sertraline and 
fluoxetine) were reported by van der Most et al. (2023). 
Instead of group- monitoring based on therapeutic groups, 
grouping pharmaceutical compounds based on chemical 
structure similarities can be a potential alternative (Davey 
et al. 2022).
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Additionally, trait-mediated effects of venlafaxine fol-
lowed a non-monotonic dose response (NMDR), i.e., stimu-
lation at low concentrations and inhibition at high concen-
trations in our study (see the “Differences in trait-mediated 
effects of venlafaxine and fluoxetine” section). Non-mono-
tonic dose responses are commonly reported in toxicity 
studies with antidepressants (Bossus et al. 2014; Fong et al. 
2017; Rivetti et al. 2016; van der Most et al. 2023). In our 
study, we did not observe a NMDR relationship for the 
trait-mediated effects of fluoxetine on L.stagnalis. This is 
contrary to the observations of other studies where such a 
relationship over low concentrations of fluoxetine has been 
detected (Fong et al. 2017; Guler and Ford 2010; Painter 
et al. 2009). Despite the increasing evidence on non-mono-
tonic responses, the mechanisms behind these antidepres-
sants induced non-monotonic responses remain unexplored. 
However, several potential mechanisms for NMDR include 
protective and beneficial effects at low doses that reduce 
or disappear at high concentrations have been theorized as 
summarized by van der Most et al. (2023) such as (i) recep-
tor desensitization or limited receptor availability; (ii) alter-
native mechanisms of action; (iii) multiple receptors with 
different affinities to the antidepressant; (iv) high dose acute 
toxicity caused by saturation or overt toxicity modulating 
the endpoint being measured (also see, Hill et al., (2018).

In this study, fluoxetine did not have a significant effect 
except for one concentration. In addition, both the compounds 
did not evoke an anti-predator response, i.e., crawling out of 
the water surface. The absence of detectable effects on loco-
motion has also been reported in juvenile cuttlefish exposed 
to fluoxetine (Di Poi et al. 2014). It is necessary to report 
such non-significant results, considering the existing citation 
bias in ecotoxicology where studies with significant positive 
or negative effects are more cited than the studies with no 
significant effect (Hanson et al. 2018). It is also important 
to consider the contribution of power analysis of the sample 
size (see supplement 1.4). In order to achieve precision in the 
environmental risk assessment of these antidepressants, it is 
crucial to expand the horizon and look beyond the significant 
effects these compounds have on aquatic organisms.

Effect of venlafaxine and fluoxetine in the presence 
of kairomone

In nature, synthetic chemicals such as antidepressants are 
exposed to a range of naturally occurring compounds in 
aquatic ecosystems (Van Donk et al. 2016); hence, it is 
interesting to study the effects of antidepressant exposure 
in the presence of naturally occurring compounds such as 
kairomones. Previous studies have studied anti-predator 
behavior in L.stagnalis with tench (Tinca tinca), causing 
crawl-out response in the presence of predator and alarm 
cues (Dalesman et al. 2006). In this study, we wanted to test 

the effect of predator cues from Cyprinus carpio, a cypri-
nid like T.tinca containing CPS in bile. Hahn et al. (2019) 
observed that 5α-CPS obtained from C.carpio bile induced 
diel vertical migration in Daphnia magna, which is a preda-
tor avoidance behavior. We aimed to study whether the pres-
ence of 5α-CPS would also induce anti-predator response in 
L. stagnalis and if its presence alters the response of L. stag-
nalis to the antidepressants. The results show the 5α-CPS 
itself did not induce crawling response or alter locomotion 
parameters. Exposure to antidepressants in the presence of 
5α-CPS reduced the intensity of effects seen in the absence 
of 5α-CPS. This was observed for both venlafaxine and 
fluoxetine. For our study, we used bile extract which con-
tained 5α-CPS. A possible explanation is that the bile salts 
could have interacted with the antidepressants and reduced 
the bioavailability of the compounds for Lymnaea stagna-
lis. While the quantification of antidepressant concentra-
tions provides information about their presence or absence 
which was not affected by the presence of kairomone in our 
study, it does not necessarily capture all the mechanisms by 
which they can influence organisms. Behavioral responses 
can be influenced by various factors, including neurochemi-
cal interactions, receptor binding, and downstream signaling 
pathways, which may affect the responses of L.stagnalis to 
antidepressants in the presence of kairomone-5α-CPS.

Fate of venlafaxine and fluoxetine in our 
experiment

Our study focused on an extensive concentration gradient 
of fluoxetine and venlafaxine, i.e., 0.01, to 50 µg/L follow-
ing their environmentally measured concentrations. Due to 
analytical limitations, lower exposure concentrations in our 
behavioral tracking experiment were not quantifiable by LC/
MS–MS. To overcome this limitation and confirm the pres-
ence of fluoxetine and venlafaxine in our behavioral tracking 
experiments, we determined the half-life of fluoxetine and 
venlafaxine by performing a separate follow-up experiment 
dedicated to determining the fate of these compounds in our 
experimental conditions. In our degradation experiment, we 
found negligible photodegradation of both fluoxetine and 
venlafaxine in our experimental matrix under similar light 
and temperature conditions confirming a negligible loss of 
fluoxetine and venlafaxine over the 8 h of behavioral tracking 
that a stock was being used. The half-life of both compounds 
determined for an initial concentration 100 µg/L is higher 
than both our exposure duration (i.e., 60 min) and 8 h (i.e., 
total number of trials run using the same stock solution). 
These determined half-lives of fluoxetine and venlafaxine 
suggest that all the responses observed are neither influenced 
by loss of the active compound or increased degradation 
product. Kwon and Armbrust (2006) reported that fluoxetine 
is persistent to hydrolysis and photolysis with a half-life over 
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100 days. In another study, Yin et al. (2017) observed half-
lives of fluoxetine and venlafaxine to be 46.6–183.2 days 
and 68.8–145.4 days respectively upon photodegradation.

However, in our behavioral tracking, the nominal concen-
trations of fluoxetine were as low as 15% at low concentra-
tions and around 74% at highest concentrations, while the 
measured concentrations of venlafaxine were 20% and 50% 
of the nominal concentrations indicating a considerable loss 
of these compounds. It is important to note that the degra-
dation experiment was carried out in the same experimental 
conditions but devoid of our study organism, i.e., L. stagnalis. 
Therefore, the role of L. stagnalis and the microbiome associ-
ated with them in the uptake and degradation of both the anti-
depressants cannot be ruled out. Furthermore, the potential for 
both fluoxetine and venlafaxine to adsorb to the walls of the 
experimental arena (material: polystyrene) cannot be disre-
garded. The study by Bouly et al. (2022) reported degradation 
of diclofenac to metabolites in L. stagnalis. Gust et al. (2013) 
reported a higher bioaccumulation of fluoxetine in freshwater 
snails with bioconcentration factor (BCF) ranging between 
288 and 411 in Potamopyrgus antipodarum (New Zealand 
mud snail) and between 118 and 175 in Valvata piscinalis 
(European valve snail) confirming our speculation about the 
uptake of fluoxetine by freshwater snails. Gomez et al. (2021) 
reported the BCF of venlafaxine in Mytilus galloprovincialis 
(marine mussels) to reach 265 mL/g dry weight over a 7-day 
exposure leading to the biological half-life of 24 ± 2 h. How-
ever, the biological half-life of both fluoxetine and venlafaxine 
in the presence of L.stagnalis is unexplored.

Inter‑ and intra‑individual differences

The results of our experiment displayed a large variation 
in the responses of the control; to account for this, a higher 
number of controls were used to assess the range of variation 
in mean velocity and cumulative duration of movement. The 
high variation between- and within- individuals observed in 
control treatment confirmed the presence of inter-and intra-
individual variation in the response of L. stagnalis in our 
study. The intra- and inter-individual variation in our study 
is a common scenario of many other studies especially when 
the aim is to investigate the changes in behavior in inverte-
brates (Guscelli et al. 2019; Szabó et al. 2021) and mammals 
(Hertel et al. 2021). The standard OECD tests such as test 
number 243—Lymnaea stagnalis reproduction test—advise 
on the shell-length, age, parasite-free, and exhibit low mortal-
ity and be able to reproduce all-year around (OECD 2016). 
However, observations on inter- and intra-individual variation 
while determining the effects of contaminants can be informa-
tive as reported by Szabó et al. (2021) where they highlighted 
the variance being informative in predicting pesticide toxicity 
and more than just being an additional information.

Conclusions and future steps

To the best of our understanding, we for the first time tested 
the effect of two antidepressants (fluoxetine and venlafax-
ine) with a similar mode of action on the behavior of the 
freshwater pond snail, L. stagnalis, individually, including 
environmentally relevant concentrations (0.01 to 50 µg/L). 
Additionally, we examined their effects in the presence of 
Cyprinus carpio kairomone, i.e., 5α-CPS, at the same con-
centration gradient (0.01 to 50 µg/L) to further explore their 
combined impact. Our results reveal distinct patterns of 
locomotion in response to these antidepressants. Venlafax-
ine displayed a non-monotonic dose–response relationship, 
stimulating movement at lower concentrations (0.01 µg/L, 
0.1 µg/L, and 1 µg/L) while inhibiting it at higher concentra-
tions (50 µg/L). In contrast, fluoxetine did not exhibit a clear 
dose-dependent trend and showed response values similar to 
the control group. Comparison of LRRs between the fluox-
etine and venlafaxine experiment also showed significantly 
different responses for lower and environmentally concen-
trations (0.01 µg/L, 0.1 µg/L, and 1 µg/L), with an increase 
in cumulative duration of movement relative to the control 
as compared to a decrease in locomotion for fluoxetine. 
The long concentration gradient in our study design which 
ranged from environmentally relevant low concentrations to 
higher concentrations that would only be present under more 
extreme conditions such as wastewater spills allowed us to 
detect these nonlinear responses, which would not have not 
been possible with other study designs. Other studies often 
focus on higher concentrations of contaminants (exceeding 
environmentally relevant concentrations) and use different 
behavioral endpoints such as feeding behavior and seeking 
shelter (Godoy et al. 2020; OECD 2016). In addition, using 
the language of evidence aided us with a more nuanced dis-
cussion of the behavioral responses of L. stagnalis to the two 
antidepressants, as opposed to a mere rejection or accept-
ance of our null-hypotheses.

In our study, we found that the presence of a kairomone, 
5α-CPS, reduced the intensity of effects caused by venla-
faxine and fluoxetine on individual exposure. We used bile 
extract containing 5α-CPS, and we speculate that an interac-
tion between the bile salts and antidepressants reduced their 
availability for Lymnaea stagnalis. Our results also high-
lighted the inter- and intra-individual variations in behavior 
of L.stagnalis, an important factor which requires attention 
in environmental risk assessments of contaminants. Varia-
tions are inevitable in the environment, and this is especially 
true while looking at behavioral responses. The personality 
of an organism has a large role in determining the way an 
individual organism responds to an external stimulus such 
as antidepressant (in the present study). As also highlighted 
by Nikinmaa and Anttila (2019) and Szabó et al. (2021), 
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variance in the individual responses could be informative in 
predicting the risk of environmental contaminants.

In the context of this study, it is important to acknowledge 
that our experiments were conducted under controlled labora-
tory conditions. Therefore, it is necessary to conduct further 
research to fully understand the ecological implications of 
these findings in natural environments where multiple stress-
ors coexist. Our findings, however, provide valuable insights 
for conducting more accurate and informed ecological risk 
assessments of pharmaceuticals in aquatic environments, 
contributing to the protection of aquatic ecosystems. Impor-
tantly, our study highlights the limitation of grouping phar-
maceutical compounds together for risk assessment purposes.
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